

Office Open

XML
Part 3: Primer

December 2006

Table of Contents

 iii

Table of Contents 1

Foreword .. xi 2

Introduction ... xii 3

1. Scope .. 1 4

2. Introduction to WordprocessingML .. 2 5

2.1 Stories .. 2 6

2.2 Basic Document Structure ... 2 7

2.3 Main Document Story ... 3 8

2.3.1 Document Backgrounds .. 3 9

2.4 Paragraphs and Rich Formatting ... 4 10

2.4.1 Paragraphs ... 4 11

2.4.2 Runs ... 5 12

2.4.3 Run Content .. 7 13

2.4.4 Formatting Property Values .. 8 14

2.5 Tables... 9 15

2.5.1 Introduction .. 9 16

2.5.2 Table Properties .. 10 17

2.5.3 Table Grid .. 11 18

2.5.4 Table Rows and Cells ... 12 19

2.5.5 Table Layout .. 14 20

2.5.6 Fixed Width Tables .. 15 21

2.5.7 AutoFit Tables.. 15 22

2.5.8 Complex Table Example .. 16 23

2.5.9 Vertically Merged Cells .. 17 24

2.6 Custom Markup ... 19 25

2.6.1 Smart Tags ... 19 26

2.6.2 Custom XML Markup ... 21 27

2.6.3 Structured Document Tags ... 23 28

2.7 Sections ... 26 29

2.7.1 Section Properties ... 27 30

2.7.2 Section Breaks ... 28 31

2.8 Styles ... 29 32

2.8.1 Styles Part .. 29 33

2.8.2 Style Definitions .. 29 34

2.8.3 Paragraph Styles .. 30 35

2.8.4 Character Styles ... 32 36

2.8.5 Linked Styles .. 33 37

2.8.6 Numbering Styles .. 36 38

2.8.7 Table Styles .. 36 39

2.8.8 Default Document Paragraph and Character Properties .. 40 40

2.8.9 Style Inheritance ... 40 41

2.8.10 Style Application .. 41 42

2.8.11 Latent Styles .. 42 43

2.9 Fonts .. 43 44

2.9.1 Font References .. 43 45

Table of Contents

 iv

2.9.2 Font Reference Types .. 43 1

2.9.3 Ambiguous Characters .. 44 2

2.9.4 Font Table .. 44 3

2.9.5 Font Substitution Data .. 45 4

2.9.6 Font Embedding .. 45 5

2.9.7 Theme Fonts .. 46 6

2.10 Numbering ... 46 7

2.10.1 Numbering Part ... 47 8

2.10.2 Numbering Definitions .. 47 9

2.10.3 Abstract Numbering Definitions .. 47 10

2.10.4 Numbering Definition Instances.. 50 11

2.10.5 Applying Numbering to Paragraphs .. 51 12

2.10.6 The Complete Story ... 54 13

2.10.7 Numbering Styles .. 55 14

2.10.8 Referencing Numbering Styles .. 56 15

2.11 Headers and Footers ... 59 16

2.11.1 Header Part ... 60 17

2.11.2 Footer Part .. 60 18

2.11.3 Headers and Footers ... 60 19

2.11.4 Multiple Sections ... 63 20

2.11.5 Empty Header or Footer .. 64 21

2.12 Footnotes and Endnotes ... 64 22

2.12.1 Footnote Part .. 65 23

2.12.2 Endnote Part ... 65 24

2.12.3 Footnotes and Endnotes ... 66 25

2.12.4 Footnote and Endnote Types .. 67 26

2.12.5 Footnote and Endnote Reference ... 71 27

2.13 Glossary Document ... 72 28

2.14 Annotations ... 73 29

2.14.1 Introduction .. 73 30

2.14.2 Inline Annotations ... 74 31

2.14.3 Cross-Structure Annotations ... 74 32

2.14.4 Property Annotations .. 75 33

2.14.5 Comments ... 76 34

2.14.6 Comments Part .. 78 35

2.14.7 Revisions .. 78 36

2.14.8 Bookmarks ... 79 37

2.14.9 Range Permissions .. 80 38

2.14.10 Spelling and Grammar ... 81 39

2.15 Mail Merge .. 81 40

2.15.1 Mail Merge, WordprocessingML, and Hosting Applications ... 82 41

2.15.2 Connecting Documents to an External Data Source ... 82 42

2.15.3 Populating Merged Documents with External Data.. 83 43

2.16 Settings .. 85 44

2.16.1 Document Settings .. 85 45

2.16.2 Compatibility Settings ... 86 46

2.16.3 Web Settings ... 87 47

2.17 Fields and Hyperlinks ... 87 48

Table of Contents

 v

2.17.1 Fields ... 87 1

2.17.2 Hyperlinks .. 88 2

2.18 Miscellaneous Topics ... 88 3

2.18.1 Text Boxes ... 88 4

2.18.2 Subdocuments ... 88 5

2.18.3 Importing External Content ... 89 6

2.18.4 Roundtripping Alternate Content ... 90 7

3. Introduction to SpreadsheetML .. 93 8

3.1 Workbook .. 93 9

3.1.1 Overview ... 93 10

3.1.2 Minimum Workbook Scenario .. 93 11

3.1.3 Example Workbook Properties ... 93 12

3.1.4 fileVersion ... 95 13

3.1.5 workbookView .. 95 14

3.2 Sheets .. 96 15

3.2.1 Minimum Worksheet Scenario ... 96 16

3.2.2 Example Sheet ... 96 17

3.2.3 Sheet Properties .. 97 18

3.2.4 Sheet Data ... 98 19

3.2.5 Supporting Features .. 102 20

3.2.6 Sheet Properties .. 103 21

3.2.7 sheetData Cell Table .. 103 22

3.2.8 Row .. 103 23

3.2.9 Cell ... 104 24

3.2.10 Supporting Sheet Features .. 106 25

3.2.11 Defined Names .. 106 26

3.2.12 AutoFilter... 106 27

3.2.13 Merged Cells .. 107 28

3.2.14 Conditional Formatting ... 107 29

3.3 Shared String Table.. 108 30

3.3.1 Overview ... 108 31

3.3.2 File Architecture .. 109 32

3.3.3 Example: Plain Text ... 110 33

3.3.4 Illustration ... 110 34

3.3.5 The XML ... 110 35

3.3.6 Shared String Table ... 117 36

3.3.7 Cell Table ... 118 37

3.3.8 Example: Rich Text .. 119 38

3.3.9 Illustration ... 119 39

3.3.10 Shared String Table ... 119 40

3.4 Tables... 122 41

3.4.1 Overview ... 122 42

3.4.2 File Architecture .. 122 43

3.4.3 Example: Table .. 123 44

3.4.4 Illustration ... 123 45

3.4.5 The Sheet XML... 124 46

3.4.6 The Table XML ... 124 47

Table of Contents

 vi

3.5 Calculation Chain ... 125 1

3.5.1 Overview ... 125 2

3.5.2 Example ... 125 3

3.6 Comments ... 129 4

3.6.1 Overview ... 129 5

3.6.2 Example ... 129 6

3.6.3 File Architecture .. 130 7

3.6.4 The XML ... 130 8

3.6.5 Authors .. 132 9

3.6.6 Comments ... 132 10

3.7 Styles ... 133 11

3.7.1 Overview ... 133 12

3.7.2 File Architecture .. 133 13

3.7.3 Organization in the Styles Part .. 134 14

3.7.4 Example ... 137 15

3.8 Worksheet Metadata .. 149 16

3.8.1 Overview ... 149 17

3.8.2 File Architecture – Relationships ... 151 18

3.8.3 Example ... 151 19

3.9 Pivot Table, Pivot Cache, and Common Types .. 164 20

3.9.1 Feature Overview .. 164 21

3.9.2 File Architecture .. 166 22

3.9.3 Example - Native with Range Source .. 167 23

3.10 Shared Workbook Revisions .. 184 24

3.10.1 Overview ... 184 25

3.10.2 How It Works ... 184 26

3.10.3 Example ... 185 27

3.11 Query Tables .. 194 28

3.11.1 Overview ... 194 29

3.11.2 Web Query Example .. 194 30

3.11.3 Text Import Example ... 194 31

3.11.4 Access Table Example .. 195 32

3.12 External Connection .. 196 33

3.12.1 Overview ... 196 34

3.12.2 OLAP Connection ... 197 35

3.12.3 Pivot XML fragment ... 198 36

3.12.4 Connection XML .. 198 37

3.12.5 Web Query .. 199 38

3.12.6 QueryTable XML .. 200 39

3.12.7 Connection XML .. 200 40

3.12.8 Unused Connection ... 201 41

3.12.9 ODBC ... 201 42

3.12.10 Connection XML .. 201 43

3.12.11 SQL ... 201 44

3.12.12 Connection XML .. 203 45

3.12.13 Text Import .. 203 46

3.12.14 Connection XML .. 204 47

3.13 External Links ... 205 48

Table of Contents

 vii

3.13.1 Overview ... 205 1

3.13.2 Formula Example ... 205 2

3.13.3 Sheet XML ... 205 3

3.13.4 Workbook Relationships ... 207 4

3.13.5 Supporting Workbook Cache (Cell C2) .. 208 5

3.13.6 External Link (Cell C2) .. 209 6

3.13.7 Supporting Workbook Cache (Cell B2) .. 209 7

3.13.8 External Link (Cell B2) .. 210 8

3.13.9 Hyperlink Example ... 211 9

3.13.10 Worksheet XML ... 211 10

3.13.11 Relationship ... 211 11

3.14 Volatile Dependencies ... 212 12

3.14.1 Overview ... 212 13

3.14.2 File Architecture - Relationships ... 212 14

3.14.3 Example ... 212 15

3.15 Custom XML Mappings .. 214 16

3.15.1 Overview ... 214 17

3.15.2 File Architecture - Relationships ... 215 18

3.15.3 Conceptual Model ... 216 19

3.15.4 Example ... 216 20

3.16 Formulas .. 222 21

3.16.1 Introduction .. 222 22

3.16.2 Constants ... 222 23

3.16.3 Operators .. 222 24

3.16.4 Cell References .. 224 25

3.16.5 Functions ... 225 26

3.16.6 Names.. 225 27

3.16.7 Types and Values ... 225 28

3.16.8 Error values ... 225 29

3.16.9 Dates and Times .. 226 30

3.16.10 XML Representation .. 228 31

4. Introduction to PresentationML ... 229 32

4.1 Basics ... 229 33

4.1.1 Introduction .. 229 34

4.1.2 Basic Utilities ... 230 35

4.1.3 The Presentation Object ... 232 36

4.1.4 Presentation Properties .. 238 37

4.2 Slides, Masters, Layouts, and Placeholders ... 242 38

4.2.1 Introduction .. 242 39

4.2.2 Masters .. 242 40

4.2.3 Presentation Slide ... 245 41

4.2.4 Notes Page .. 246 42

4.2.5 Slide Layouts .. 247 43

4.3 Comments ... 247 44

4.3.1 Introduction .. 247 45

4.3.2 Functional Overview.. 248 46

4.3.3 Comment Author List .. 248 47

Table of Contents

 viii

4.3.4 Comment List .. 249 1

4.4 Animation .. 249 2

4.4.1 Introduction .. 249 3

4.4.2 Slide Transitions .. 250 4

4.4.3 Timeline Overview ... 251 5

4.4.4 Timeline Construction ... 252 6

4.4.5 Animation Behaviors ... 254 7

4.4.6 Conditional Properties .. 256 8

4.4.7 Build Animations ... 257 9

4.5 Slide Synchronization .. 258 10

4.5.1 Introduction .. 258 11

4.5.2 Slide Update Info ... 258 12

5. Introduction to DrawingML .. 261 13

5.1 Basics ... 261 14

5.1.1 Introduction .. 261 15

5.1.2 Overview ... 261 16

5.1.3 Basic Elements ... 261 17

5.1.4 Colors ... 261 18

5.1.5 Compatibility ... 262 19

5.1.6 Locked Canvas ... 262 20

5.2 Audio and Video .. 262 21

5.2.1 Introduction .. 262 22

5.2.2 Functional Overview.. 262 23

5.2.3 DrawingML Syntax ... 263 24

5.3 Styles ... 264 25

5.3.1 Introduction .. 264 26

5.3.2 Shared Style Sheet... 265 27

5.4 Text .. 278 28

5.4.1 Introduction .. 278 29

5.4.2 Overview ... 279 30

5.4.3 Body Level Properties .. 281 31

5.5 Tables... 289 32

5.5.1 Introduction .. 289 33

5.5.2 Table Styles .. 289 34

5.5.3 Table Definition ... 296 35

5.6 3D Aspects ... 300 36

5.6.1 Introduction .. 300 37

5.6.2 3-D ... 300 38

5.6.3 Styles ... 306 39

5.7 Coordinate Systems and Transformations .. 310 40

5.7.1 Introduction .. 310 41

5.7.2 Coordinate System .. 310 42

5.7.3 Shape Transformations ... 310 43

5.7.4 Group Transformations ... 313 44

5.7.5 Nesting Transformations ... 317 45

5.7.6 Transformation Matrices... 318 46

5.8 Shape Properties and Effects .. 319 47

Table of Contents

 ix

5.8.1 Introduction .. 319 1

5.8.2 Color Models ... 319 2

5.8.3 Color Transforms ... 325 3

5.8.4 Fills ... 327 4

5.8.5 Line Properties .. 332 5

5.8.6 Effects .. 334 6

5.9 Shape Definitions and Attributes .. 338 7

5.9.1 Introduction .. 338 8

5.9.2 The Coordinate Systems .. 339 9

5.9.3 Specifying a Preset Shape ... 340 10

5.9.4 Specifying a Custom Shape ... 342 11

5.10 Pictures .. 347 12

5.10.1 Introduction .. 347 13

5.10.2 Specifying a Basic Picture .. 347 14

5.10.3 Attaching Properties to this Picture .. 349 15

5.10.4 Transforming this Picture .. 350 16

5.11 WordprocessingML Drawing ... 352 17

5.11.1 Object Anchoring ... 352 18

5.11.2 Text Wrapping ... 353 19

5.12 SpreadsheetML Drawing ... 355 20

5.12.1 Introduction .. 355 21

5.12.2 Overview ... 355 22

5.12.3 Worksheet Drawings ... 355 23

5.13 Charts... 358 24

5.13.1 Overview ... 358 25

5.13.2 XML Overview ... 368 26

5.13.3 Example ... 369 27

5.14 Chart Drawing .. 372 28

5.14.1 Introduction .. 372 29

5.14.2 Overview ... 373 30

5.14.3 Chart Drawings .. 373 31

5.15 Diagrams .. 374 32

5.15.1 Introduction .. 374 33

5.15.2 Element Property Set .. 375 34

5.15.3 Data Model .. 377 35

5.15.4 Color Transforms ... 381 36

5.15.5 Style Definition .. 387 37

5.15.6 Layout .. 390 38

6. Introduction to VML ... 416 39

6.1 Introduction ... 416 40

6.2 Shape Element ... 416 41

6.2.1 Geometry .. 417 42

6.2.2 Placement .. 419 43

6.2.3 Formatting ... 422 44

6.2.4 Other ... 422 45

6.3 Group Element .. 424 46

6.4 ShapeType Element ... 424 47

Table of Contents

 x

6.5 VML Usage in the Office Open XML Format .. 425 1

6.5.1 OfficeArt Shapes .. 425 2

6.5.2 SpreadsheetML Comments ... 427 3

6.5.3 WordprocessingML Text Box .. 428 4

7. Introduction to Shared MLs .. 431 5

7.1 Math .. 431 6

7.1.1 Accent Object .. 431 7

7.1.2 Bar Object .. 432 8

7.1.3 Border Box Object ... 432 9

7.1.4 Box Object ... 432 10

7.1.5 Delimiters .. 433 11

7.1.6 Equation Array Object ... 433 12

7.1.7 Fraction Object .. 434 13

7.1.8 Function Apply Object ... 434 14

7.1.9 Group Character Object .. 434 15

7.1.10 Upper and Lower Limits .. 435 16

7.1.11 Matrix Object .. 435 17

7.1.12 N-ary Object .. 436 18

7.1.13 Phantom Object .. 436 19

7.1.14 Radical Object .. 437 20

7.1.15 Scripts (Superscript, Subscript, SubSuperscript, PreSubSuperscript) ... 437 21

7.2 Metadata ... 438 22

7.2.1 Metadata Properties ... 439 23

7.2.2 Core Properties ... 440 24

7.2.3 Extended Properties .. 440 25

7.2.4 Custom Properties ... 440 26

7.2.5 Variant Types ... 440 27

7.3 Custom XML Data .. 440 28

7.4 Bibliography ... 441 29

7.4.1 Types of Sources .. 441 30

7.4.2 Child Elements ... 442 31

7.4.3 Author ... 444 32

7.4.4 LCID, Guid, Tag, and RefOrder ... 445 33

8. Miscellaneous Topics ... 447 34

8.1 Additional Characteristics .. 447 35

8.2 Embeddings ... 448 36

8.2.1 Embedded Packages .. 448 37

8.2.2 Embedded Objects .. 448 38

8.2.3 Embeddings in a WordprocessingML Document .. 449 39

8.2.4 Embeddings in a SpreadsheetML Document .. 451 40

8.2.5 Embeddings in a PresentationML Document .. 452 41

8.3 Future Extensibility .. 453 42

8.3.1 Terminology .. 453 43

8.3.2 What is Future Extensibility? ... 454 44

8.3.3 Future Extensibility Requirements .. 454 45

8.3.4 Future Extensibility Constructs ... 455 46

47

Foreword

 xi

Foreword 1

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following 2

parts: 3

 Part 1: "Fundamentals" 4

 Part 2: "Open Packaging Conventions" 5

 Part 3: "Primer"(this document) 6

 Part 4: "Markup Language Reference" 7

 Part 5: "Markup Compatibility and Extensibility" 8

Introduction

 xii

Introduction 1

This Part is one piece of a specification that describes a family of XML schemas, collectively called Office Open 2

XML, which define the XML vocabularies for word-processing, spreadsheet, and presentation documents, as 3

well as the packaging of documents that conform to these schemas. 4

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and 5

platforms, fostering interoperability across office productivity applications and line-of-business systems, as 6

well as to support and strengthen document archival and preservation, all in a way that is fully compatible with 7

the large existing investments in Microsoft Office documents.8

Scope

 1

1. Scope 1

This Part contains a detailed introduction to the following Office Open XML topics: 2

 WordprocessingML 3

 SpreadsheetML 4

 PresentationML 5

 DrawingML 6

 VML 7

 Various shared MLs 8

The organization of this Part is much the same as its corresponding reference Part, Part 4, and is intended as a 9

gentle introduction to Part 4. 10

Introduction to WordprocessingML

 2

2. Introduction to WordprocessingML 1

This clause is informative. 2

This clause contains a detailed introduction to the structure of a WordprocessingML document. 3

2.1 Stories 4

A WordprocessingML document is composed of a collection of stories. Each story represents a distinct region 5

of text within the document. The following kinds of region exist: comment (§2.14.5), endnote (§2.12.2), 6

footer (§2.11.2), footnote (§2.12.1), frame, glossary document (§2.13), header (§2.11.1), main story (§2.2), 7

subdocument (§2.18.2), and text box (§2.18.1). 8

With one exception (a glossary document), all stories in a document utilize a common set of properties that 9

determine the presentation of the contents of each story. These properties include font information, style 10

definitions, numbering definitions, and document settings. 11

2.2 Basic Document Structure 12

The main document story of the simplest WordprocessingML document consists of the following XML 13

elements: 14

 document — The root element for a WordprocessingML's main document part, which defines the 15

main document story. 16

 body — The container for the collection of block-level structures that comprise the main story. 17

 p — A paragraph. 18

 r — A run. 19

 t — A range of text. 20

A run is a region of text in a story with a common set of properties. The text in a WordprocessingML document 21

must be contained within one or more runs. A paragraph is a collection of one or more runs that is displayed 22

as a unit. A run must be contained within a paragraph. 23

Consider the following Main Document XML for a simple WordprocessingML document: 24

Introduction to WordprocessingML

 3

<?xml version="1.0"?> 1

<w:document xmlns:w="…"> 2

 <w:body> 3

 <w:p> 4

 <w:r> 5

 <w:t>Hello, world.</w:t> 6

 </w:r> 7

 </w:p> 8

 </w:body> 9

</w:document> 10

2.3 Main Document Story 11

The contents of the main document story—the only story that is required in a valid WordprocessingML 12

document—are encapsulated within the body element. The content of the main document body is a collection 13

of block-level structures, which are those WordprocessingML elements that can contain and/or be sibling 14

elements with a WordprocessingML paragraph. 15

Within the document body, the valid set of block level content is: 16

 Paragraphs 17

 Tables 18

 Custom markup (custom XML, structured document tags) 19

 Section properties 20

 Annotations (comments, revision markers, range permission markers) 21

 Alternate format chunks 22

Each of these block-level content constructs (the 'building blocks' of WordprocessingML) is defined in the 23

following subclauses. 24

2.3.1 Document Backgrounds 25

As well as containing a body, a document element can also contain the definition of the document's 26

background via the background element and its contents. This background applies to all printed pages within 27

this document. A document background in WordprocessingML can have a single color, as well as the 28

application of various drawing effects such as color gradient or pattern, and a tiled or stretched image. All 29

background information in a WordprocessingML document is stored using the Vector Markup Language (VML) 30

syntax. The single exception to this is the background color, which is stored natively in WordprocessingML 31

using the bgColor attribute. 32

Consider a simple background in WordprocessingML, which consists of a single color with a gradient fill 33

applied: 34

Introduction to WordprocessingML

 4

<w:background w:bgColor="5C83B4"> 1

 <v:background id="_x0000_s1025" o:bwmode="white" fillcolor="#5c83b4 2

 [3204] o:targetscreensize="800,600"> 3

 <v:fill color2="fill darken(118) method="linear sigma" focus="100%" 4

 type="gradient"/> 5

 </v:background> 6

</w:bgPict> 7

The background consists of two components: a background fill color of RGB value 5C83B4, and the background 8

gradient stored as a VML transformation. 9

2.4 Paragraphs and Rich Formatting 10

2.4.1 Paragraphs 11

The most basic unit of block-level content within a WordprocessingML document, paragraphs are stored using 12

the p element. A paragraph defines a distinct division of content that begins on a new line. A paragraph can 13

contain three pieces of information: optional paragraph properties, inline content (typically runs), and a set of 14

optional revision IDs used to compare the content of two documents. 15

Consider the paragraph fragment "The quick brown fox jumped …" which is centered on a paragraph. As all the 16

text in the paragraph is emphasized using italics, in the XML, the contents of the paragraph will have the 17

justify-center property, and each run within the paragraph (as well as the run properties for the paragraph 18

mark) stores the italics property; for example: 19

<w:p> 20

 <w:pPr> 21

 <w:jc w:val="center"/> 22

 <w:rPr> 23

 <w:i/> 24

 </w:rPr> 25

 </w:pPr> 26

 <w:r> 27

 <w:rPr> 28

 <w:i/> 29

 </w:rPr> 30

 <w:t>The quick brown fox jumped…</w:t> 31

 </w:r> 32

</w:p> 33

Notice that each run specifies the character formatting information for its contents, and the paragraph 34

specifies the paragraph level formatting (the center-justification). It is also notable that since leading and 35

trailing whitespace is not normally significant in XML, some runs require a designating specifying that their 36

whitespace is significant via the xml:space element. 37

Introduction to WordprocessingML

 5

A paragraph's properties are specified via the pPr element. Some examples of paragraph properties are 1

alignment, border, hyphenation override, indentation, line spacing, shading, text direction, and widow/orphan 2

control. 3

It should also be noted that a pPr element may contain a set of run properties within a rPr element – these 4

properties are applied to the run which contains the glyph which represents the paragraph mark and not the 5

entire paragraph. 6

2.4.2 Runs 7

The next level of the document hierarchy is the run, which defines a region of text with a common set of 8

properties, represented by the r element. An r element allows the producer to combine breaks, styles, or 9

formatting properties, applying the same information to all the parts of the run. 10

Just as a paragraph can have properties, so too can a run. All of the elements inside an r element have their 11

properties controlled by a corresponding optional rPr run properties element, which must be the first child of 12

the r element. In turn, the rPr element is a container for a set of property elements that are applied to the rest 13

of the children of the r element. The elements inside the rPr container element allow the consumer to control 14

whether the text in the following t elements is bold, underlined, or visible, for example. Some examples of run 15

properties are bold, border, character style, color, font, font size, italic, kerning, disable spelling/grammar 16

check, shading, small caps, strikethrough, text direction, and underline. 17

Consider the following run within a WordprocessingML document: 18

<w:r> 19

 <w:rPr> 20

 <w:b/> 21

 <w:i/> 22

 </w:rPr> 23

 <w:t>quick</w:t> 24

</w:r> 25

The run specifies two formatting properties in its run contents: bold and italic. These properties are therefore 26

applied to all content within this run. 27

A producer can break a run into an arbitrary number of smaller runs, provided each smaller run uses the same 28

set of properties, without changing the content of the document. 29

Consider the content "only one word is emphasized" in a WordprocessingML document. An efficient producer 30

could choose to output this content using two runs, as follows: 31

<w:r> 32

 <w:t xml:space="preserve">only one word is </w:t> 33

</w:r> 34

Introduction to WordprocessingML

 6

<w:r> 1

 <w:rPr> 2

 <w:i/> 3

 <w:rPr> 4

 <w:t>emphasized</w:t> 5

</w:r> 6

However, a less efficient producer might use four runs, as follows: 7

<w:r> 8

 <w:t>only one</w:t> 9

</w:r> 10

<w:r> 11

 <w:t xml:space="preserve"> word is </w:t> 12

</w:r> 13

<w:r> 14

 <w:rPr> 15

 <w:i/> 16

 <w:rPr> 17

 <w:t>empha</w:t> 18

</w:r> 19

<w:r> 20

 <w:rPr> 21

 <w:i/> 22

 <w:rPr> 23

 <w:t>sized</w:t> 24

</w:r> 25

Although the latter example uses four runs rather than two, the net run information applied to each region of 26

text is identical, and both are equally valid. 27

Of course, a run might need to be broken. For example, the properties of only some the text in that run are 28

changed, requiring the changed part to be put into its own run. Another example involves the insertion of 29

some sort of marker into the middle of an existing run. That requires the run be broken into two with the 30

marker inserted between them. 31

The following run contains two sentences: 32

<w:r> 33

 <w:t>Hello, world. How are you, today?</w:t> 34

</w:r> 35

If the first two words are bolded in these sentences, the run will need to be broken into two runs in order to 36

store the formatting, as follows: 37

Introduction to WordprocessingML

 7

<w:r> 1

 <w:rPr> 2

 <w:b/> 3

 </w:rPr> 4

 <w:t xml:space="preserve">Hello, world. </w:t> 5

</w:r> 6

<w:r> 7

 <w:t>How are you, today?</w:t> 8

</w:r> 9

Apart from text, a run can also contain numerous kinds of textual content (§2.4.3) A run can also contain a set 10

of revision IDs used for document "merge and compare". 11

2.4.3 Run Content 12

The lowest level of this hierarchy is run content, that content that can be stored within a single run in a 13

document. In WordprocessingML, the types of run content include: 14

 Text 15

 Deleted text 16

 Soft line breaks 17

 Field codes 18

 Deleted field codes 19

 Footnote/endnote reference marks 20

 Simple fields 21

 Page numbers 22

 Tabs 23

 Ruby text 24

 DrawingML content 25

 Embedded objects 26

 Pictures 27

2.4.3.1 Text 28

The most common run content is the t element, which is the container for the text that makes up the 29

document's content. A t element can contain an arbitrary amount of text, up to and including the entire 30

document's contents. However, typically, long runs of text are broken up into paragraphs and strings of text 31

having different formats, or are interrupted by line breaks, graphics, tables, and other items. A t element must 32

be enclosed within an r element; i.e., a run of text. An r element can contain multiple t elements, interspersed 33

among other elements. 34

Aside from the t element, there are three types of text in WordprocessingML: 35

 delText - Deleted text 36

 instrText - Field codes 37

Introduction to WordprocessingML

 8

 delInstrText - Deleted field codes 1

These four types of text are defined using unique elements in WordprocessingML so that simple consumers 2

can determine the text of the document simply by grabbing the contents of the t node, without needing to 3

check where revisions start and end, etc. to determine the state of the text contents. 4

It is also notable that these are the only elements in a WordprocessingML document's main document part 5

that can contain a XML text node. 6

2.4.4 Formatting Property Values 7

Most of the children of an rPr or pPr element have a single val attribute that is limited to a specific set of 8

values. For example, the b (bold) element causes the text that follows it to be bold when the b element has a 9

val attribute with value on. If the val attribute isn't present for the b element, it defaults to "on". Therefore, 10

<w:b/> is equivalent to <w:b w:val="on"/>. 11

Aside from the default values, which are documented with each element, this is particularly important when 12

specifying the difference between omitting a formatting property and explicitly turning it off. 13

For example, consider the following run: 14

<w:r> 15

 <w:rPr> 16

 <w:b w:val="off"/> 17

 </w:rPr> 18

 <w:t xml:space="preserve">Hello, world. </w:t> 19

</w:r> 20

This run explicitly declares that the bold property is turned off for this text, as opposed to the following run: 21

<w:r> 22

 <w:t xml:space="preserve">Hello, world. </w:t> 23

</w:r> 24

This run says nothing about the bold property. This distinction is particularly important when dealing with 25

content that is formatting using styles - if the content was not contained in a styled paragraph, both would be 26

identical. However, in the case where the paragraph is styled, the former would never be bold regardless of 27

the style information, whereas the latter would express the bold property as set by the style, since it's 28

omission of the bold property means "whatever the underlying formatting is". 29

Some elements have val attributes that offer a richer set of choices than on and off; the u (underline) element 30

is one such element. In this case, the same rules apply, the omission of the property simply means use the 31

underlying properties. 32

Introduction to WordprocessingML

 9

2.5 Tables 1

Another type of block-level content in WordprocessingML, A table is a set of paragraphs (and other block-level 2

content) arranged in rows and columns. 3

2.5.1 Introduction 4

Tables in WordprocessingML are defined via the tbl element, which is analogous to the HTML <table> tag. 5

The table element specifies the location of a table present in the document. 6

A tbl element has two elements that define its properties: tblPr, which defines the set of table-wide properties 7

(such as style and width), and tblGrid, which defines the grid layout of the table. A tbl element can also 8

contain an arbitrary non-zero number of rows, where each row is specified with a tr element. Each tr element 9

can contain an arbitrary non-zero number of cells, where each cell is specified with a tc element. 10

Consider an empty one-cell table (i.e.,; a table with one row, one column) and 1 point borders on all sides: 11

 12

This table is represented by the following WordprocessingML: 13

<w:tbl> 14

 <w:tblPr> 15

 <w:tblW w:w="5000" w:type="pct"/> 16

 <w:tblBorders> 17

 <w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/> 18

 <w:left w:val="single" w:sz="4 w:space="0" w:color="auto"/> 19

 <w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/> 20

 <w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/> 21

 </w:tblBorders> 22

 </w:tblPr> 23

 <w:tblGrid> 24

 <w:gridCol w:w="10296"/> 25

 </w:tblGrid> 26

 <w:tr> 27

 <w:tc> 28

 <w:tcPr> 29

 <w:tcW w:w="0" w:type="auto"/> 30

 </w:tcPr> 31

 <w:p/> 32

 </w:tc> 33

 </w:tr> 34

</w:tbl> 35

Introduction to WordprocessingML

 10

This table specifies table-wide properties of 100% of page width (tblW's type attribute specifies how the width 1

value in the w attribute shall be interpreted—pct specifies a measurement of fiftieths of a percent) and the 2

set of table borders (tblBorders), the table grid which defines a set of shared vertical edges within the table 3

(discussed later), and a single row. 4

2.5.2 Table Properties 5

The tblPr element defines table-wide properties, properties which are applied to each row and cell in the 6

table. The complete set of table-wide properties can be found on the definition for the tblPr element. 7

Consider the following simple WordprocessingML table: 8

 9

This table defines outside and inside table borders, etc; and is set to 100% of page width - both table-wide 10

properties. The resulting table is represented by the following WordprocessingML: 11

<w:tbl> 12

 <w:tblPr> 13

 <w:tblW w:w="0" w:type="auto"/> 14

 <w:tblBorders> 15

 <w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/> 16

 <w:left w:val="single" w:sz="4 w:space="0" w:color="auto"/> 17

 <w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/> 18

 <w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/> 19

 <w:insideH w:val="single" w:sz="4" w:space="0" w:color="auto"/> 20

 <w:insideV w:val="single" w:sz="4" w:space="0" w:color="auto"/> 21

 </w:tblBorders> 22

 </w:tblPr> 23

 <w:tblGrid> 24

 ... 25

 </w:tblGrid> 26

 <w:tr> 27

 ... 28

 </w:tr> 29

</w:tbl> 30

In this example, the tblW element defines the total width of the table, which, in this case, is set to a type of 31

auto, which specifies that the table should be sized to fit its contents. The tblBorders element specifies each 32

of the table's borders, and specifies a one point border on the top, left, bottom, right and inside horizontal and 33

vertical border. The table-wide properties can be overwritten on an individual row basis by specifying table 34

property overrides within the table row properties. 35

Introduction to WordprocessingML

 11

2.5.3 Table Grid 1

The tblGrid element defines the grid for the table. All columns in the table (including the space before and 2

after a row) reference this grid. Each gridCol defines a single grid column within the table’s layout, which is 3

used to define the presence of a vertical line within the table. A tblGrid element can contain an arbitrary 4

number of gridCol elements, where each gridCol element represents one grid column in the table and defines 5

a single grid entry. When cells are laid out within this table, as discussed below, all cells will be forced to snap 6

the shared column edges defined by this grid. 7

Returning to the earlier 'one-cell empty table' example, the table has one column with a width of 10,296 8

twentieths of a point. This measurement (twentieths of a point, or twips) is frequently used in 9

WordprocessingML, and translates to 1/1440th of an inch (one-twentieth of a point, which is itself 1/72nd of 10

an inch):. 11

<w:tblGrid> 12

 <w:gridCol w:w="10296"/> 13

</w:tblGrid> 14

Consider the following, more complex table that has two rows and two columns; the columns are not aligned: 15

 16

This table is represented by laying out the cells on a table grid consisting of three table grid columns, each grid 17

column representing a logical vertical column in the table: 18

 19

The dashed lines represent the virtual vertical continuations of each table grid column, and the resulting table 20

grid is represented as the following in WordprocessingML: 21

<w:tblGrid> 22

 <w:gridCol w:w="2952"/> 23

 <w:gridCol w:w="4416"/> 24

 <w:gridCol w:w="1488"/> 25

</w:tblGrid> 26

Introduction to WordprocessingML

 12

<w:tr> 1

 <w:tc> 2

 <w:tcPr> 3

 <w:tcW w:w="7368" w:type="dxa"/> 4

 <w:gridSpan w:val=‛2‛/> 5

 </w:tcPr> 6

 <w:p/> 7

 </w:tc> 8

 <w:tc> 9

 <w:tcPr> 10

 <w:tcW w:w="1488" w:type="dxa"/> 11

 </w:tcPr> 12

 <w:p/> 13

 </w:tc> 14

</w:tr> 15

<w:tr> 16

 <w:tc> 17

 <w:tcPr> 18

 <w:tcW w:w="2952" w:type="dxa"/> 19

 </w:tcPr> 20

 <w:p/> 21

 </w:tc> 22

 <w:tc> 23

 <w:tcPr> 24

 <w:tcW w:w="5904" w:type="dxa"/> 25

 <w:gridSpan w:val=‛2‛/> 26

 </w:tcPr> 27

 <w:p/> 28

 </w:tc> 29

</w:tr> 30

Notice that each of the cells which do not span one grid column (i.e., span two adjacent vertical lines) must 31

specify this fact by supplying a gridSpan element with a value which determines how many grid columns this 32

cell will span. Each gridCol element represents a shared 'column' in a table (to which the cells will snap) even 33

if it doesn’t appear visually. 34

2.5.4 Table Rows and Cells 35

A table row is defined using a tr element, which is analogous to the HTML <tr> tag. The tr element acts as a 36

container for a row of cells with the table’s content. 37

A tr element has one formatting child element, trPr, which defines the row properties (such as the row’s 38

width) and whether it can split across a page. Each property is defined by an individual child element under the 39

trPr element. The complete set of table row properties can be found on the definition for the trPr element. As 40

Introduction to WordprocessingML

 13

well, a table row can contain two types of content: custom markup (custom XML or structured document 1

tags), and table cells. 2

The cells in a row contain the table’s content and are defined by tc elements, which are analogous to HTML 3

<td> tags. 4

A tc element has one formatting child element, tcPr, which defines the properties for the cell. Each unique 5

property is specified by a child element of this element. The complete set of table cell properties can be found 6

on the definition for the tcPr element. As well, a table cell can contain any valid block-level content, which 7

allows for the nesting of paragraphs and tables within table cells. 8

In the example below, the tcW element defines the width of the cell, where the attribute w is the value in 9

twips. Here the width of the cell is 8,856 units, where units are defined by the attribute type. In this case, dxa 10

represents twips. 11

<w:tr> 12

 <w:tc> 13

 <w:tcPr> 14

 <w:tcW w:w="8856" w:type="dxa"/> 15

 </w:tcPr> 16

 <w:p/> 17

 </w:tc> 18

</w:tr> 19

The tc element contains the cell's content, which, in this case, is an empty p element. 20

Consider a table having one cell, which contains the text “Hello, world”: 21

Hello, world

 22

This table's content is represented by the following XML: 23

<w:tr> 24

 <w:tc> 25

 <w:tcPr> 26

 <w:tcW w:w="1770" w:type="dxa"/> 27

 </w:tcPr> 28

 <w:p> 29

 <w:r> 30

 <w:t>Hello, World</w:t> 31

 </w:r> 32

 </w:p> 33

 </w:tc> 34

</w:tr> 35

Introduction to WordprocessingML

 14

At both the row and cell levels, the properties must also specify how the rows and cells will be placed on the 1

table grid. 2

The trPr element contains information about the number of grid units which should be omitted ('skipped') 3

before and after the row is complete using the gridBefore and gridAfter elements, allowing rows to start at 4

different columns on the grid, as well as a preferred width for that leading/trailing space using the wBefore 5

and wAfter elements. The tcPr element also contains grid information pertaining to how many grids a cell 6

spans using the gridSpan element, which determines how many grid units are consumed by the current cell, 7

as well as a preferred width for that cell using the tcW element. 8

In the earlier complex table having two rows of two differently sized cells, a consumer shall represent that 9

table containing three grid columns (one per distinct vertical line). Consider the following XML for the first row 10

of that table: 11

<w:tr> 12

 … 13

 <w:tc> 14

 <w:tcPr> 15

 <w:tcW w:w="5145" w:type="dxa" /> 16

 <w:gridSpan w:val="2" /> 17

 </w:tcPr> 18

 <w:p /> 19

 </w:tc> 20

 <w:tc> 21

 <w:tcPr> 22

 <w:tcW w:w="2145" w:type="dxa" /> 23

 </w:tcPr> 24

 <w:p/> 25

 </w:tc> 26

</w:tr> 27

Again, the gridSpan element is the number of grid columns that cell spans when being laid out on the table 28

grid. In this example, the first cell of the first row contains two grid columns. As well, the cell specifies its 29

preferred width using the tcW element, which tells the consumer the width desired by that cell at layout time. 30

It is important to note that every width in a table is a preferred width - because the table must satisfy the grid 31

at all times, conflicting table properties must be resolved by overriding preferred widths in a specific manner, 32

shown below. 33

2.5.5 Table Layout 34

Given the information shown in the table shown above, the table is specified as a series of properties: 35

 Table-level properties (e.g., preferred width) 36

 Table column grid 37

Introduction to WordprocessingML

 15

 Row-level properties (e.g., grid units before/after row start/end) 1

 Cell-level properties (e.g., number of grid units spanned) 2

In order to manipulate this set of properties into a table, the following logics are used, depending on the type 3

of table: 4

2.5.6 Fixed Width Tables 5

The first type of table is a fixed width table, a table that does not dynamically resize based on its contents. In a 6

fixed width table, the table information is used in the following manner: 7

 The table grid is used to create the set of shared columns in the table and their initial widths as defined 8

in the tblGrid element 9

 The table’s total width is defined based on the tblW property – if it is set to auto or nil, then the 10

width is not yet determined and will be specified using the row and cell information. 11

 The first table row is read and the initial number of grid units before the row starts is skipped. The 12

width of the skipped grid columns is set using the wBefore property. 13

 The first cell is placed on the grid, and the width of the specified grid column span set by gridSpan is 14

set based on the tcW property. 15

 Each additional cell is placed on the grid. 16

 If at any stage, the preferred width requested for the cells exceeds the preferred width of the table, 17

then each grid column is proportionally reduced in size to fit the table width. 18

 If the grid is exceeded (e.g., tblGrid specifies three grid columns, but the second cell has a gridSpan of 19

three), the grid is dynamically increased with a default width for the new grid column. 20

 For each subsequent row, cells are placed on the grid, and each grid column is adjusted to be the 21

maximum value of the requested widths (if the widths do not agree) by adding width to the last cell 22

that ends with that grid column. Again, if at any point, the space requested for the cells exceeds the 23

width of the table, then each grid column is proportionally reduced in size to fit the table width. 24

2.5.7 AutoFit Tables 25

In an AutoFit table (one which specifies that it should “AutoFit to table contents”), the table information is 26

used in the following manner: 27

 Perform the steps above to lay out the fixed width version of the table. 28

 Calculate the minimum content width - the width of the cell's contents including all possible line 29

breaking locations (or the cell's width, if the width of the content is smaller), and the maximum 30

content width -the width of the cell's contents (assuming no line breaking not generated by explicit 31

line breaks). 32

 The minimum and maximum content width of all cells that span a single grid column is the minimum 33

and maximum content width of that column. 34

 For cells which span multiple grid columns, enlarge all cells which it spans as needed to meet that cell's 35

minimum width. 36

Introduction to WordprocessingML

 16

 If any cell in a grid column has a preferred width, the first such width overrides the maximum width of 1

the column's contents. 2

 Place the text in the cells in the table, respecting the minimum content width of each cell's content. If 3

a cell's minimum content width exceeds the cell's current width, preferences are overridden as 4

follows: 5

 First, override the column widths by making all other grid columns proportionally smaller until each it 6

at its minimum width. This cell may then grow to any width between its own minimum and maximum 7

width. 8

 Next, override the preferred table width until the table reaches the page width. 9

 Finally, force a line break in each cell's contents as needed 10

2.5.8 Complex Table Example 11

The properties above are best illustrated by example: 12

As shown above, table cells can be merged horizontally. This is represented with a single table cell whose 13

gridSpan property defines the number of grid units consumed by that table cell for the current row. Consider 14

the following fixed width table, which makes extensive use of resized and merged cells on what is actually just 15

a seven-column grid. (The arrows point to each (invisible) vertical line of the grid and the numbers refer to the 16

grid columns): 17

 18

 1 2 3 4 5 6 7 19

Although the table is visually complex, the standard rules apply: the first cell in the table is simply a cell which 20

spans four grid units horizontally, as specified in the gridSpan element, and whose preferred with is 2952 21

twips, specified in the tcW element: 22

<w:tc> 23

 <w:tcPr> 24

 <w:tcW w:w="2952" w:type="dxa"/> 25

 <w:gridSpan w:val="4"/> 26

 </w:tcPr> 27

 <w:p/> 28

</w:tc> 29

Similarly, all cells indented from the stand and end of the grid specify that indent using the gridBefore and 30

gridAfter elements. For example, the XML for the second row in the table shows that that row starts three 31

grid units into the table: 32

Introduction to WordprocessingML

 17

<w:tr> 1

 <w:trPr> 2

 <w:gridBefore w:val="3"/> 3

 <w:wBefore w:w="2748" w:type="dxa"/> 4

 </w:trPr> 5

 … 6

</w:tr> 7

If we take this fixed width table and introduce a long string into the single cell in row 3, we see that the 8

presence of this text does not affect cell widths: 9

longte

xtstrin

gwithn

obreak

ingcha

racters

 10

If we now turn on the AutoFit property and type into the cell in row three, which spans only grid column two, 11

we see that the algorithm for this AutoFit table causes all cells in grid column two to increase in size, 12

proportionally decreasing the other grid columns’ size to accommodate the long non-breaking string in the last 13

cell: 14

longtextstringwithnobreakingcharacters

 15

Each of the other grid columns was reduced, but since all columns are not at their minimum size, the table 16

width is not increased even though the table is not yet at the page width. 17

2.5.9 Vertically Merged Cells 18

Although the previous examples may have implied that tables have strict definition of rows, table cells can also 19

be merged vertically. The tcPr element may contain the vmerge element that defines the extent of vertically 20

merged grid columns within a table. A vmerge element with its val attribute set to restart marks the start of 21

a vertically merged cell range. A vmerge element with the val attribute set to continue (the default value) 22

Introduction to WordprocessingML

 18

marks the continuation of a vertically merged grid column. Cells between the first and last merged cell that are 1

part of the vertical merge each must have a vmerge element to continue the vertical merge. 2

For example, consider a table with two rows and two columns: 3

First cell, first row Last cell, first row

First cell, second row Last cell, second row

 4

Merging the two rows in the second column will result in the following table: 5

First cell, first row Last cell, first row

Last cell, second row
First cell, second row

 6

The last cell in the first row starts a merge that is completed in the cell below it, resulting in the following 7

WordprocessingML: 8

<w:tr> 9

 <w:tc> 10

 <w:p> 11

 <w:r> 12

 <w:t>First cell, first row</w:t> 13

 </w:r> 14

 </w:p> 15

 </w:tc> 16

 <w:tc> 17

 <w:tcPr> 18

 <w:vmerge w:val="restart"/> 19

 </w:tcPr> 20

 <w:p> 21

 <w:r> 22

 <w:t>Last cell, first row</w:t> 23

 </w:r> 24

 </w:p> 25

 <w:p> 26

 <w:r> 27

 <w:t>Last cell, second row</w:t> 28

 </w:r> 29

 </w:p> 30

 </w:tc> 31

</w:tr> 32

Introduction to WordprocessingML

 19

<w:tr> 1

 <w:tc> 2

 <w:p> 3

 <w:r> 4

 <w:t>First cell, second row</w:t> 5

 </w:r> 6

 </w:p> 7

 </w:tc> 8

 <w:tc> 9

 <w:tcPr> 10

 <w:vmerge/> 11

 </w:tcPr> 12

 <w:p/> 13

 </w:tc> 14

</w:tr> 15

As shown, the vmerge with a value of restart begins (or restarts) a merged region, and the cell with no 16

value is merged with the one above. 17

2.6 Custom Markup 18

Within a WordprocessingML document, it is often necessary for specific documents to contain semantic 19

information beyond the presentation information specified by this Office Open XML specification. For example, 20

an invoice document may wish to specify that a particular sentence of text is a customer name, in order for 21

that information to be easily extracted from the document without the need to parse the text using regular 22

expression matching or similar. For those cases, multiple facilities are provided for the insertion and round-23

tripping of customer defined semantics within a WordprocessingML document. 24

There are three distinct forms in which customer-defined semantics can be inserted into a WordprocessingML 25

document, each with their own specific intended usage: 26

 Smart tags 27

 Custom XML markup 28

 Structured document tags (content controls) 29

The usage and presentation of each of these forms is described in the following sections. 30

2.6.1 Smart Tags 31

The first example of customer-defined semantics which can be embedded in a WordprocessingML document 32

are smart tags. Smart tags allow semantic information to be added around an arbitrary run or set of runs 33

within a document to provide information about the type of data contained within. 34

Consider the following text in a WordprocessingML document, with a smart tag around the stock symbol 35

'CNTS' (where the smart tag is displayed using a purple dotted underline): 36

Introduction to WordprocessingML

 20

 1

This text would translate to the following WordprocessingML markup: 2

<w:p w:rsidR="00672474" w:rsidRDefault="00672474"> 3

 <w:r> 4

 <w:t xml:space="preserve">This is a stock symbol: </w:t> 5

 </w:r> 6

 <w:smartTag w:uri="http://schemas.openxmlformats.org/2006/smarttags" 7

 w:element="stockticker"> 8

 <w:r> 9

 <w:t>MSFT</w:t> 10

 </w:r> 11

 </w:smartTag> 12

</w:p> 13

As shown above, the smart tag is delimited by the smartTag element, which surrounds the run (or runs) which 14

contain the text which is part of the smart tag. 15

The smart tag itself carries two required pieces of information, which together contain the customer semantics 16

for this smart tag. 17

The first of these is the namespace for this smart tag (contained in the uri attribute). This allows the smart tag 18

to specify a URI which should be round-tripped with this smart tag and be available to a consumer. It is 19

intended to be used to specify a family of smart tags to which this one belongs – for example, in the sample 20

above, the smart tag belongs to the http://schemas.openxmlformats.org/2006/smarttags namespace. 21

The second of these is the element name for this smart tag (contained in the element attribute). This allows 22

the smart tag to specify a name which should be round-tripped with this smart tag and again available to a 23

consumer. It is intended to be used to specify a unique name for this type of smart tag – for example, in the 24

sample above, the smart tag specifies that its data is of type stockticker. 25

As well as the required information specified above, a smart tag can also contain any number of additional 26

properties in namespace/name/value sets by adding them to the smart tag’s property bag. 27

Using the example above, adding a new property called fullCompanyName with no namespace and value 28

Microsoft Corporation to the smart tag would mean augmenting the output to add the smartTagPr 29

element with this new property as follows: 30

Introduction to WordprocessingML

 21

 <w:smartTag w:uri="http://schemas.openxmlformats.org/2006/smarttags" 1

 w:element="stockticker"> 2

 <w:smartTagPr> 3

 <w:attr w:name="fullCompanyName" w:val="Microsoft Corporation"/> 4

 </w:smartTagPr> 5

 <w:r> 6

 <w:t>MSFT</w:t> 7

 </w:r> 8

</w:smartTag> 9

The resulting XML, as seen above, simply adds an attr element which specifies the property and value for the 10

property bag. 11

A producer can embed a smart tag around any run-level content in a WordprocessingML document in order to 12

embed additional information about the family and type of the data contained within. This allows ‘tagging’ of 13

specific regions of a document with these semantics without need to provide context beyond the information 14

provided in the uri and element attributes. 15

A consumer can read this smart tag data and provide additional functionality around these 16

namespace/element pairs, which may or may not be specific to that smart tag type in the document. Examples 17

of this functionality include: the ability to add/remove this markup via a user interface, ability to provide 18

actions to operating in the context of this data type, etc. 19

2.6.2 Custom XML Markup 20

The next example of customer-defined semantics which can be embedded in a WordprocessingML document 21

is custom XML markup. Custom XML markup allows the application of the XML elements defined in any valid 22

XML Schema file to be applied to the contents of a WordprocessingML document in one of two locations: 23

around a paragraph or set of paragraphs (at the block level); or around an arbitrary run or set of runs within a 24

document (at the inline level) to provide semantics to that content within the context and structures defined 25

by the associated XML Schema definition file. 26

The distinction between custom XML markup and smart tags is based on the fact that custom XML markup 27

corresponds with the contents of a custom XML schema; which means that as shown below, custom XML 28

markup can be used at the block-level to mark up the contents of a document on levels beyond that of one or 29

more runs as well as on the inline (run) level. It can also be validated against a custom XML schema by a 30

producer at run time. 31

Consider a simple XML Schema which defines two elements: a root element of invoice, and a child element of 32

customerName - the first defining that this file's contents are an invoice, and the second specifying that the 33

enclosed text as a customer's name: 34

Introduction to WordprocessingML

 22

 1

This output would translate to the following WordprocessingML markup: 2

<w:customXml w:uri="http://www.contoso.com/2006/invoice" w:element="invoice"> 3

 <w:p> 4

 <w:r> 5

 <w:t>This is an invoice.</w:t> 6

 </w:r> 7

 </w:p> 8

 <w:p> 9

 <w:r> 10

 <w:t xml:space="preserve">And this is a customer name: </w:t> 11

 </w:r> 12

 <w:customXml w:uri="http://www.contoso.com/2006/invoice" 13

w:element="customerName"> 14

 <w:r> 15

 <w:t>Tristan Davis</w:t> 16

 </w:r> 17

 </w:customXml> 18

 </w:p> 19

</w:customXml> 20

As shown above, each of the XML elements from the customer-supplied XML schema is represented within the 21

document output as a customXml element. 22

Similar to the smart tag example above, a custom XML element in a document has two required attributes. 23

The first is the uri attribute, whose contents specify the namespace of the custom XML element in the 24

document. In the example above, the elements each belong to the 25

http://www.contoso.com/2006/invoice namespace. 26

The second is the element attribute, whose contents specify the name of the custom XML element at this 27

location in the document. In the example above, the root element is called invoice and the child element is 28

called customerName. 29

As well as the required information specified above, custom XML elements can also specify any number of 30

attributes (as specified in the associated XML Schema) on the element. To add this information, the 31

customXmlPr (properties on the custom XML element) specify one or more attr elements. 32

Using the example above, we can add a type attribute to the customerName element as follows: 33

Introduction to WordprocessingML

 23

<w:customXml w:uri="http://www.contoso.com/2006/invoice" 1

w:element="customerName"> 2

 <w:customXmlPr> 3

 <w:attr w:uri="http://www.contoso.com/2006/invoice" w:name="type" 4

w:val="individual"/> 5

 </w:customXmlPr> 6

 <w:r> 7

 <w:t>Tristan Davis</w:t> 8

 </w:r> 9

</w:customXml> 10

The resulting XML, as seen above, simply adds an attr element which specifies the attribute for the custom 11

XML element. 12

A producer can embed a custom XML element around or with block-level or run-level content in a 13

WordprocessingML document in order to embed the structure of the customer-defined XML Schema within 14

the WordprocessingML content. This allows ‘tagging’ of specific regions of a document with the semantics 15

from this schema, while ensuring that the resulting file can be validated to the WordprocessingML schemas. 16

A consumer can read this custom XML markup and provide additional functionality around this customer-17

defined XML markup, which may or may not be specific to that type of XML in the document. Examples of this 18

functionality include: the ability to add/remove this XML markup via a user interface, ability to provide actions 19

to operating in the context of this data type, etc. 20

Each custom XML element is analogous to an XML element in the specified XML schema, and can be nested 21

arbitrarily to any depth in the document. This facility is limited only by the XML Schema file itself, and the 22

contents of the current document. 23

2.6.3 Structured Document Tags 24

The final example of customer-defined semantics which can be embedded in a WordprocessingML document 25

is the structured document tag (SDT). 26

As shown above, smart tags and custom XML markup each provide a facility for embedding customer-defined 27

semantics into the document: smart tags, via the ability to provide a basic namespace/name for a run or set of 28

runs within a documents; and custom XML markup, via the ability to tag the document with XML elements and 29

attributes specified by any valid XML Schema file. 30

However, each of these techniques, while they each provide a way to add the desired semantic information, 31

does not provide a way to affect the presentation or interaction within the document. To bridge these two 32

worlds, structured document tags allow both the specification of customer semantics as well as the ability to 33

influence the presentation of that data in the document. 34

Introduction to WordprocessingML

 24

This means that the customer can define the semantics and context of the tag, but can then use a rich set of 1

pre-defined properties to define its behavior and appearance within the WordprocessingML document's 2

presentation. 3

Consider a region which should be tagged with the semantic of "birthday", for the user to enter their date or 4

birth into the document. Ideally, this region would also utilize a date picker to allow the user to enter the date 5

from a calendar:: 6

 7

This content would translate to the following WordprocessingML markup: 8

<w:sdt> 9

 <w:sdtPr> 10

 <w:alias w:val="Birthday"/> 11

 <w:id w:val="8775518"/> 12

 <w:placeholder> 13

 <w:docPart w:val="DefaultPlaceholder_22479095"/> 14

 </w:placeholder> 15

 <w:showingPlcHdr/> 16

 <w:date> 17

 <w:dateFormat w:val="M/d/yyyy"/> 18

 <w:lid w:val="EN-US"/> 19

 </w:date> 20

 </w:sdtPr> 21

 <w:sdtContent> 22

 <w:p> 23

 <w:r> 24

 <w:rPr> 25

 <w:rStyle w:val="PlaceholderText"/> 26

 </w:rPr> 27

 <w:t>Click here to enter a date...</w:t> 28

 </w:r> 29

 </w:p> 30

 </w:sdtContent> 31

</w:sdt> 32

As shown above, each of the structured document tags in the WordprocessingML file is represented using the 33

sdt element. 34

Introduction to WordprocessingML

 25

Within a structured document tag, there are two child elements which contain the definition and the content 1

of this SDT. The first of these is the sdtPr element, which contains the set of properties specified for this 2

structured document tag. The second is the sdtContent element, which contains all the content which is 3

contained within this structured document tag. 4

2.6.3.1 Structured Document Tag Properties 5

Within the SDT’s properties, various properties can be set which affect the appearance and behavior of this 6

content in the document. These properties can be divided into four groups: 7

 Shared properties 8

 Locking properties 9

 Structured document tag type 10

 Type-specific properties 11

The complete set of properties for a structured document tag are found on the sdtPr element. 12

The first group is properties shared by all types of SDTs. These include, but are not limited to, the semantic 13

name for the SDT, a unique ID (as an integer) that is round-tripped and allows the control to be uniquely 14

identified across sessions, and a reference to a document building block that should be displayed as 15

placeholder text. 16

The next group is the locking properties for the tag – these specify whether any consumer should allow the 17

contents of the SDT to be edited, or the SDT itself to be deleted from the document. 18

The next group, the structured document tag’s type, specifies how the content should be expressed in a 19

document. These types include: plain text (all contents are of one formatting), rich text, date picker, combo 20

box, drop-down list, and image. Each of the types provides user interface restrictions that restrict the contents 21

to only those specified by the type (e.g., the picture cannot contain text). 22

Finally, the type-specific properties contain properties that are sensible in the context of that type. For 23

example, the date format for a date picker or the drop-down list entries for a drop-down list/combo box. Type-24

specific properties are stored as children of the type’s element. 25

Referring to the example above, the date properties are stored underneath the date element, as follows: 26

<w:sdtPr> 27

 ... 28

 <w:date> 29

 <w:dateFormat w:val="M/d/yyyy"/> 30

 <w:lid w:val="EN-US"/> 31

 </w:date> 32

</w:sdtPr> 33

This ensures that these properties are only available in the appropriate context(s). 34

Introduction to WordprocessingML

 26

2.6.3.2 Structured Document Tag Content 1

The second child of the sdt element is the sdtContent element, which contains all the content which is 2

contained within this structured document tag. 3

2.6.3.3 XML Mapping 4

An additional property for SDTs allows their contents to be stored in another part (in particular, in the custom 5

XML data storage within the file). The presence of the dataBinding element specifies that the contents of this 6

SDT are simply a cache of the data stored at a particular XML element in a particular custom XML data storage 7

part. 8

2.7 Sections 9

Within the main document story, there is also often a need for groupings of content on a basis larger than a 10

paragraph (for example, ensuring that a specific set of paragraphs and tables are printed in landscape view, 11

while ensuring that the remainder of the document is printed in portrait view). In order to group this content, 12

a document can be divided into multiple sections, each of which defines a region of content in the document 13

and allows the application of a set of section-level properties. 14

Consider a WordprocessingML document with two paragraphs of content, the first of which should be 15

displayed on a page printed in portrait view, and the second of which should be displayed on a page printed in 16

landscape view (the page content should be rotated 90 degrees to the left on the underlying page). 17

In order to have each of these paragraphs on different pages having different page orientation characteristics, 18

this document would be split into two sections. Looking at the WordprocessingML for the example above: 19

<w:body> 20

 <w:p> 21

 <w:pPr> 22

 <w:sectPr> 23

 <w:pgSz w:w="12240" w:h="15840"/> 24

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" 25

 w:left="1800" w:header="720" w:footer="720" w:gutter="0"/> 26

 <w:cols w:space="720"/> 27

 <w:docGrid w:linePitch="360"/> 28

 </w:sectPr> 29

 </w:pPr> 30

 <w:r> 31

 <w:t>This is sentence one.</w:t> 32

 </w:r> 33

 </w:p> 34

Introduction to WordprocessingML

 27

 <w:p> 1

 <w:r> 2

 <w:t>This is sentence two.</w:t> 3

 </w:r> 4

 </w:p> 5

 <w:sectPr> 6

 <w:pgSz w:w="15840" w:h="12240" w:orient="landscape"/> 7

 <w:pgMar w:top="1800" w:right="1440" w:bottom="1800" 8

 w:left="1440" w:header="720" w:footer="720" w:gutter="0"/> 9

 <w:cols w:space="720"/> 10

 <w:docGrid w:linePitch="360"/> 11

 </w:sectPr> 12

</w:body> 13

This syntax defines two sections using two distinct sectPr elements: the first has a page size of 12,240 14

twentieths of a point wide and 15,640 twentieths of a point tall; the second has a page size of 15,640 15

twentieths of a point wide and 12,240 twentieths of a point tall, and is oriented in landscape mode. 16

2.7.1 Section Properties 17

As shown above, the end of a section is defined as a set of properties applied to the last paragraph in that 18

section—converting that paragraph mark into a section break (i.e., a paragraph that closes a section). 19

Those properties are contained in a sectPr element, which is located within the paragraph properties (the 20

pPr element) for the final paragraph in that section. Within the definition of section properties, the properties 21

to be applied to that section (including, but not limited to, page size and orientation, line numbering settings, 22

margins, and columns) are specified. The complete set of section properties is located on the definition for the 23

sectPr element. 24

The only exception to this rule is the final set of section properties in this document. These are stored as the 25

last child of the body element. This is done because the document’s last paragraph must specify paragraph 26

properties, and this syntax enforces that the final set of section properties are specified. 27

Going back to our example, the first section break is defined within the last paragraph for that section, but the 28

last section properties are stored after the final paragraph. 29

Introduction to WordprocessingML

 28

<w:body> 1

 <w:p 2

 <w:pPr> 3

 <w:sectPr> 4

 <w:pgSz w:w="12240" w:h="15840"/> 5

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" 6

 w:left="1800" w:header="720" w:footer="720" w:gutter="0"/> 7

 <w:cols w:space="720"/> 8

 <w:docGrid w:linePitch="360"/> 9

 </w:sectPr> 10

 </w:pPr> 11

 <w:r> 12

 <w:t>This is sentence one.</w:t> 13

 </w:r> 14

 </w:p> 15

 <w:p> 16

 <w:r> 17

 <w:t>This is sentence two.</w:t> 18

 </w:r> 19

 </w:p> 20

 <w:sectPr> 21

 <w:pgSz w:w="15840" w:h="12240" w:orient="landscape"/> 22

 <w:pgMar w:top="1800" w:right="1440" w:bottom="1800" 23

 w:left="1440" w:header="720" w:footer="720" w:gutter="0"/> 24

 <w:cols w:space="720"/> 25

 <w:docGrid w:linePitch="360"/> 26

 </w:sectPr> 27

</w:body> 28

2.7.2 Section Breaks 29

As well as specifying the section's properties, the type of section break is specified using the type element. 30

WordprocessingML supports four distinct types of section breaks: 31

 Next page section breaks (the default if type is not specified), which begin the new section on the 32

following page. 33

 Odd page section breaks, which begin the new section on the next odd-numbered page. 34

 Even page section breaks, which begin the new section on the next even-numbered page. 35

 Continuous section breaks, which begin the new section on the following paragraph. This means that 36

continuous section breaks might not specify certain page-level section properties, since they must be 37

inherited from the following section. These breaks, however, can specify other section properties, such 38

as line numbering and footnote/endnote settings. 39

Introduction to WordprocessingML

 29

2.8 Styles 1

After looking at the primary elements of block-level content in a WordprocessingML file, it is now necessary to 2

look at the information stored in the document that affects how this content is displayed. 3

The first such group of information is styles. Within a WordprocessingML file, styles are predefined sets of 4

paragraph and/or character properties which can be applied to text within the document. This allows the 5

formatting properties to be stored and managed independently from the content, allowing the look of 6

document content to be changed in a single location (e.g., the look of all first-level headings is changed by 7

changing the style with styleId Heading1 rather than looking for and changing each paragraph in the 8

document). 9

The Normal paragraph style in a word processing document can have any number of formatting properties, 10

e.g., font face = Times New Roman; font size = 12pt; paragraph justification = left). All paragraphs that 11

reference this paragraph style would automatically inherit these properties. 12

2.8.1 Styles Part 13

Style information in a WordprocessingML document is stored in the Styles part within the package, which is 14

stored via an implicit relationship from the Main Document or Glossary Document part of relationship type 15

http://schemas.openxmlformats.org/wordprocessingml/2006/styles and has a content type of 16

vnd-openxmlformats.officedocument.wordprocessingml-styles+xml. 17

The styles part stores two types of style information for the document: 18

 Style definitions 19

 Latent style information 20

2.8.2 Style Definitions 21

Each style defined within a WordprocessingML document requires a style definition. The style definition 22

contains all of the information needed by a consumer to store and display that style within a 23

WordprocessingML document, and is defined using the style element. The style definition for any style in 24

WordprocessingML can be divided into three segments (Note: the complete definition of style properties can 25

be found on the reference for the style element): 26

 Common style properties 27

 Style ‘types’ 28

 Type specific properties 29

Common style properties refer to the set of properties which can be used regardless of the type of style; for 30

example, the style name, additional aliases for the style, a style ID (used by the document content to refer to 31

the style), if style is hidden, if style is locked, etc. 32

Consider a style called Heading 1 in a document as follows: 33

Introduction to WordprocessingML

 30

<w:style w:type="paragraph" w:styleId="Heading1"> 1

 <w:name w:val="heading 1"/> 2

 <w:basedOn w:val="Normal"/> 3

 <w:next w:val="Normal"/> 4

 <w:link w:val="Heading1Char"/> 5

 <w:priority w:val="1"/> 6

 <w:qformat/> 7

 <w:rsid w:val="00F303CE"/> 8

 … 9

</w:style> 10

Above the formatting information specific to this style type are a set of common style properties which define 11

information shared by all style types. 12

Style types refer to the property on a style that defines the type of style created with this style definition. 13

WordprocessingML supports six types of style definitions: 14

 Paragraph styles 15

 Character styles 16

 Linked styles (paragraph + character) 17

 Table styles 18

 Numbering styles 19

 Default paragraph + character properties 20

Consider a style called Heading 1 in a document as follows: 21

<w:style w:type="paragraph" w:styleId="Heading1"> 22

 <w:name w:val="heading 1"/> 23

 <w:basedOn w:val="Normal"/> 24

 <w:next w:val="Normal"/> 25

 <w:link w:val="Heading1Char"/> 26

 <w:priority w:val="1"/> 27

 <w:qformat/> 28

 <w:rsid w:val="00F303CE"/> 29

 … 30

</w:style> 31

The type attribute has a value of paragraph, which indicates that the following style definition is a paragraph 32

style. 33

2.8.3 Paragraph Styles 34

The first type of style definition, paragraph styles are styles that apply to the contents of an entire paragraph 35

as well as the paragraph mark. This definition implies that the style can define both character properties 36

(properties that apply to text within the document) as well as paragraph properties (properties which apply to 37

Introduction to WordprocessingML

 31

the positioning and appearance of the paragraph). Paragraph styles cannot be referenced by runs within a 1

document, they must be referenced by the pStyle element within a paragraph’s paragraph properties (pPr) 2

element. 3

A paragraph style has three defining type-specific characteristics: 4

 The type attribute on the style has a value of paragraph, which indicates that the following style 5

definition is a paragraph style. 6

 The next element defines an editing behavior which supplies the paragraph style to be automatically 7

applied to the next paragraph when ENTER is pressed at the end of a paragraph of this style. 8

 The style specifies both paragraph-level and character-level properties using the pPr and rPr 9

elements, respectively. In this case, the run properties are the set of properties applied to each run in 10

the paragraph. 11

The paragraph style is then applied to paragraphs by referencing the styleId attribute value for this style in the 12

paragraph properties’ pStyle element. 13

Consider a paragraph style titled "Test Paragraph Style" which defines: paragraph spacing = double, paragraph 14

indent = 1” (first line only); font = Algerian, font color = red, font size = 20 points. The resulting style definition 15

would be: 16

<w:style w:type="paragraph" w:styleId="TestParagraphStyle"> 17

 <w:name w:val="Test Paragraph Style"/> 18

 <w:qformat/> 19

 <w:rsid w:val="00F85845"/> 20

 <w:pPr> 21

 <w:spacing w:line="480" w:lineRule="auto"/> 22

 <w:ind w:firstLine="1440"/> 23

 </w:pPr> 24

 <w:rPr> 25

 <w:rFonts w:ascii="Algerian" w:hAnsi="Algerian"/> 26

 <w:color w:val="ED1C24"/> 27

 <w:sz w:val="40"/> 28

 </w:rPr> 29

</w:style> 30

Notice that the character properties for the style are under the rPr element, and the paragraph properties are 31

under the pPr element. 32

The document content for a paragraph of this style would be: 33

Introduction to WordprocessingML

 32

<w:p> 1

 <w:pPr> 2

 <w:pStyle w:val="TestParagraphStyle"/> 3

 </w:pPr> 4

 <w:r> 5

 <w:t xml:space="preserve">Here is some fancy Text</w:t> 6

 </w:r> 7

</w:p> 8

The pStyle element links the paragraph with the style definition. 9

2.8.4 Character Styles 10

The next type of style definition, character styles are styles which apply to the contents of one or more runs of 11

text within a document’s contents. This definition implies that the style can only define character properties 12

(properties which apply to text within a paragraph) because it cannot be applied to paragraphs. Character 13

styles can only be referenced by runs within a document, and they must be referenced by the rStyle element 14

within a run’s run properties element. 15

A character style has two defining type-specific characteristics: 16

 The type attribute on the style has a value of character, which indicates that the following style 17

definition is a character style. 18

 The style specifies only character-level properties using the rPr element. In this case, the run 19

properties are the set of properties applied to each run which is of this style. 20

The character style is then applied to runs by referencing the styleId attribute value for this style in the run 21

properties’ rStyle element. 22

Consider a character style titled "Test Character Style" which defines; font = Courier New, font color = yellow; 23

underline. The resulting style definition would be: 24

<w:style w:type="character" w:styleId="TestCharacterStyle"> 25

 <w:name w:val="Test Character Style"/> 26

 <w:priority w:val="99"/> 27

 <w:qformat/> 28

 <w:rsid w:val="00E77BF0"/> 29

 <w:rPr> 30

 <w:rFonts w:ascii="Courier New" w:hAnsi="Courier New"/> 31

 <w:color w:val="FFF200"/> 32

 <w:u w:val="single"/> 33

 </w:rPr> 34

</w:style> 35

Notice that the character properties applied using this style are under the rPr element. The document content 36

for a paragraph with a run of this style would be: 37

Introduction to WordprocessingML

 33

<w:p> 1

 <w:r> 2

 <w:t xml:space="preserve">The following text is in the </w:t> 3

 </w:r> 4

 <w:r> 5

 <w:rPr> 6

 <w:rStyle w:val="TestCharacterStyle"/> 7

 </w:rPr> 8

 <w:t>character style</w:t> 9

 </w:r> 10

 <w:r> 11

 <w:t>.</w:t> 12

 </w:r> 13

</w:p> 14

The rStyle element in the second run links that run with the style definition, inheriting the formatting 15

properties for that run. 16

2.8.5 Linked Styles 17

The next type of style definition, linked styles are actually a paired combination of styles which can be applied 18

to the contents of one or more runs of text within a document’s contents or the entire contents of one or 19

more paragraphs in a WordprocessingML document. This definition implies that the style can define both a set 20

of character properties (properties which apply to text within a paragraph) as well as a set of paragraph 21

properties (properties which apply to the positioning and appearance of the paragraph) because it must be 22

possible to apply the style to paragraphs as well as characters. 23

In order to accomplish these dual uses, a linked style is actually a pairing of a paragraph style and a character 24

style in the WordprocessingML document. Each style exists uniquely within the styles part, but are linked by 25

the link element, which specifies that these styles are each half of a linked style definition and should be 26

treated as one style at runtime. 27

A typical example of the use of a linked style is a quote style - if the style is applied to a paragraph, the quoted 28

text should be indented additionally to create a block quote effect, but if the style is applied to text in a 29

paragraph, only the character level effects should be applied. 30

Consider the following two styles which comprise a linked style pairing: 31

<w:style w:type="paragraph" w:styleId="TestLinkedStyle"> 32

 <w:name w:val="Test Linked Style"/> 33

 <w:link w:val="TestLinkedStyleChar"/> 34

 <w:qformat/> 35

 <w:rsid w:val="009C1646"/> 36

Introduction to WordprocessingML

 34

 <w:pPr> 1

 <w:spacing w:line="480" w:lineRule="auto"/> 2

 <w:ind w:left="1440"/> 3

 </w:pPr> 4

 <w:rPr> 5

 <w:rFonts w:ascii="Arial" w:hAnsi="Arial"/> 6

 <w:color w:val="22B14C"/> 7

 </w:rPr> 8

</w:style> 9

<w:style w:type="character" w:styleId="TestLinkedStyleChar"> 10

 <w:name w:val="Test Linked Style Char"/> 11

 <w:link w:val="TestLinkedStyle"/> 12

 <w:rsid w:val="009C1646"/> 13

 <w:rPr> 14

 <w:rFonts w:ascii="Arial" w:hAnsi="Arial"/> 15

 <w:color w:val="22B14C"/> 16

 </w:rPr> 17

</w:style> 18

The link element in the paragraph style specifies TestLinkedStyleChar, the styleId of the paired character 19

style, and the link element in the character style specifies TestLinkedStyle, the styleId of the paired 20

paragraph style, creating a linked style combination. 21

Paragraph-level instances of linked styles can only be referenced by paragraphs within a document, and they 22

must be referenced by the pStyle element within the paragraph’s paragraph properties element (pPr), which 23

must referrence the paragraph version of the linked style. Character-level instances of linked styles can only be 24

referenced by a run's run properties element (rPr) within a document, and they must be referenced by the 25

rStyle element within the run properties element which must reference the character version of the linked 26

style. 27

Consider a linked style titled "Test Linked Style" which defines; font = Arial, font color = green; paragraph 28

spacing = double, indent = 1” left. The resulting style definitions would be: 29

<w:style w:type="paragraph" w:styleId="TestLinkedStyle"> 30

 <w:name w:val="Test Linked Style"/> 31

 <w:link w:val="TestLinkedStyleChar"/> 32

 <w:qformat/> 33

 <w:rsid w:val="009C1646"/> 34

 <w:pPr> 35

 <w:pStyle w:val="TestLinkedStyle"/> 36

 <w:spacing w:line="480" w:lineRule="auto"/> 37

 <w:ind w:left="1440"/> 38

 </w:pPr> 39

Introduction to WordprocessingML

 35

 <w:rPr> 1

 <w:rFonts w:ascii="Arial" w:hAnsi="Arial"/> 2

 <w:color w:val="22B14C"/> 3

 </w:rPr> 4

</w:style> 5

<w:style w:type="character" w:styleId="TestLinkedStyleChar"> 6

 <w:name w:val="Test Linked Style Char"/> 7

 <w:link w:val="TestLinkedStyle"/> 8

 <w:rsid w:val="009C1646"/> 9

 <w:rPr> 10

 <w:rFonts w:ascii="Arial" w:hAnsi="Arial"/> 11

 <w:color w:val="22B14C"/> 12

 </w:rPr> 13

</w:style> 14

Notice that the linked style definition is composed of the paragraph style, which specifies both the run and 15

paragraph properties, and the character style, which specifies only the run properties. The document content 16

for a paragraph with this linked style would be: 17

<w:p> 18

 <w:pPr> 19

 <w:pStyle w:val="TestLinkedStyle"/> 20

 </w:pPr> 21

 <w:r> 22

 <w:t xml:space="preserve">A para version of Test Linked Style.</w:t> 23

 </w:r> 24

</w:p> 25

The pStyle element in the paragraph’s properties links the paragraph with the paragraph version of the linked 26

style definition. 27

The document content for a paragraph with a run of this linked style would be: 28

<w:p> 29

 <w:r> 30

 <w:t xml:space="preserve">Next run is character version of </w:t> 31

 </w:r> 32

 <w:r> 33

 <w:rPr> 34

 <w:rStyle w:val="TestLinkedStyleChar"/> 35

 </w:rPr> 36

 <w:t>Test Linked Style</w:t> 37

 </w:r> 38

Introduction to WordprocessingML

 36

 <w:r> 1

 <w:t>.</w:t> 2

 </w:r> 3

</w:p> 4

The rStyle element in the second run’s properties links the run with the character version of the linked style 5

definition. 6

2.8.6 Numbering Styles 7

Numbering styles are style definitions which specify common style properties for a multi-level numbering 8

format within a document. This means that a numbering style defines only a single paragraph property: a 9

reference to a numbering definition stored in the document’s numbering part, using the numPr element. 10

Unlike paragraph and character styles, numbering styles are never directly referenced by content in the 11

document – instead, an abstract numbering definition (covered in the numbering topic of this section) 12

specifies that it is actually the underlying numbering information for a numbering style. 13

Consider a numbering style “Test Numbering Style”: 14

<w:style w:type="numbering" w:styleId="TestNumberingStyle"> 15

 <w:name w:val="Test Numbering Style" /> 16

 <w:priority w:val="99" /> 17

 <w:rsid w:val="0045009F" /> 18

 <w:pPr> 19

 <w:numPr> 20

 <w:numId w:val="1" /> 21

 </w:numPr> 22

 </w:pPr> 23

</w:style> 24

The only information specified in the numbering style definition is a reference to the numbering definition for 25

the numbering information which is defined by this numbering style. 26

2.8.7 Table Styles 27

The last conventional type of style definition, table styles are styles which apply to the contents of zero or 28

more tables within a document. This definition implies that the style can only define table properties 29

(properties which apply to the table and its constituent rows and cells), however a table style can also define 30

paragraph properties (properties which apply to the positioning and appearance of paragraphs) as well as 31

character properties (properties which apply to runs) for all of the paragraphs and runs within the specified 32

table in the document. Table styles can only be referenced by tables within a document, and they must be 33

referenced by the tblStyle element within a table’s table properties (tblPr) element. 34

Introduction to WordprocessingML

 37

Like the style definitions discussed above, table styles specify all of the properties that can be applied to a 1

table, as well as paragraph and character properties for the table’s contents. However, unlike other style 2

definitions, table styles allow for the definition of conditional formats for different regions of the table. 3

These table conditional formats are applied to different regions of the table as follows: 4

 5

All rows in the table can also have conditional formatting on an alternating row/column basis as well as 6

follows: 7

 8

Introduction to WordprocessingML

 38

When specified, these conditional formats are applied in the following order (therefore subsequent formats 1

override properties on previous formats): 2

 Whole table 3

 Banded columns, even column banding 4

 Banded rows, even row banding 5

 First row, last row 6

 First column, last column 7

 Top left, top right, bottom left, bottom right 8

Consider a table style “Test Table Style” defined as follows: all cells with 1pt table borders on all sides, 0.1” cell 9

margins on left and right of cells, and 0” cell margins on top and bottom of cells, as well as header row specific 10

formatting of: red shading, bold text as follows: 11

<w:style w:type="table" w:styleId="TestTableStyle"> 12

 <w:name w:val="Test Table Style"/> 13

 <w:basedOn w:val="TableNormal"/> 14

 <w:priority w:val="99"/> 15

 <w:rsid w:val="00340CC4"/> 16

 <w:tblPr> 17

 <w:tblBorders> 18

 <w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/> 19

 <w:left w:val="single" w:sz="4" w:space="0" w:color="auto"/> 20

 <w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/> 21

 <w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/> 22

 <w:insideH w:val="single" w:sz="4" w:space="0" w:color="auto"/> 23

 <w:insideV w:val="single" w:sz="4" w:space="0" w:color="auto"/> 24

 </w:tblBorders> 25

 <w:tblCellMar> 26

 <w:top w:w="0" w:type="dxa"/> 27

 <w:left w:w="108" w:type="dxa"/> 28

 <w:bottom w:w="0" w:type="dxa"/> 29

 <w:right w:w="108" w:type="dxa"/> 30

 </w:tblCellMar> 31

 </w:tblPr> 32

 <w:tblStylePr w:type="firstRow"> 33

 <w:rPr> 34

 <w:b/> 35

 </w:rPr> 36

 <w:tcPr> 37

 <w:shd w:val="clear" w:color="auto" w:fill="ED1C24"/> 38

 </w:tcPr> 39

 </w:tblStylePr> 40

</w:style> 41

Introduction to WordprocessingML

 39

The tblPr element holds the formatting which is applied to the entire table, and the tblStylePr element with a 1

type attribute value of firstRow holds the formatting for the first table row, specifically the bold run 2

property and red cell shading. 3

An individual instance of a table defines an association with a table style using the tblStyle element in the 4

table’s properties (tblPr), as discussed above. However, individual tables can choose whether to apply the 5

following aspects of the table’s conditional formats individually: 6

 First row 7

 Last row 8

 First column 9

 Last column 10

 Row banding 11

 Column banding 12

The use or omission conditional formats are specified using the tblLook element, which contains a bitmask 13

representing which properties are applied and omitted. 14

Consider two tables using the table style "Style2"; one which specifies that it should only use the header row 15

and footer row conditional formatting properties from the table style, and the other which specifies that it 16

should use the header row, footer row, and banded row conditional formatting: 17

<w:tbl> 18

 <w:tblPr> 19

 <w:tblStyle w:val="Style2"/> 20

 <w:tblW w:w="0" w:type="auto"/> 21

 <w:tblLook w:val="0660"/> 22

 </w:tblPr> 23

 … 24

</w:tbl> 25

… 26

<w:tbl> 27

 <w:tblPr> 28

 <w:tblStyle w:val="Style2"/> 29

 <w:tblW w:w="0" w:type="auto"/> 30

 <w:tblLook w:val="0460"/> 31

 </w:tblPr> 32

 … 33

</w:tbl> 34

The tables each specify the appropriate set of conditional formats using the tblLook element, as seen by the 35

identical table styles in the tblStyle element, and different tblLook values. 36

Introduction to WordprocessingML

 40

2.8.8 Default Document Paragraph and Character Properties 1

The final type of style in a WordprocessingML document is the default paragraph and character properties for 2

the document. Although this is not a style in the strict sense of the word (because this property set cannot 3

directly be applied to text) it defines the basic set of formatting properties which are inherited by paragraphs 4

and runs in the document. 5

The following section, entitled Style Inheritance, explains exactly how the default document paragraph and 6

character properties influence the appearance of all content in the document. 7

2.8.9 Style Inheritance 8

In order to compile the complete set of paragraph and character properties specified by any given style (as 9

appropriate), a consumer must follow the rule of style inheritance to determine each property in that set. 10

Style inheritance states that styles of any given type may inherit from other styles of that type, and therefore a 11

consumer must ‘build up’ the style information by following the inheritance tree. This inheritance is defined via 12

the basedOn element, which specifies the styleId of the parent style. 13

The “Tristan Test” paragraph style can inherit properties from the “Heading 1” paragraph style, which itself can 14

inherit properties from the “Normal” paragraph style. 15

To build up the resulting style, a consumer must trace the hierarchy (following each basedOn value) back to a 16

style which has no basedOn element (is not based on another style). The resulting style is then constructed by 17

following each level in the tree, applying the specified paragraph and/or character properties as appropriate. 18

When properties conflict, they are overridden by each subsequent level (this includes turning OFF a property 19

set at an earlier level). Properties which are not specified simply do not change those specified at earlier levels. 20

Consider a character style “Green” which specifies only that the text color is green, but inherits from another 21

character style “Base” which defines a font face of Arial, as well as bold: 22

<w:style w:type="character" w:styleId="Green"> 23

 <w:name w:val="Green" /> 24

 <w:basedOn w:val="Base" /> 25

 <w:rPr> 26

 <w:color w:val="22B14C" /> 27

 </w:rPr> 28

</w:style> 29

 … 30

../Local Settings/Temp/styles.xml<w:style w:type="character" w:styleId="Base"> 31

 <w:name w:val="Base" /> 32

 <w:rPr> 33

 <w:rFonts w:ascii="Arial" w:hAnsi="Arial" /> 34

 <w:b /> 35

 </w:rPr> 36

</w:style> 37

../Local%20Settings/Temp/styles.xml

Introduction to WordprocessingML

 41

The definition of the Green character style has a basedOn element which specifies the Base style. This means 1

that any use of the Green style is defined as bold, green, Arial text. 2

Conversely, a producer should not output any property on a style which has already been set by a previous 3

level of the style hierarchy, as well as those which match the document defaults. This means that if the 4

document defaults or any previous level in a style’s hierarchy specify a property which is unchanged at this 5

level, that property should not be part of the style definition in the resulting WordprocessingML. Adding a 6

property at multiple levels in the style hierarchy is not invalid, but unnecessarily duplicative as the setting is 7

already applied to the text, resulting in an unnecessary increase to file size. 8

If the document default font is Bauhaus 93 and the Heading 1 style also specifies the Bauhaus 93 font, then 9

a producer should not output any rFonts element for the Heading 1 style definition, because that formatting 10

is inherited from the document defaults. 11

2.8.10 Style Application 12

With the various flavors of styles available, multiple style types can be applied to the same content within a 13

file, which means that properties must be applied in a specific deterministic order. As with inheritance, the 14

resulting formatting properties set by one type can be unchanged, removed, or altered by following types. 15

The following table illustrates the order of application of these defaults, and which properties are impacted by 16

each: 17

 18

Introduction to WordprocessingML

 42

This process can be described as follows: First, the document defaults are applied to all runs and paragraphs in 1

the document. Next, the table style properties are applied to each table in the document, following the 2

conditional formatting inclusions and exclusions specified per table. Next, numbered item and paragraph 3

properties are applied to each paragraph formatted with a numbering style. Next, paragraph and run 4

properties are applied to each paragraph as defined by the paragraph style. Next, run properties are applied to 5

each run with a specific character style applied. Finally, we apply direct formatting (paragraph or run 6

properties not from styles). 7

2.8.11 Latent Styles 8

The final piece of information stored in the styles part in the document, aside from style definition 9

information, is latent style information. 10

Latent styles are all styles contained in a document’s template which have not yet been instantiated (used) in 11

the current instance of the document. 12

In WordprocessingML, there are often properties which must be set on all styles in a document template 13

regardless of whether they are being used: for example, whether or not the style can be applied in the current 14

document (locked state), UI sorting priority, whether the style should be shown in the user interface, etc. In 15

order for the document to function correctly, it is essential that this information is stored within the 16

document, so that a consumer can determine the necessary style information from the document alone 17

(without access to the template). However, it would be grossly inefficient for the document to store all style 18

information for all styles simply to store this information, so latent styles are used to store just the necessary 19

style properties without caching all style information in the document. 20

In order to do this efficiently, the document declares a latentStyles element in the styles part which defines 21

the default properties applied to all latent styles in the document. All styles whose properties do not match the 22

default for the set of style properties which must be defined for all styles are explicitly defined using the 23

lsdException element. 24

Consider the following latent style information stored in a document’s styles part: 25

<w:latentStyles w:defLockedState="off" w:defPriority="99" 26

 w:defSemiHidden="on" w:defUnhideWhenUsed="on" w:defQFormat="off" 27

 w:count="180"> 28

 <w:lsdException w:name="Normal" w:unhideWhenUsed="off" 29

 w:qformat="on"/> 30

 <w:lsdException w:name="heading 1" w:semiHidden="off" w:priority="1"/> 31

 <w:lsdException w:name="heading 2" w:priority="1" 32

 w:unhideWhenUsed="on"/> 33

 <w:lsdException w:name="heading 3" w:semiHidden="off/> 34

 <w:lsdException w:name="heading 4" w:priority="1" w:qformat="on"/> 35

 <w:lsdException w:name="heading 5" w:priority="1" w:qformat="on"/> 36

Introduction to WordprocessingML

 43

 <w:lsdException w:name="heading 6" w:priority="1" w:qformat="on"/> 1

 <w:lsdException w:name="heading 7" w:priority="1" w:qformat="on"/> 2

 <w:lsdException w:name="heading 8" w:priority="1" w:qformat="on"/> 3

 <w:lsdException w:name="heading 9" w:priority="1" w:qformat="on"/> 4

 <w:lsdException w:name="Normal Indent" w:priority="6" w:qformat="on"/> 5

</w:latentStyles> 6

The attributes on the latentStyles element define the properties applied to all latent styles for this document. 7

All styles whose properties do not match the default latent styles properties are explicitly defined using the 8

values on the lsdException elements. 9

2.9 Fonts 10

2.9.1 Font References 11

Within a WordprocessingML document, font face information can be referenced by any set of run properties, 12

both as part of a style definition or direct formatting on one or more runs in the document's contents. This 13

reference is established by referencing the primary name of the font face that is used in the rFonts element of 14

the run properties, linking that run with the desired font face. 15

For example, consider a run of text that has been directly formatted to use the Arial Black font face. This 16

setting would be specified as follows on the run's properties: 17

<w:r> 18

 <w:rPr> 19

 <w:rFonts w:ascii="Arial Black" w:hAnsi="Arial Black" /> 20

 </w:rPr> 21

 <w:t>This run of text uses the Arial Black font face.</w:t> 22

</w:r> 23

The rFonts element specifies that the run should be formatted using the Arial Black font face. 24

Applications can then look up and use the font with primary name of Arial Black when formatting this run. 25

2.9.2 Font Reference Types 26

In the example above, two attributes were present, both referring to the font face with primary name Arial 27

Black. This simple case illustrates the ability for a WordprocessingML document to store up to four fonts 28

which may be used on the contents of a run, as follows: 29

 ASCII font 30

 High ANSI font 31

 East Asian font 32

 Complex Script font 33

Each of these font faces is used to format the characters in the run that fall under their purview: 34

Introduction to WordprocessingML

 44

The ASCII font formats all characters in the ASCII range (character values 0–127). This font is specified using the 1

ascii attribute on the rFonts element. 2

The East Asian font formats all characters that belong to Unicode sub ranges for East Asian languages. This font 3

is specified using the eastAsia attribute on the rFonts element. 4

The complex script font formats all characters that belong to Unicode sub ranges for complex script languages. 5

This font is specified using the cs attribute on the rFonts element. 6

The high ANSI font formats all characters that belong to Unicode sub ranges other than those explicitly 7

included by one of the groups above. This font is specified using the hAnsi attribute on the rFonts element. 8

For example, consider a run of text defined as follows: 9

<w:r> 10

 <w:rPr> 11

 <w:rFonts w:ascii="Arial Black" w:hAnsi="Arial Black" w:cs="Arial" 12

 w:eastAsia="SimSun"/> 13

 </w:rPr> 14

 … 15

</w:r> 16

The rFonts element specifies that the contents of this run are formatted as follows: 17

 Complex script characters used the Arial font 18

 East Asian characters used the SimSun font 19

 All other characters used the Arial Black font 20

2.9.3 Ambiguous Characters 21

When classifying characters into one of the four slots defined above, it is likely that the classification of some 22

characters will be ambiguous (the resulting classification would be equally applicable for one or more font 23

slots). 24

To handle this, the font face information can also include a hint, which specifies how ambiguous mappings are 25

resolved into a font slot. This information is stored on the hint attribute on the rFonts element, and specifies 26

the bucket into which these ambiguous characters fall. 27

For example, if the hint attribute has a value of eastAsia, then all ambiguous characters shall be formatted 28

using the East Asian font face. 29

2.9.4 Font Table 30

Within a document, the font table contains information about the fonts used in the document to allow: 31

 Applications to perform substitution with the most appropriate possible font when the desired font 32

face is not available on the system. Since some fonts are commercially distributed, it is possible for a 33

Introduction to WordprocessingML

 45

document to be formatted with one or more fonts that are not available depending on the machine 1

opening the current system. This information allows the application that cannot locate the desired 2

font to perform the most appropriate possible match. 3

 Embedding of fonts in the document to prevent the need for font substitution 4

The font table part is stored via an implicit relationship from either the main document part or the glossary 5

document part, and has a relationship type of 6

http://schemas.openxmlformats.org/wordprocessingml/2006/fontTable, and a content type of vnd-7

openxmlformats.officedocument.wordprocessingml-fontTable+xml. 8

2.9.5 Font Substitution Data 9

The first classification of data stored in the font table are an optional set of font metrics which are queried 10

from the font and stored in the document such that future applications can utilize them when the desired font 11

is not available. If a particular font face cannot be located on the current system, then this data is used to 12

substitute a font that most appropriately matches its characteristics. 13

For example, consider the font substitution data stored for the Arial Black font: 14

<w:font w:name="Arial Black"> 15

 <w:panose1 w:val="020B0A04020102020204" /> 16

 <w:charset w:val="00" /> 17

 <w:family w:val="swiss" /> 18

 <w:pitch w:val="variable" /> 19

 <w:sig w:usb0="00000287" w:usb1="00000000" w:usb2="00000000" 20

 w:usb3="00000000" w:csb0="0000009F" w:csb1="00000000" /> 21

</w:font> 22

This data is linked to the font face with a name of Arial Black via the name attribute, and stores the 23

following information about the font (see the reference material on fonts for more details): 24

 The font's Panose-1 number 25

 The character set of the font 26

 The font's family 27

 The font's pitch 28

 The code pages and Unicode sub ranges supported by the font 29

2.9.6 Font Embedding 30

As well as providing information about the font's metrics, applications may be directed to embed the contents 31

of a font (partially or as a whole) into a document, a process known as font embedding. Font embedding 32

literally embeds an obfuscated version of the font into the file so that it may be retrieved and used to view the 33

contents of this document - but the obfuscation ensures that the font cannot be extracted and used for any 34

other document (as it may have a commercial license). 35

Within the font table, when a font is embedded there are explicit relationships to each font form needed: 36

http://schemas.openxmlformats.org/wordprocessingml/2006/fontTable

Introduction to WordprocessingML

 46

 Regular 1

 Bold 2

 Italic 3

 Bold + Italic 4

Each form is obfuscated using the mechanism described in the reference material on this subject. 5

2.9.7 Theme Fonts 6

As well as storing standard font face information, run properties may store an abstraction for font face 7

information known as theme fonts. Theme fonts are values that specify that the font face information for a run 8

is not stored in the attribute value using the appropriate font face name, but is rather a reference into the 9

document's theme part, allowing font face information to be stored and managed centrally as part of the 10

theme data. It is appropriate to think of theme fonts as a "style for fonts" in the same way in which a style is a 11

reference to the formatting that is stored centrally in another part. 12

Theme fonts are specified using the theme attribute variants in the rFonts element, rather than storing the 13

actual font face name. 14

For example, consider a run of text defined as follows: 15

<w:r> 16

 <w:rPr> 17

 <w:rFonts w:asciiTheme="minorHAnsi" w:hAnsiTheme="minorHAnsi" /> 18

 </w:rPr> 19

 … 20

</w:r> 21

The rFonts element's attribute values of asciiTheme and hAnsiTheme both store a reference to a theme font 22

stored in the document's theme part (i.e., there is no font with the primary name minorHAnsi). 23

Once this information has been established, it is combined with the theme language data stored in the 24

document's settings to resolve the appropriate theme fonts from the theme part. The syntax and format of the 25

theme part are stored in the DrawingML syntax and discussed in that section. 26

2.10 Numbering 27

Numbering in WordprocessingML refers to symbols—Arabic numerals, Roman numerals, symbol characters 28

("bullets"), text strings, etc.—that are used to label individual paragraphs of text. 29

The following two paragraphs each contain numbering as defined by WordprocessingML: the first uses an 30

Arabic numeral, the second a symbol character: 31

1. This is a paragraph with numbering information. 32

 This is also a paragraph with numbering information. 33

Introduction to WordprocessingML

 47

2.10.1 Numbering Part 1

Numbering information in a WordprocessingML document is stored in the Numbering part within the package, 2

which is stored via an implicit relationship from the Main Document part or Glossary Document part of 3

relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/numbering and 4

has a content type of vnd-openxmlformats.officedocument.wordprocessingml-numbering+xml. 5

2.10.2 Numbering Definitions 6

The specification of a specific set of numbering information is called a numbering definition. Numbering 7

definitions are stored in two components: 8

 Abstract numbering definitions 9

 Numbering definition instances 10

As shown below, their relationship is (essentially) that of an abstract and an inherited class. 11

2.10.3 Abstract Numbering Definitions 12

An abstract numbering definition is the basis for all numbering information in a WordprocessingML document, 13

as it defines the appearance and behavior of a specific set of numbered paragraphs in a document, and is 14

defined using the abstractNum element. Although abstract numbering definitions contain all of the numbering 15

information for one type of numbering, they cannot be directly referenced by content (hence their abstract 16

designation), they must be inherited by a numbering definition instance, which itself can be referenced by 17

content. A specific abstract numbering definition in WordprocessingML can be divided into two parts: 18

 Common numbering properties 19

 Numbering levels 20

The complete definition of all abstract numbering properties can be found in the reference for the 21

abstractNum element. 22

Common numbering properties refer to the properties that can be specified by all abstract numbering 23

definitions regardless of their contents. Examples of common numbering properties include: a numbering ID 24

(which uniquely identifies a numbering definition), the numbering definition type (single level, multi-level, 25

multi-level hybrid), the numbering name, and optional numbering style references, as discussed in detail later 26

in this subclause. 27

Consider the following example of an abstract numbering definition in a WordprocessingML document: 28

<w:abstractNum w:abstractNumId="4"> 29

 <w:nsid w:val="1DE04504" /> 30

 <w:multiLevelType w:val="hybridMultilevel" /> 31

 <w:lvl w:ilvl="0" w:tplc="0409000F"> 32

 … 33

 </w:lvl> 34

Introduction to WordprocessingML

 48

 <w:lvl w:ilvl="1" w:tplc="04090019"> 1

 … 2

 </w:lvl> 3

 <w:lvl w:ilvl="2" w:tplc="04090019"> 4

 … 5

 </w:lvl> 6

 <w:lvl w:ilvl="3" w:tplc="0409000F"> 7

 … 8

 </w:lvl> 9

 … 10

</w:abstractNum> 11

This numbering definition specifies two common properties: a numbering ID (using the nsid element) of 12

1DE04504, and a list type (using the multiLevelType element) of hybridMultilevel, which specifies that this 13

abstract numbering definition is more than one level and contains multiple numbering formats. 14

The other part of an abstract numbering definition is the specification of one or more numbering levels, each 15

of which defines a unique set of formatting properties for one level in this numbering definition. 16

Consider three numbered paragraphs that reference the same numbering definition, but each, in turn, 17

reference a different level within that list: 18

 19

Although the paragraphs each reference the same abstract numbering definition (which is discussed later), 20

each refers to a separate level within that abstract numbering definition, and therefore each has a unique set 21

of paragraph and numbering properties. 22

It is important to note that the concept of levels in an abstract numbering definition refers to the levels as 23

defined in the file format, and in no way the logical indentation of numbered paragraphs within a 24

WordprocessingML document. 25

Consider another set of numbered paragraphs in WordprocessingML, where each subsequent paragraph is a 26

different level but references the same abstract numbering definition: 27

 28

Introduction to WordprocessingML

 49

In this example, the properties of each level of the numbering definition is such that the paragraphs for each 1

level are indented arbitrarily. However, this is still a completely valid numbering definition, and the paragraphs 2

each represent subsequent levels of the same numbering definition. 3

Within an abstract numbering level definition, each numbering level is represented by an lvl element that 4

defines a single level of numbering information. Numbering levels specify the following properties: starting 5

number value, a number format presentation code (e.g., 1 vs. the string literal One), an associated paragraph 6

style, which previous level should cause this numbering level to restart, the numbering text, number 7

justification, a paragraph properties indentation for this level, etc. The complete definition of all numbering 8

level properties can be found on the reference for the lvl element. 9

Consider the following numbering level definition in WordprocessingML: 10

<w:lvl w:ilvl="1"> 11

 <w:start w:val="4"/> 12

 <w:nfc w:val="3"/> 13

 <w:pStyle w:val="Heading1"/> 14

 <w:lvlText w:val="BEFORE %2 AFTER %1 END"/> 15

 <w:lvlJc w:val="left"/> 16

 <w:pPr> 17

 <w:tabs> 18

 <w:tab w:val="num" w:pos="2880"/> 19

 </w:tabs> 20

 <w:ind w:left="288" w:firstLine="1152"/> 21

 </w:pPr> 22

</w:lvl> 23

This particular numbering level defines the following information: 24

 This is level 1 (the second level) for this numbering definition 25

 Start at number 4 26

 Use number format 3 (which translates to 1, 2, 3, and so on) 27

 When this level is used, apply the Heading1 style 28

 Use the following level text for the number: BEFORE %2 AFTER %1 END 29

 Left justify the number 30

 Set a left indent of 288 twentieths of a point, and a first line indent of 1152 twentieths of a point 31

This information is used to display the number for paragraphs of level 1 the reference this numbering 32

definition. 33

Of particular significance is the lvlText element, which defines the content of the number text for each 34

numbering level. Its syntax allows any string literal to be placed in the number (e.g., the ARTICLE in ARTICLE I, 35

ARTICLE II, ARTICLE III, and so on), as well as the current value of the number for this or any previous level in 36

the list. 37

Introduction to WordprocessingML

 50

Referring to the numbering level definition above, the lvlText is defined as follows: 1

<w:lvlText w:val="BEFORE %2 AFTER %1 END"/> 2

This level text specifies three literal strings (BEFORE, AFTER, END) mixed with the current numbering value 3

from level 1 and level 0 in the document. Therefore, assuming level 0 is just a simple number, when inserted it 4

would read: 5

1 6

 BEFORE 1 AFTER 1 END 7

 BEFORE 2 AFTER 1 END 8

 BEFORE 3 AFTER 1 END 9

2 10

 BEFORE 1 AFTER 2 END 11

 BEFORE 2 AFTER 2 END 12

 … 13

The %1 and %2 values correspond to the value for level 0 and 1 of this list, respectively. 14

2.10.4 Numbering Definition Instances 15

A numbering definition instance is a specific instantiation of numbering information that can be referenced by 16

zero or more paragraphs within the document. A numbering definition instance is defined using the 17

num element. A specific numbering definition instance in WordprocessingML can be divided into two parts: 18

 An abstract numbering reference 19

 (Optional) level overrides 20

The definition of all numbering definition instance properties can be found on the reference for the num 21

element. 22

The required piece of information in a numbering definition instance, the instance must reference an abstract 23

numbering definition using the abstractNumId element. This element specifies the value of the 24

abstractNumId attribute for the inherited abstract numbering definition information. 25

Consider the WordprocessingML for a document with four numbering definition instances, two of which 26

reference the same underlying abstract numbering definition: 27

<w:numbering> 28

 ... 29

 <w:num w:numId="2"> 30

 <w:abstractNumId w:val="0" /> 31

 </w:num> 32

 <w:num w:numId="3"> 33

 <w:abstractNumId w:val="1" /> 34

 </w:num> 35

Introduction to WordprocessingML

 51

 <w:num w:numId="4"> 1

 <w:abstractNumId w:val="4" /> 2

 </w:num> 3

 <w:num w:numId="5"> 4

 <w:abstractNumId w:val="4" /> 5

 </w:num> 6

</w:numbering> 7

As shown above, the first two numbering definition instances reference abstractNumId values of 0 and 1 8

respectively, and the last two both reference the abstract numbering definition with an abstractNumId of 4. 9

The second (and optional) piece of information for a numbering definition instance is one or more numbering 10

level overrides using the lvlOverride element. This element specifies a set of optional overrides applied to 11

zero or more levels from the abstract numbering definition inherited by this instance. 12

Consider a numbering definition instance that inherits its information from the abstract numbering definition 13

with abstractNumId of 4, but wishes to use a different set of properties for level 0 of the numbering 14

definition. The resulting WordprocessingML would look like: 15

<w:num w:numId="6"> 16

 <w:abstractNumId w:val="4" /> 17

 <w:lvlOverride w:ilvl="0"> 18

 <w:lvl w:ilvl="0"> 19

 <w:start w:val="4" /> 20

 <w:lvlText w:val="%1)" /> 21

 <w:lvlJc w:val="left" /> 22

 <w:pPr> 23

 <w:ind w:left="360" w:hanging="360" /> 24

 </w:pPr> 25

 </w:lvl> 26

 </w:lvlOverride> 27

</w:num> 28

This level overrides level 0 of the list with the specified set of numbering properties, replacing those in the 29

abtract numbering definition. 30

2.10.5 Applying Numbering to Paragraphs 31

Once numbering information is defined in the numbering part, this information must be associated with 32

paragraphs within the document in order to display numbering on one or more paragraphs of content. 33

To accomplish this, numbered paragraphs are identified by the numPr element within the paragraph's 34

properties element (the pPr element). The numbering properties within a paragraph are specified using two 35

specific elements that specify the numbering definition information to use: 36

 A numbering definition instance reference 37

Introduction to WordprocessingML

 52

 A numbering level reference 1

The numbering definition instance reference is specified using the numId element. This element contains a 2

reference to the numId attribute in a specific numbering definition instance within the numbering part, which 3

links this paragraph to that numbering definition instance. 4

The numbering level reference is specified using the ilvl element. This element contains a reference to the ilvl 5

attribute in the specified numbering definition instance's level information, which specifies the numbering 6

level within the referenced numbering definition instance to be used by this numbered paragraph. 7

Consider the following numbered paragraphs in a WordprocessingML document: 8

 9

 10

These four numbered paragraphs, all referencing the same numbering definition, produce the following 11

WordprocessingML: 12

<w:p> 13

 <w:pPr> 14

 <w:numPr> 15

 <w:ilvl w:val="0" /> 16

 <w:numId w:val="5" /> 17

 </w:numPr> 18

 </w:pPr> 19

 <w:r> 20

 <w:t>Level one item one</w:t> 21

 </w:r> 22

</w:p> 23

Introduction to WordprocessingML

 53

<w:p> 1

 <w:pPr> 2

 <w:numPr> 3

 <w:ilvl w:val="1" /> 4

 <w:numId w:val="5" /> 5

 </w:numPr> 6

 </w:pPr> 7

 <w:r> 8

 <w:t>Level two item one</w:t> 9

 </w:r> 10

</w:p> 11

<w:p> 12

 <w:pPr> 13

 <w:numPr> 14

 <w:ilvl w:val="0" /> 15

 <w:numId w:val="5" /> 16

 </w:numPr> 17

 </w:pPr> 18

 <w:r> 19

 <w:t>Level one item two</w:t> 20

 </w:r> 21

</w:p> 22

<w:p> 23

 <w:pPr> 24

 <w:numPr> 25

 <w:ilvl w:val="1" /> 26

 <w:numId w:val="5" /> 27

 </w:numPr> 28

 </w:pPr> 29

 <w:r> 30

 <w:t>Level two item one</w:t> 31

 </w:r> 32

</w:p> 33

In these numbered paragraphs, level 0 and 1 of the numbering definition are referenced through the ilvl 34

element with a val attribute of 0 or 1, respectively, however, the numId element always references the 35

numbering definition instance with a val of 5. 36

The numbering at any particular numbering level is restarted when a paragraph in the current document from 37

the same numbering definition uses the level specified in the lvlRestart element for this numbering level. 38

Consider a set of numbered paragraphs in a WordprocessingML document where: 39

 Level 1 is set to restart after each level 0 (lvlRestart of 1) 40

Introduction to WordprocessingML

 54

 Level 2 is set to never restart (lvlRestart of 0) 1

 2

As the example shows, the numbering at level 1 (a, b, c, and so on) restarts after each level 0 is used, but 3

level 2 (i, ii, iii, and so on) never restarts. 4

2.10.6 The Complete Story 5

To summarize the use of numbering information in a document, the paragraph properties specify a numPr 6

element, which references a numbering definition instance via the numId element. The numbering definition 7

instance specifies an inherited abstract numbering definition via the abstractNumId element. The paragraph 8

then also specifies the list level from the numbering definition instance using the ilvl element. 9

Consider the following WordprocessingML for a numbered paragraph: 10

<w:p> 11

 <w:pPr> 12

 <w:numPr> 13

 <w:ilvl w:val="0" /> 14

 <w:numId w:val="5" /> 15

 </w:numPr> 16

 </w:pPr> 17

 <w:r> 18

 <w:t>Numbered paragraph</w:t> 19

 </w:r> 20

</w:p> 21

Based on the numId of 5, the paragraph uses the numbering definition instance with a numId of 5: 22

Introduction to WordprocessingML

 55

<w:numbering> 1

 ... 2

 <w:num w:numId="5"> 3

 <w:abstractNumId w:val="4" /> 4

 </w:num> 5

</w:numbering> 6

Based on the abstractNumId of 4, this instance inherits the abstract numbering definition with an 7

abstractNumId of 4: 8

<w:numbering> 9

 <w:abstractNum w:abstractNumId="4"> 10

 <w:nsid w:val="FFFFFF7F" /> 11

 <w:multiLevelType w:val="singleLevel" /> 12

 <w:lvl w:ilvl="0"> 13

 <w:start w:val="1" /> 14

 <w:lvlText w:val="%1." /> 15

 <w:lvlJc w:val="left" /> 16

 <w:pPr> 17

 <w:tabs> 18

 <w:tab w:val="num" w:pos="720" /> 19

 </w:tabs> 20

 <w:ind w:left="720" w:hanging="360" /> 21

 </w:pPr> 22

 </w:lvl> 23

 </w:abstractNum> 24

 … 25

</w:numbering> 26

Since the numbering definition instance does not specify an override for ilvl 0, the definition for the 27

corresponding level from the abstract numbering definition is applied to the text. 28

2.10.7 Numbering Styles 29

As stated earlier in the styles subclause (§2.8), numbering styles are style definitions which specify common 30

formatting properties for a multi-level numbering format within a document. This means that a numbering 31

style definition in the styles part defines only a single property: a reference to a numbering definition instance 32

stored in the document’s numbering part, using the numId element within the numPr element. That 33

numbering definition instance specifies an abstract numbering style, which contains the numbering level 34

information for the numbering style. It also specifies that it is the basis for the numbering style by back-35

referencing the numbering style's styleId attribute via the styleLink element. 36

Unlike paragraph and character styles, numbering styles are never directly referenced by content in the 37

document—instead, an abstract numbering definition specifies that it contains the underlying numbering 38

Introduction to WordprocessingML

 56

information for a numbering style, and one or more numbering definition instances reference that abstract 1

numbering definition. 2

2.10.8 Referencing Numbering Styles 3

To use a numbering style in a document, the paragraph properties for one or more paragraphs again specify a 4

numPr element, which references a numbering definition instance via the numId element. The numbering 5

definition instance itself again specifies an inherited abstract numbering definition via the abstractNumId 6

element. 7

At this stage, the abstract numbering definition specifies that it is based on a numbering style via either of the 8

following: 9

 The abstract numbering style contains no level data, and simply specifies a reference to the numbering 10

style's styleId attribute via the numStyleLink element. 11

 The abstract numbering style contains the numbering level information for the numbering style, and 12

specifies that it is the basis for the numbering style by referencing the numbering style's styleId 13

attribute via the styleLink element. 14

Although the result of each method is identical, the following two examples illustrate each of the syntaxes: 15

Consider the first numbering style syntax, in which the numbering on a paragraph is based on an abstract 16

numbering definition which simply references the numbering style via numStyleLink. The contents of the 17

paragraph would consist of the following: 18

<w:p> 19

 <w:pPr> 20

 <w:numPr> 21

 <w:ilvl w:val="0" /> 22

 <w:numId w:val="6" /> 23

 </w:numPr> 24

 </w:pPr> 25

 <w:r> 26

 <w:t>This paragraph references a numbering style via numStyleLink.</w:t> 27

 </w:r> 28

</w:p> 29

The numId element references a numbering definition instance with a value of 6, located in the numbering 30

part: 31

<w:num w:numId="6"> 32

 <w:abstractNumId w:val="0" /> 33

</w:num> 34

Based on the abstractNumId of 0, this instance inherits the abstract numbering definition with an 35

abstractNumId of 0: 36

Introduction to WordprocessingML

 57

<w:abstractNum w:abstractNumId="0"> 1

 <w:nsid w:val="38901FA4" /> 2

 <w:multiLevelType w:val="multilevel" /> 3

 <w:numStyleLink w:val="TestNumberingStyle" /> 4

</w:abstractNum> 5

This abstract numbering definition contains no numbering information - it simply notes that it inherits the 6

numbering information from the numbering style TestNumberingStyle by referencing the styleId 7

attribute on that style: 8

<w:style w:type="numbering" w:styleId="TestNumberingStyle"> 9

 <w:name w:val="Test Numbering Style" /> 10

 <w:uiPriority w:val="99" /> 11

 <w:rsid w:val="00DB3C4B" /> 12

 <w:pPr> 13

 <w:numPr> 14

 <w:numId w:val="4" /> 15

 </w:numPr> 16

 </w:pPr> 17

</w:style> 18

The style references a numbering definition instance, again via the numId element: 19

<w:num w:numId="4"> 20

 <w:abstractNumId w:val="2" /> 21

</w:num> 22

Based on the abstractNumId of 2, this instance inherits the abstract numbering definition with an 23

abstractNumId of 2: 24

Introduction to WordprocessingML

 58

<w:abstractNum w:abstractNumId="2"> 1

 <w:nsid w:val="46364EB7" /> 2

 <w:multiLevelType w:val="multilevel" /> 3

 <w:styleLink w:val="TestNumberingStyle" /> 4

 <w:lvl w:ilvl="0"> 5

 <w:lvlText w:val="%1 %1 %1" /> 6

 <w:lvlJc w:val="left" /> 7

 <w:pPr> 8

 <w:tabs> 9

 <w:tab w:val="num" w:pos="360" /> 10

 </w:tabs> 11

 <w:ind w:left="0" w:firstLine="0" /> 12

 </w:pPr> 13

 </w:lvl> 14

 … 15

</w:abstractNum> 16

This abstract numbering definition defines the properties for each level of the numbering format (levels 1 17

through 9 omitted for brevity). Since neither of the numbering definition instances specified overrides for 18

level 0, the properties from abstract numbering format 2 are applied to level 0 in the resulting numbering 19

definition instance and are applied to the text via the ilvl element. 20

Consider the second numbering style syntax, in which the numbering on a paragraph is based on an abstract 21

numbering definition which defines the numbering information and references the numbering style via 22

styleLink. The contents of the paragraph would consist of the following: 23

<w:p> 24

 <w:pPr> 25

 <w:numPr> 26

 <w:ilvl w:val="0" /> 27

 <w:numId w:val="4" /> 28

 </w:numPr> 29

 </w:pPr> 30

 <w:r> 31

 <w:t>This paragraph references a numbering style via styleLink.</w:t> 32

 </w:r> 33

</w:p> 34

The numId element references a numbering definition instance with a value of 4, located in the numbering 35

part: 36

<w:num w:numId="4"> 37

 <w:abstractNumId w:val="2" /> 38

</w:num> 39

Introduction to WordprocessingML

 59

Based on the abstractNumId of 2, this instance inherits the abstract numbering definition with an 1

abstractNumId of 2: 2

<w:abstractNum w:abstractNumId="2"> 3

 <w:nsid w:val="46364EB7" /> 4

 <w:multiLevelType w:val="multilevel" /> 5

 <w:styleLink w:val="TestNumberingStyle" /> 6

 <w:lvl w:ilvl="0"> 7

 <w:lvlText w:val="%1 %1 %1" /> 8

 <w:lvlJc w:val="left" /> 9

 <w:pPr> 10

 <w:tabs> 11

 <w:tab w:val="num" w:pos="360" /> 12

 </w:tabs> 13

 <w:ind w:left="0" w:firstLine="0" /> 14

 </w:pPr> 15

 </w:lvl> 16

 … 17

</w:abstractNum> 18

This abstract numbering definition defines the properties for each level of the numbering format (levels 1 19

through 9 omitted for brevity) and specifies that it is the underlying numbering information for a numbering 20

format by referencing the styleId of that numbering style via the styleLink element. Since the numbering 21

definition instances specified no override for level 0, the properties from abstract numbering format 2 are 22

applied to level 0 in the resulting numbering definition instance and are applied to the text via the ilvl 23

element. 24

2.11 Headers and Footers 25

Headers and footers refer to text, graphics, or data (such as page number, date, document title, and so on) 26

that can appear at the top or bottom of each page in a WordprocessingML document. 27

A header appears in the top margin (above the main document content on the page), while a footer appears in 28

the bottom margin of a document page (below the main document content on the page); for example: 29

 30

Introduction to WordprocessingML

 60

 1

Since WordprocessingML is a flow-based format, headers and footers are applied by specifying the headers 2

and footers for all pages in a particular section of a document. 3

2.11.1 Header Part 4

Header information in a WordprocessingML document is stored in a header part within the package, which is 5

stored via an implicit relationship from the Main Document part or the Glossary Document part of relationship 6

type http://schemas.openxmlformats.org/wordprocessingml/2006/header and has a content 7

type of vnd-openxmlformats.officedocument.wordprocessingml-header+xml. 8

2.11.2 Footer Part 9

Footer information in a WordprocessingML document is stored in a footer part within the package, which is 10

stored via an implicit relationship from the Main Document part or the Glossary Document part of relationship 11

type http://schemas.openxmlformats.org/wordprocessingml/2006/footer and has a content 12

type of vnd-openxmlformats.officedocument.wordprocessingml-footer+xml. 13

2.11.3 Headers and Footers 14

As described above, header and footer information is stored in one or more header or footer parts within the 15

package. 16

The hdr element defines a single header for the document, while the ftr element defines a single footer for 17

the document. Headers and footers are just another document story in WordprocessingML. Within the root 18

element of the header or footer, the content of the element is similar to the content of the body element, and 19

contains what is referred to as block-level markup —markup that can exist as a sibling element to paragraphs 20

in a WordprocessingML document. 21

Within each section of a document there can be up to three different types of headers and footers: 22

 First page header/footer 23

 Odd page header/footer 24

 Even page header/footer 25

First page headers and footers specify a unique header or footer that shall appear on the first page of a 26

section. Odd page headers and footers specify a unique header and footer that shall appear on all odd 27

numbered pages for a given section. Even page headers and footers specify a unique header and footer that 28

shall appear on all even numbered pages in a given section. 29

Different headers or footers can be useful for bounded documents like books, as shown in the figure below. 30

Introduction to WordprocessingML

 61

 1

Consider the following simple one-page document with one header: 2

 3

This document defines one header with the text Header. The header's content is stored in a unique Header 4

part. The resulting header is represented by the following WordprocessingML: 5

<w:hdr> 6

 <w:p> 7

 <w:r> 8

 <w:t>Header</w:t> 9

 </w:r> 10

 </w:p> 11

</w:hdr> 12

Since headers are containers of block level contents, all block level contents can be used within them. In this 13

particular example, the content is a single paragraph. 14

Consider a more complex three-page document with different first, odd, and even page headers defined: 15

Introduction to WordprocessingML

 62

 1

This document defines three headers stored in three different header parts. The resulting headers are 2

represented by the following WordprocessingML: 3

First page header part: 4

<w:hdr> 5

 <w:p> 6

 <w:r> 7

 <w:t>First</w:t> 8

 </w:r> 9

 </w:p> 10

</w:hdr> 11

Even page header part: 12

<w:hdr> 13

 <w:p> 14

 <w:r> 15

 <w:t>Even</w:t> 16

 </w:r> 17

 </w:p> 18

</w:hdr> 19

Odd page header part: 20

<w:hdr> 21

 <w:p> 22

 <w:r> 23

 <w:t>Odd</w:t> 24

 </w:r> 25

 </w:p> 26

</w:hdr> 27

Introduction to WordprocessingML

 63

2.11.4 Multiple Sections 1

Documents are capable of having multiple sections, where each section can define up to three headers and 2

footers. By default, sections other than the first section inherit the previous header and footer references, 3

unless that section specifies header and footer references. 4

 5

Consider a two-page, two-section document with only the first section header defined. This document defines 6

one header that is referenced in the first section. The document is represented by the following 7

WordprocessingML: 8

<w:body> 9

 … 10

 <w:p> 11

 <w:pPr> 12

 <w:sectPr> 13

 <w:headerReference r:id="rId6" /> 14

 … 15

 </w:sectPr> 16

 </w:pPr> 17

 … 18

 </w:p> 19

 … 20

 <w:sectPr> 21

 … 22

 </w:sectPr> 23

</w:body> 24

The second section does not explicitly reference a header. Instead, the second section inherits the header from 25

the previous section. 26

Introduction to WordprocessingML

 64

2.11.5 Empty Header or Footer 1

Not specifying a header and footer reference in a section, other than the first section, causes the document to 2

inherit the previous section's header and footer references. In order to declare an empty header or footer, a 3

header or footer reference must be made to a null header or footer relationship, as follows: 4

<Relationship Id="rId2" Type="http:// …/header" Target="null" /> 5

The null attribute value specifies that the header or footer shall not be inherited from the previous section, 6

and a blank header or footer shall explicitly be used. 7

2.12 Footnotes and Endnotes 8

Footnotes and endnotes are separate text stories used in documents and books to show the source of 9

borrowed material or to enter explanatory or supplementary information that does not interrupt the normal 10

reading flow of the document. 11

Footnotes are typically located at the bottom of a page or beneath text being referenced, and endnotes are 12

typically placed at the end of a document or at the end of a section. If document has been divided up into one 13

or more sections, each section of a document can contain endnotes. 14

Both footnotes and endnotes consist of two parts: 15

 A note reference mark in the body text to indicate that additional information is in a footnote or 16

endnote, with a numbering system used for each to tell readers whether to look for the note at the 17

end of the page or the end of the document or section. 18

 The actual footnote or endnote story content. 19

Here's an example of a footnote applied to text in a document: 20

 21

 22

Introduction to WordprocessingML

 65

The note reference mark follows the noted text and specifies that there is associated footnote information; the 1

footnote itself is at the bottom of the current page. 2

Consider the following example of an endnote applied to text in a document: 3

 4

 5

The note reference mark follows the noted text and specifies that there is associated endnote information; the 6

endnote itself is at the end of the current section. 7

2.12.1 Footnote Part 8

Footnote information in a WordprocessingML document is stored in the footnotes part within the package, 9

which is stored via an implicit relationship from the Main Document part or Glossary Document part of 10

relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/footnotes and 11

has a content type of vnd-openxmlformats.officedocument.wordprocessingml-footnotes+xml. 12

2.12.2 Endnote Part 13

Endnote information in a WordprocessingML document is stored in the Endnotes part within the package, 14

which is stored via an implicit relationship from the Main Document part or Glossary Document part of 15

Introduction to WordprocessingML

 66

relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/endnotes and 1

has a content type of vnd-openxmlformats.officedocument.wordprocessingml-endnotes+xml. 2

2.12.3 Footnotes and Endnotes 3

As described above, footnote and endnote information is stored in the corresponding footnotes and endnotes 4

part within the package. The footnotes element below specifies three or more footnotes, each identified by 5

the footnote element, for the document. The endnotes element specifies three or more endnotes, each 6

identified by the endnote element, for the document. Each footnote or endnote element is associated with a 7

unique ID, specified by the attribute id. 8

Consider three different types of footnotes, each identified by a footnote element, defined in the Footnotes 9

part. The use of each type of footnote is defined in the next subclause: 10

<w:footnotes ...> 11

 <w:footnote w:type="separator" w:id="0"> 12

 … 13

 </w:footnote> 14

 <w:footnote w:type="continuationSeparator" w:id="1"> 15

 … 16

 </w:footnote> 17

 <w:footnote w:id="2"> 18

 … 19

 </w:footnote> 20

</w:footnotes> 21

Similarly consider three different types of endnotes, each identified by an endnote element, defined in the 22

Endnotes part. The use of each type of endnote is defined in the next subclause: 23

<w:endnotes ...> 24

 <w:endnote w:type="separator" w:id="0"> 25

 … 26

 </w:endnote> 27

 <w:endnote w:type="continuationSeparator" w:id="1"> 28

 … 29

 </w:endnote> 30

 <w:endnote w:id="2"> 31

 … 32

 </w:endnote> 33

</w:endnotes> 34

Footnotes and endnotes are just another kind of paragraph in WordprocessingML. Within the footnote or 35

endnote element, the footnote or endnote may contain any valid block-level content. 36

Introduction to WordprocessingML

 67

2.12.4 Footnote and Endnote Types 1

There are four different types of footnotes and endnotes: 2

 Normal – contain the text of any footnote (or endnote) in the document. 3

 Separator – define the separator used to separate the footnote (or endnote) from the document text. 4

 Continuation separator – define the separator used to separate the footnote (or endnote) from the 5

document text when the footnote or endnote is a continuation from the previous page. 6

 Continuation notice – define the notice text to let readers know that the footnote (or endnote) has 7

continued on the next page. 8

The attribute type specifies the type of footnote or endnote. Normal footnotes or endnotes are specified by a 9

type of normal or by omitting type. In conjunction to a normal type, a footnote reference mark, specified by 10

footnoteRef element, or endnote reference mark, specified by endnoteRef element, must be present within 11

the footnote or endnote definition. 12

 13

Consider the following page in a document, where some text is referenced by a footnote at the end of a page: 14

The footnote text at the bottom of the page is a normal type footnote represented by the following 15

WordprocessingML: 16

<w:footnote w:id="2"> 17

 <w:p> 18

 <w:pPr> 19

 <w:pStyle w:val="FootnoteText" /> 20

 </w:pPr> 21

Introduction to WordprocessingML

 68

 <w:r> 1

 <w:rPr> 2

 <w:rStyle w:val="FootnoteReference" /> 3

 </w:rPr> 4

 <w:footnoteRef /> 5

 </w:r> 6

 <w:r> 7

 <w:t>Cool reference</w:t> 8

 </w:r> 9

 </w:p> 10

</w:footnote> 11

Not specifying any type attribute in the footnote element defaults to being a normal type of footnote. In this 12

example, the footnote has a unique ID of 2. The text of the footnote is contained in the text run. Like any 13

paragraph, footnotes can be associated with a particular style, and, in this example, the paragraph uses the 14

FootnoteText paragraph style. Similarly, like any run, footnotes can be associated with a particular style, 15

and, in this example, the run uses the FootnoteReference run style. 16

Separator footnotes or endnotes are specified by separator. These types of footnotes or endnotes define the 17

look of the separator used to separate document text from footnotes or endnotes. In conjunction to 18

separator type, a footnote or endnote separator reference mark, specified by a separator element must be 19

present within the footnote or endnote definition. 20

Consider the following page in a document, where some text is referenced by a footnote at the end of a page: 21

 22

 23

The line separating the document text from the footnote is represented by the following WordprocessingML: 24

Introduction to WordprocessingML

 69

<w:footnote w:type="separator" w:id="0"> 1

 <w:p> 2

 <w:pPr> 3

 <w:spacing w:after="0" w:line="240" w:lineRule="auto" /> 4

 </w:pPr> 5

 <w:r> 6

 <w:separator /> 7

 </w:r> 8

 </w:p> 9

</w:footnote> 10

In this example, the footnote has a unique ID of 0. The vertical spacing after the line separator is 0 twentieths 11

of a point. The vertical spacing between the line separator and text is 240 twentieths of a point. 12

Continuation separator footnotes or endnotes are specified by continuationSeparator. These types of 13

footnotes or endnotes define the look of the separator used to separate document text from footnotes or 14

endnotes when the footnote or endnote continues the next page. In conjunction to a 15

continuationSeparator type, a footnote or endnote continuation separator reference mark, specified by 16

continuationSeparator element must be present within the footnote or endnote definition. 17

Consider the following two pages in a document, where some text is referenced by a footnote that extends to 18

the next page: 19

 20

 21

The line separating the document text from the footnote that is continued on the next page (circled in red in 22

the image above) is the continuation separator footnote, and is represented by the following 23

WordprocessingML: 24

Introduction to WordprocessingML

 70

<w:footnote w:type="continuationSeparator" w:id="1"> 1

 <w:p > 2

 <w:pPr> 3

 <w:spacing w:after="0" w:line="240" w:lineRule="auto" /> 4

 </w:pPr> 5

 <w:r> 6

 <w:continuationSeparator /> 7

 </w:r> 8

 </w:p> 9

</w:footnote> 10

In this example, the footnote has a unique ID of 1. The vertical spacing after the line separator is 0 twentieths 11

of a point. The vertical spacing between the line separator and text is 240 twentieths of a point. 12

Continuation notice footnotes or endnotes are specified by continuationNotice. These types of footnotes or 13

endnotes specify the text to let readers know that the footnote or endnote is continued on the next page. 14

Consider the following two pages in a document, where some text is referenced by a footnote that extends to 15

the next page. A continuation notice is given to readers to indicate that the footnote extends to the next page: 16

 17

The continuation notice text is at the bottom of the footnote indicating that the footnote is continued to the 18

next page (which reads continued on next page above) and is represented by the following 19

WordprocessingML: 20

<w:footnote w:type="continuationNotice" w:id="3"> 21

 <w:p > 22

 <w:pPr> 23

 <w:spacing w:after="0" w:line="240" w:lineRule="auto" /> 24

 </w:pPr> 25

Introduction to WordprocessingML

 71

 <w:r> 1

 <w:t>(continued on next page)</w:t> 2

 </w:r> 3

 </w:p> 4

</w:footnote> 5

In this example, the footnote has a unique ID of 3. The text that shows up after the footnote text is 6

(continued on next page). 7

2.12.5 Footnote and Endnote Reference 8

Once footnote or endnote information is defined in the footnotes or endnotes part, this information must be 9

associated with document text within the document in order to display the footnotes or endnotes. Each 10

footnote or endnote is identified by a unique ID that references footnote or endnote definitions specified in 11

the footnotes or endnotes part. Footnote or endnote references are identified by the footnoteReference or 12

endnoteReference element within the text run's element (the r element). The footnoteReference or 13

endnoteReference element points to the footnote or endnote ID defined in the footnotes or endnotes part. 14

Consider the following one-page document, where some text is referenced by a footnote at the end of the 15

document page: 16

 17

 18

The footnote references text and is represented by the following WordprocessingML: 19

<w:p> 20

 <w:r> 21

 <w:t>Some referenced text</w:t> 22

 </w:r> 23

Introduction to WordprocessingML

 72

 <w:r> 1

 <w:rPr> 2

 <w:rStyle w:val="FootnoteReference" /> 3

 </w:rPr> 4

 <w:footnoteReference w:id="2" /> 5

 </w:r> 6

</w:p> 7

The footnote references the footnote in the footnotes part with ID equals to 2. Like any run, footnotes can be 8

associated with a particular style, and, in this example, the run uses the FootnoteReference run style. The 9

style of the footnote defines the look and numbering of the footnote. 10

2.13 Glossary Document 11

The introduction to a WordprocessingML document formally introduced the concept of stories, individual 12

ranges of a word-processing document containing block-level content like paragraphs and tables. Some 13

examples of stories in a WordprocessingML document include the following: the main document, headers, 14

footers, comments, footnotes, and endnotes. 15

At that time, a story was defined by two characteristics: 16

 It is a unique region containing block-level content 17

 All document stories shared the same set of properties (e.g., style definitions, numbering definitions, 18

and settings) 19

The glossary document, although it follows the first rule, actually defies the second. 20

Within a WordprocessingML file, the glossary document is a supplemental storage location for additional 21

document content which shall travel with the document, but which shall not be displayed for printed as part of 22

the main document until it is explicitly added to that document by deliberate action. 23

The glossary document shall also be afforded a separate instance of all of the relationships that are provided 24

on the main document part - this means that the glossary document shall have its own style definitions, 25

numbering definitions, comments, headers, footers, etc. within the WordprocessingML document. 26

Consider a document that shall include ten optional clauses that may be inserted through a user interface. It is 27

clearly not desirable to have these ten clauses appear in the main document story's contents before they are 28

explicitly inserted, therefore each of them may be stored in the glossary document and inserted via the user 29

interface as needed. 30

Within the glossary document, each distinct region of document content is referred to as a glossary document 31

entry, and is defined via the docPart element. These document parts may contain any block-level 32

WordprocessingML element, and may also have a set of classifications and behaviors applied to them via the 33

glossary document entry's properties. 34

Introduction to WordprocessingML

 73

Consider the following definition for the contents of a glossary document part within a WordprocessingML 1

document: 2

<w:glossaryDocument> 3

 <w:docParts> 4

 <w:docPart> 5

 <w:docPartPr> 6

 … 7

 </w:docPartPr> 8

 <w:docPartBody> 9

 <w:p> 10

 <w:r> 11

 <w:t>Sample entry.</w:t> 12

 </w:r> 13

 </w:p> 14

 </w:docPartBody> 15

 </w:docPart> 16

 <w:docPart> 17

 … 18

 </w:docPart> 19

 </w:docParts> 20

</w:glossaryDocument> 21

The glossaryDocument element defines the contents of the glossary document part. Within the glossary 22

document, each docPart element contains the definition for one glossary document entry: in this case, there 23

are two entries in the glossary document, the first of which contains a single paragraph with a single run of 24

text. 25

Each glossary document entry consists of two components: 26

 The entry's properties, specified using the docPartPr element 27

 The entry's contents, specified using the docPartBody element 28

The first specifies information about the entry (e.g., its classification) for when it is inserted, the latter stores 29

the block level content which constitutes the entry. 30

2.14 Annotations 31

2.14.1 Introduction 32

An annotation is one of various kinds of supplementary markup, which may be stored inside or around a 33

region of text within the document's contents. The kinds of supplementary information stored within a 34

document can include comments (§2.14.5), revisions (§2.14.7), spelling and/or grammatical errors (§2.14.10), 35

bookmark information (§2.14.8), and optional editing permissions (§2.14.9). 36

Within a document's contents, annotations are stored in one of three different forms: 37

Introduction to WordprocessingML

 74

 Inline 1

 Cross-Structure 2

 Properties 3

These three forms are needed in order to maintain compatibility with both the legacy annotations 4

functionality of current word-processing applications and the requirements of an XML-based format (i.e., well-5

formedness of the resulting XML markup). These three forms are referenced within the individual annotation 6

types described in subclauses §2.14.2 through §2.14.4. 7

2.14.2 Inline Annotations 8

An inline annotation is a form of annotation that does not require special handling in order to maintain the 9

XML well-formedness requirements of the resulting WordprocessingML output. In these cases, a single XML 10

element shall encapsulate the entire contents of the document content which is being annotated. 11

Consider the following WordprocessingML markup for a paragraph that reads The quick brown fox 12

jumps over the jet lagged dog., where jet lagged replaced the previous text lazy when the 13

editing application was tracking revisions: 14

<w:p> 15

 <w:r> 16

 <w:t xml:space="preserve">The quick brown fox jumps over the </w:t> 17

 </w:r> 18

 <w:del … > 19

 <w:r> 20

 <w:delText>lazy</w:delText> 21

 </w:r> 22

 </w:del> 23

 <w:ins … > 24

 <w:r> 25

 <w:t>jet lagged</w:t> 26

 </w:r> 27

 </w:ins> 28

 <w:r> 29

 <w:t xml:space="preserve"> dog.</w:t> 30

 </w:r> 31

</w:p> 32

The del and ins elements each fully encapsulate the extent of their respective annotations (a marked deletion 33

and insertion, respectively), as they are inline annotations. 34

2.14.3 Cross-Structure Annotations 35

A cross-structure annotation is a form of annotation that can span portions of WordprocessingML markup. 36

(Cross-structure annotations may span parts of multiple paragraphs, one half of a custom XML markup 37

element's contents, and so on.) In these cases, the annotation's region is delimited by two elements, a start 38

Introduction to WordprocessingML

 75

element and an end element, which mark the start and end points of the annotated content, respectively, but 1

do not contain it. Matching start and end markers have the same id attribute value. 2

Consider the following WordprocessingML markup for two paragraphs, each reading Example Text, where a 3

bookmark has been added spanning the second word in paragraph one, and the first word in paragraph two: 4

<w:p> 5

 <w:r> 6

 <w:t>Example</w:t> 7

 </w:r> 8

 <w:bookmarkStart w:id="0" w:name="sampleBookmark" /> 9

 <w:r> 10

 <w:t xml:space="preserve"> text.</w:t> 11

 </w:r> 12

</w:p> 13

<w:p> 14

 <w:r> 15

 <w:t>Example</w:t> 16

 </w:r> 17

 <w:bookmarkEnd w:id="0" /> 18

 <w:r> 19

 <w:t xml:space="preserve"> text.</w:t> 20

 </w:r> 21

</w:p> 22

The bookmarkStart and bookmarkEnd elements specify the location where the bookmark starts and ends, 23

but cannot contain that bookmark because it spans parts of two paragraphs. They are part of one group 24

because the id attribute value specifies 0 for both. 25

2.14.4 Property Annotations 26

A property annotation is a form of annotation that is stored as a property on an object (Property annotations 27

may appear on paragraph properties, run properties, table rows, and so on.) In these cases, the annotation's 28

semantics are defined by the property, as they can affect content and/or formatting. 29

Consider the following WordprocessingML markup for a paragraph reading Example Text, where the first 30

word had the bold property applied when the editing application was tracking revisions: 31

Introduction to WordprocessingML

 76

<w:p> 1

 <w:r> 2

 <w:rPr> 3

 <w:b/> 4

 <w:rPrChange … > 5

 <w:rPr/> 6

 </w:rPrChange> 7

 </w:rPr> 8

 <w:t>Example</w:t> 9

 </w:r> 10

 <w:r> 11

 <w:t xml:space="preserve"> text.</w:t> 12

 </w:r> 13

</w:p> 14

The rPrChange element contains the set of previously applied revision properties associated with a particular 15

author at a particular time. It is stored itself as a property on the parent run which was modified. 16

2.14.5 Comments 17

A comment is an annotation that is anchored to a region of document content, but which contains an arbitrary 18

amount of block-level content stored in its own separate document story. Within a WordprocessingML 19

document, comments are stored in a separate comments part within the document package. 20

A comment in a WordprocessingML document is divided into two components: 21

 The comment anchor (the text to which the comment applies) 22

 The comment content (the contents of the comment) 23

The comment anchor is the cross-structure annotation that defines the region of text on which the comment in 24

anchored. The comment content is the text of the comment. 25

Consider a paragraph in a WordprocessingML document whose second word is annotated with a comment: 26

 27

The first component to this comment is the document content, which defines the extents of the comment and 28

references the specific comment in the comments part: 29

<w:p> 30

 <w:r> 31

 <w:t xml:space="preserve">Some </w:t> 32

 </w:r> 33

Introduction to WordprocessingML

 77

 <w:commentRangeStart w:id="0" /> 1

 <w:r> 2

 <w:t>text.</w:t> 3

 </w:r> 4

 <w:commentRangeEnd w:id="0" /> 5

 <w:r> 6

 <w:commentReference w:id="0" /> 7

 </w:r> 8

</w:p> 9

The commentRangeStart and commentRangeEnd elements delimit the run content to which the comment 10

with an id of 0 applies (in this case, the single run of text). The commentReference element that follows links 11

the preceding run content with a comment in the comments part having an id of 0. Without all three of these 12

elements, the range and comment cannot be linked (although the first two elements are optional, in which 13

case the comment shall be anchored at the comment reference mark) 14

The second component to this comment is the comment content, which defines the text in the comment: 15

<w:comment w:id="0" w:author="Joe Smith" 16

 w:date="2006-04-06T13:50:00Z" w:initials="User"> 17

 <w:p> 18

 <w:pPr> 19

 <w:pStyle w:val="CommentText" /> 20

 </w:pPr> 21

 <w:r> 22

 <w:rPr> 23

 <w:rStyle w:val="CommentReference" /> 24

 </w:rPr> 25

 <w:annotationRef /> 26

 </w:r> 27

 <w:r> 28

 <w:t>comment</w:t> 29

 </w:r> 30

 </w:p> 31

</w:comment> 32

In this example, the comment specifies that it was inserted by author Joe Smith with the initials User via the 33

author and date attributes. It is linked to the run content via the id attribute, which matches the value of 0 34

specified using the commentReference element above. The block-level content of the comment specifies that 35

its text is comment and the style of the comment content is based off of the character style with the name 36

CommentReference. 37

Introduction to WordprocessingML

 78

2.14.6 Comments Part 1

Comment information in a WordprocessingML document is stored in the Comments part within the package, 2

which is stored via an implicit relationship from the Main Document or Glossary Document part of relationship 3

type http://…/comments and has a content type of vnd-4

openxmlformats.officedocument.wordprocessingml-comments+xml. 5

2.14.7 Revisions 6

A revision provides a mechanism for storing information about the evolution of the document (i.e., the set of 7

modifications made to a document by one of more authors). When an application adds revisions to the 8

content of a WordprocessingML document, depending on the revision type they are specifying this by storing 9

either: 10

 The current state of the document (a deletion stores the current state of the text as deleted, and 11

implies that its original state was the content that used to exist) 12

 The initial state of the document (a run's initial properties are explicitly stored in a previous run 13

properties block, as the current run properties are always those that are the child of the rPr element 14

A revision consists of two required pieces of information: 15

 The revision type (specified via the name of the revision element) 16

 A unique revision identifier (used to uniquely identify revisions) 17

As well as optional information: 18

 The author of the revision 19

 The date and time of the revision 20

A revision is stored using the inline annotation format or the property annotation format. 21

Consider a paragraph of text in a WordprocessingML document in which one word has been inserted, as 22

follows: 23

 24

This paragraph has the word text marked inserted as a revision, and is represented as the following 25

WordprocessingML: 26

<w:p> 27

 <w:r> 28

 <w:t>Some</w:t> 29

 </w:r> 30

 <w:ins w:id="0" w:author="Joe Smith" w:date="2006-03-31T12:50:00Z"> 31

 <w:r> 32

 <w:t>text</w:t> 33

Introduction to WordprocessingML

 79

 </w:r> 1

 </w:ins> 2

</w:p> 3

The ins element contains all of the content that shall be treated as revision marked as inserted (i.e., the word 4

text). 5

This means that it contains both required pieces of information: the revision type, specified by the name of the 6

revision element (ins); and a unique revision identifier of 0. 7

The element also stores the optional information about the revision: the word text was inserted by Joe 8

Smith on March 31, 2006 at 12:50 pm. 9

Within a WordprocessingML document, the following types of revisions can be used to track the changes to a 10

document (each annotation's form in parentheses): 11

 Insertions (inline annotations for run content, property annotations for tables and paragraphs) 12

 Deletions (inline annotations for run content, property annotations for tables and paragraphs) 13

 Moves (inline annotations) 14

 Changes to run/paragraph/table/numbering/section properties (property annotations) 15

 Changes to custom XML markup (property annotations) 16

2.14.8 Bookmarks 17

A bookmark refers to an arbitrary region of content that is bounded and has a unique name associated with it. 18

Because bookmarks are a legacy word-processing function that predates the concepts of XML and well-19

formedness, they can start and end at any location within a document's contents and, therefore, must use the 20

cross-structure annotation format described in §2.14.3. 21

Consider the following WordprocessingML markup for two paragraphs, each reading Example Text, where a 22

bookmark has been added spanning the second word in paragraph one and the first word in paragraph two: 23

<w:p> 24

 <w:r> 25

 <w:t>Example</w:t> 26

 </w:r> 27

 <w:bookmarkStart w:id="0" w:name="sampleBookmark" /> 28

 <w:r> 29

 <w:t xml:space="preserve"> text.</w:t> 30

 </w:r> 31

</w:p> 32

Introduction to WordprocessingML

 80

<w:p> 1

 <w:r> 2

 <w:t>Example</w:t> 3

 </w:r> 4

 <w:bookmarkEnd w:id="0" /> 5

 <w:r> 6

 <w:t xml:space="preserve"> text.</w:t> 7

 </w:r> 8

</w:p> 9

The bookmarkStart and bookmarkEnd elements specify the location where the bookmark starts and ends, 10

but cannot contain it using a single tag because it spans parts of two paragraphs. However, the two tags are 11

part of one group because the id attribute value specifies 0 for both. 12

2.14.9 Range Permissions 13

A range permission refers to a special type of bookmark used to control which subset(s) of users may edit a 14

particular region of a document. Range permissions specify the user, or set of users, that are allowed to edit all 15

content between them whenever the document protection specified by the documentProtection element is 16

enabled and set to readOnly or comments. 17

Like bookmarks, range permissions are a legacy word-processing function that predates the concepts of XML 18

and well-formedness, so they can start and end at any location within a document's contents and, therefore, 19

must use the cross-structure annotation format described in §2.14.3. 20

Consider the following WordprocessingML markup for a single paragraph, where a range permission has been 21

added spanning the words range permission: 22

<w:p> 23

 <w:r> 24

 <w:t xml:space="preserve">This is a </w:t> 25

 </w:r> 26

 <w:permStart w:id="0" w:edGrp="everyone"/> 27

 <w:r> 28

 <w:t>range permission</w:t> 29

 </w:r> 30

 <w:permEnd w:id="0"/> 31

 <w:r> 32

 <w:t>.</w:t> 33

 </w:r> 34

</w:p> 35

The permStart and permEnd elements specify the location where the range permission starts and ends. The 36

two tags are part of one group because the id attribute value specifies 0 for both. 37

Introduction to WordprocessingML

 81

If document protection was enabled, then no content in this document shall be editable except for this range 1

permission, which is editable by all users that open the document (specified using an editor group of 2

everyone). 3

2.14.10 Spelling and Grammar 4

A spelling and grammar error is an annotation used to specify the locations of an existing spelling and/or 5

grammatical error within the contents of a document. Spelling and grammar errors use the cross-structure 6

annotation format. 7

Rationale: When a WordprocessingML document is saved, applications may choose to save currently flagged 8

spelling and grammar errors, for two reasons: 9

 In order to increase the performance subsequent loads of the document (as those load operations can 10

rely on the persisted proofing state of the document) 11

 In order to store words which shall not be marked as proofing errors regardless of how they would 12

normally be flagged by the proofing tools engine (i.e., to store spelling and grammar exceptions). 13

Consider the following paragraph consisting of two misspelled words, where the second word has been 14

explicitly flagged as not being a spelling error. This paragraph would consist of the following 15

WordprocessingML markup: 16

<w:p> 17

 <w:proofErr w:val="spellStart"/> 18

 <w:r> 19

 <w:t>erqwt</w:t> 20

 </w:r> 21

 <w:proofErr w:val="spellEnd"/> 22

 <w:r> 23

 <w:t xml:space="preserve"> werewr</w:t> 24

 </w:r> 25

</w:p> 26

The proofErr elements, with a val attribute value of spellStart and spellEnd, respectively, delimit the start 27

and end of the content in this paragraph that is stored as a spelling error. Since the second word is not 28

included in that range, it is not stored as a spelling error. 29

2.15 Mail Merge 30

Mail merge refers to a process by which a WordprocessingML document is connected to and populated with 31

external data by a conforming hosting application and/or data source access application. A WordprocessingML 32

document that contains the necessary data to connect to an external data source during a Mail Merge is 33

known as a source document. In other words, a source document is a WordprocessingML document containing 34

the elements and attributes necessary to enable the document to connect to an external data source, but not 35

yet merged with any data. 36

Introduction to WordprocessingML

 82

Applications leverage source documents to generate new documents containing the static content contained 1

in the merged document as well as data from the specified external data source. The documents that result 2

from importing external data into a source document are known as merged documents. How source 3

documents and merged documents are specified is explained in the following sections. 4

2.15.1 Mail Merge, WordprocessingML, and Hosting Applications 5

The two key parts of the mail merge process are: 6

1. Connecting to an external data source 7

2. Populating mail merge fields with external data 8

It is important to note that aspects of the mail merge process outside of connecting to an external data source 9

and populating mail merge fields with external data, are at the discretion of the hosting application. 10

As an additional example, WordprocessingML provides an element to be used as a flag by hosting applications 11

to specify action to be taken on the merged documents that are generated by a mail merge. In other words, 12

performing actions such as: 13

 creating a new document for each merged document 14

 generating and sending emails containing merged document 15

 printing merged documents 16

may be specified through WordprocessingML, but what if any specific action is taken on merged documents is 17

determined by the application. 18

2.15.2 Connecting Documents to an External Data Source 19

As mentioned, a source document is the single WordprocessingML document that contains the data necessary 20

to be connected to an external data source by a conforming hosting application and/or data source access 21

application. The presence and parameters of this connection are specified within the mailMerge element. This 22

element enables WordprocessingML documents to be connected to an external data source by specifying the 23

following data: 24

 Where the external data is located (e.g., file path) 25

 What type of data the external data source contains (e.g., database and spreadsheet) 26

 How the data will be accessed 27

Consider a document containing static WordprocessingML constructs such as paragraphs in addition to two 28

WordprocessingML mail merge fields calling for Courtesy Title and Last Name data. 29

Introduction to WordprocessingML

 83

Dear {MERGEFIELD "Courtesy Title" \m}
{MERGEFIELD "Last Name" \m},

 Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text.

Sincerely,

 1

If the following WordprocessingML was added to this document, this document would become a source 2

document rather than just a standard WordprocessingML document, as the mailMerge element specifies the 3

elements and attributes necessary to enable the hosting applications and/or data source access applications to 4

connect the document to an external data source. 5

<w:mailMerge> 6

 … 7

 <w:dataType w:val="database" /> 8

 <w:query w:val="SELECT * FROM Table1" /> 9

 <w:dataSource r:id="rId1" /> 10

 … 11

</w:mailMerge> 12

Here, the dataType and dataSource elements specify that the given document shall be connected to the 13

external data source referenced by the r:id attribute's value of rId1. While connected to the external data 14

source, the merged document together with the hosting application and/or data source access application may 15

extract data from the external data source as specified by the connectString and query elements. 16

2.15.3 Populating Merged Documents with External Data 17

Before the hosting application can populate merged documents with external data, mail merge fields must be 18

inserted into the merged document and mapped to the external data. How external data is mapped to given 19

mail merge fields is determined by the WordprocessingML element fieldMapData. 20

Introduction to WordprocessingML

 84

Consider the example merged document from the previous example which contained the two mail merge 1

fields calling for Courtesy Title and Last Name. The WordprocessingML below demonstrates how 2

mapping of the external data to the merged document's mail merge fields occurs: 3

<w:fieldMapData> 4

 <w:type w:val="dbColumn" /> 5

 <w:name w:val="Customer Title" /> 6

 <w:mappedName w:val="Courtesy Title" /> 7

 <w:column w:val="9" /> 8

</w:fieldMapData> 9

<w:fieldMapData> 10

 <w:type w:val="dbColumn" /> 11

 <w:name w:val="Customer Last Name" /> 12

 <w:mappedName w:val="Last Name" /> 13

 <w:column w:val="10" /> 14

</w:fieldMapData> 15

Within the first fieldMapData element, the child elements column, name, type, and mappedName specify 16

that the data contained within tenth column titled 'Customer Title', in the specified external database, is to be 17

mapped to the mail merge field calling for 'Courtesy Title' data, respectively. Within the second fieldMapData 18

element, the child elements column, name, type, and mappedName specify that the data contained within 19

eleventh column in the specified external database is to be mapped to the merge field titled Customer Last 20

Name or the predefined merge field name Last Name. 21

Once a merged document's mail merge fields have been mapped to external data, the hosting application 22

and/or data source access application may populate the respective fields with applicable external data. 23

Consider a conforming hosting application and/or data source access application that wishes to populate the 24

mail merge fields within the merged document from the previous example with applicable external data. In 25

addition, consider that the specified external data source contains two records--one for Mr. John Doe and one 26

for Ms. Jane Smith. With external data from the Customer Title column mapped to the Mail Merge field 27

calling for Courtesy Title data, and the Customer Last Name column mapped to the Mail Merge field 28

calling for Last Name data to populate the fields within this merged document with external data. 29

The mail merge process will then run through the specified external database and populate the mail merge 30

fields with the data from the Customer Title and Customer Last Name columns in the specified 31

database, and generate two of merged documents containing the specified external data as well as the static 32

contents of the source document (illustrated in the table below): 33

Source Document Merged document populated with
first external data source entry

Merged document populated with
second external data source entry

Introduction to WordprocessingML

 85

Source Document Merged document populated with
first external data source entry

Merged document populated with
second external data source entry

Dear{MERGEFIELD "Courtesy Title"
\m} {MERGEFIELD "Last Name"
\m},

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

Dear Mr. Doe:

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

Dear Ms. Smith:

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

2.16 Settings 1

A setting specifies a stored preference that shall be used when processing the contents of the document. In 2

other words, settings refer to specified behaviors that shall be applied to WordprocessingML documents on a 3

document by document basis. Just like paragraphs and text runs have properties specified that apply to their 4

contents, entire WordprocessingML documents leverage settings to specify properties and behaviors that 5

apply to the entire document. 6

These settings are typically divided into three categories: 7

 Document Settings — Settings that influence the appearance and behavior of the current document, 8

as well as storing document-level state. 9

 Compatibility Settings — Settings that tell applications to perform behaviors which are designed to 10

maintain visual output of previous word-processing applications. 11

 Web Settings — Settings that affect how a document shall be handled when it is saved as HTML. 12

2.16.1 Document Settings 13

A document setting specifies a document-level property that affects the handling of a given document, and 14

influences the appearance and behavior of the current document, as well as the stored document-level state. 15

All document settings are found in the Document Settings part. 16

Consider a document in which the document setting doNotHyphenateCaps is applied. As a document setting 17

this element specifies whether words comprised of all capitalized letters shall be hyphenated or not 18

throughout the given document.. Specifically, if words in ALL CAPITAL LETTERS shall not be hyphenated, this 19

requirement would be specified by adding the following WordprocessingML to the settings part: 20

<w:doNotHyphenateCaps w:val="true"/> 21

Specifying that words comprised of ALL CAPITAL LETTERS shall be hyphenated, as illustrated below: 22

Introduction to WordprocessingML

 86

 1

If this element is omitted, then words in ALL CAPITAL LETTERS shall be hyphenated when the document is 2

hyphenated, as illustrated below: 3

 4

2.16.2 Compatibility Settings 5

A compatibility setting is an optional setting used to mimic behavior of documents created in earlier word-6

processing applications. It is recommended that new WordprocessingML documents contain no compatibility 7

settings. If compatibility settings are needed, they are stored in the Document Settings part (§2.16.1). 8

Consider a document in which the compatibility setting ww11IndentRules is applied. As a compatibility 9

setting, this element specifies an indentation behavior to be applied throughout the given document to 10

preserve visual fidelity with an earlier word processing application. Specifically, if the indentation applied to 11

numbering when positioned next to a wrapped object shall not be suppressed, this requirement would be 12

specified by adding the following WordprocessingML to the settings part 13

<w:compat> 14

 <w:ww11IndentRules /> 15

</w:compat> 16

Specifying that indentation applied to numbering when positioned next to a wrapped object shall not be 17

suppressed, as illustrated below: 18

 19

If this element is omitted, then indentation applied to numbering when positioned next to a wrapped object 20

shall be suppressed, as illustrated below: 21

 22

Introduction to WordprocessingML

 87

2.16.3 Web Settings 1

A web setting is a setting used to specify a document-level property that is applicable when saving a web page 2

as a WordprocessingML document, or when saving a WordprocessingML document as a webpage. Thus, if a 3

given WordprocessingML document was not created from a web page, and will never become a web page, no 4

web settings are needed within the document. If they are needed, web settings are stored in the Web Settings 5

part. 6

Consider a document in which the web setting allowPNG is applied. As a web setting this element specifies if 7

the PNG graphics format will be used for persisting images when saving the document as a web page. 8

Specifically, if the PNG graphics format will be used when saving a document as a web page, this requirement 9

would be specified by adding the following WordprocessingML to the settings part: 10

<w:webSettings> 11

 <w:allowPNG /> 12

</w:webSettings> 13

If this element is omitted, then the JPEG graphics format will be used for persisting images when saving the 14

document as a web page. 15

2.17 Fields and Hyperlinks 16

2.17.1 Fields 17

Most text in a word processing document is static; that is, unless it is directly changed as the result of editing, 18

its contents remain the same, no matter how the rest of the document might change. However, certain useful 19

pieces of information can change value over the life of a document. Consider the case of a reference to a page 20

number, as in "For more information on this topic, see page 56." Clearly, hard coding the page number as 56 21

means that that number will need to be manually replaced as the document's size or layout is changed. Even a 22

simple change to any margin, line spacing, or font size can invalid such references. 23

Fields provide a mechanism for placeholders, such as page reference numbers, that can be added to a 24

document such that those placeholders are replaced by their corresponding values when the document is 25

rendered for display or print. Other applications for fields include, but are not limited to, automatic numbering 26

of tables and figures, document creation and current date and time, document author information, and the 27

computation of totals for a table column. 28

A field is a set of codes that instructs a WordprocessingML consumer to insert text, graphics, page numbers, 29

and other material into a document automatically. (The DATE field causes the current date to be inserted.) The 30

text or graphics inserted into a document when a consumer carries out a field's codes is referred to as the field 31

result for that field. The act of carrying out a field's codes is referred to as a field update. As to how or when 32

any field is updated is outside the scope of this standard. 33

Introduction to WordprocessingML

 88

2.17.2 Hyperlinks 1

As well as allowing for dynamic run content using fields, a WordprocessingML document may contain one or 2

more hyperlinks, which allow for the linking of two disparate regions of WordprocessingML content (analogous 3

to hyperlinks in HTML pages). WordprocessingML hyperlinks can be any of the following: 4

 Intradocument: A hyperlink can target any bookmark contained within the current WordprocessingML 5

document. 6

 Interdocument: A hyperlink can target another WordprocessingML package, as well as specify a 7

bookmark within that package. 8

 Other destinations: A hyperlink can target any other valid URI location. 9

2.18 Miscellaneous Topics 10

2.18.1 Text Boxes 11

All VML-based drawing objects (except for connectors) support the addition of rich WordprocessingML content 12

within their extents. When WordprocessingML contents have been added to a VML drawing object, the 13

resulting text is contained within a text box. 14

When WordprocessingML content is contained within a text box, it is represented within the object by 15

specifying the VML textbox element, which contains within it a single txbxContent element that contains all of 16

the desired WordprocessingML content. Text box content cannot contain references to other document 17

stories, nor can it contain other txbxContent elements. That is, nested shapes cannot have rich content. 18

2.18.2 Subdocuments 19

Within a WordprocessingML document, it is sometimes necessary to break a large document into two or more 20

separate WordprocessingML document files, allowing each of these files to be distributed, edited, and handled 21

independently. 22

A book might consist of five chapters, each edited by a separate author. The editor for the book would 23

therefore desire to create six WordprocessingML documents - one for each author to work on their chapter, 24

and a main document which collates the content of the five chapters appropriately. 25

When a WordprocessingML document is composed of other WordprocessingML documents in this way, the 26

resulting documents are a master document and its subdocuments. 27

 A master document is a document which incorporates one or more subdocuments (as well as optional 28

WordprocessingML content) to create a larger document 29

 A subdocument is a WordprocessingML document—there is no specific information in a document 30

which classifies it as such 31

Consider a WordprocessingML document, which is being used to write a book: 32

Introduction to WordprocessingML

 89

 1

To allow this document to be written by multiple authors, each chapter in the book is placed in a separate file 2

(the sections highlighted in red below): 3

 4

The result is three WordprocessingML documents: 5

 A master document (containing the title of the book, the first paragraph, and references to the 6

subdocuments for each chapter) 7

 Two subdocuments (one for each chapter) 8

2.18.3 Importing External Content 9

When generating WordprocessingML documents, it is sometimes necessary to include existing document 10

content (henceforth called external content) within the document. External content in a document is typically 11

Introduction to WordprocessingML

 90

included because it was stored in a format other than the WordprocessingML format defined by this Office 1

Open XML specification. 2

In order to facilitate the inclusion of such content without requiring its conversion as a prerequisite to its 3

inclusion in a document, WordprocessingML includes the facility for applications to implement the import of 4

external content in any format as part of a WordprocessingML document. This functionality, called external 5

content import, allows the inclusion of content of an arbitrary content type within the WordprocessingML 6

package, which can then be opened and merged into the main document when the package is consumed by 7

applications which understand that content type. 8

Consider a WordprocessingML document which is being created based on the following existing HTML 9

content: 10

<html … > 11

 <body style="margin-left:200px;margin-top:50px"> 12

 <p>Paragraph one.</p> 13

 <blockquote style="border:5px solid #00FFFF">Paragraph in a 14

blockquote.</blockquote> 15

 <p>Paragraph two.</p> 16

 </body> 17

</html> 18

This content can be converted to its WordprocessingML equivalents using the XML syntax defined by this 19

Office Open XML specification, or a more basic tool can use the external content import to include the HTML 20

document within a WordprocessingML package, allowing a subsequent consumer of that content to import the 21

resulting HTML. When the resulting WordprocessingML package is opened, the HTML document it could be 22

read (if it is an alternate format understood by the consuming application) and migrated into the appropriate 23

location in the main WordprocessingML document. 24

2.18.4 Roundtripping Alternate Content 25

Office Open XML defines a mechanism for the storage of content which is not defined by this Office Open XML 26

specification, for example extensions developed by future software applications which leverage the Open XML 27

formats. This mechanism allows for the storage of a series of alternative representations of content, of which 28

the consuming application may use the first alternative whose requirements are met. 29

Consider an application which creates a new paragraph property intended to make the colors of its text change 30

randomly when it is displayed. This functionality is not defined in this Office Open XML specification, and so 31

the application might choose to create an alternative representation setting a different manual color on each 32

character for clients which do not understand this extension using an AlternateContent block as follows: 33

Introduction to WordprocessingML

 91

<ve:AlternateContent xmlns:ve="…"> 1

 <ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors"> 2

 <w:p> 3

 <w:pPr> 4

 <colors:random colors:val="true" /> 5

 </w:pPr> 6

 <w:r> 7

 <w:t>Random colors!</w:t> 8

 </w:r> 9

 </w:p> 10

 </ve:Choice> 11

 <ve:Fallback> 12

 <w:p> 13

 <w:r> 14

 <w:rPr> 15

 <w:color w:val="FF0000" /> 16

 </w:rPr> 17

 <w:t>R</w:t> 18

 </w:r> 19

 <w:r> 20

 <w:rPr> 21

 <w:color w:val="00FF00" /> 22

 </w:rPr> 23

 <w:t>a</w:t> 24

 </w:r> 25

 … 26

 </w:p> 27

 </ve:Fallback> 28

</ve:AlternateContent> 29

The Choice element that requires the new color extensions uses the random element in its namespace, and 30

the Fallback element allows clients that do not support this namespace to see an appropriate alternative 31

representation. 32

These alternate content blocks may occur at any location within a WordprocessingML document, and 33

applications shall handle and process them appropriately (taking the appropriate choice). 34

However, WordprocessingML does not explicitly define a set of locations where applications shall attempt to 35

store and roundtrip all non-taken choices whenever possible. 36

If an application does not understand the colors extension, the resulting file (if alternate choices are to be 37

preserved would appear as follows: 38

Introduction to WordprocessingML

 92

<ve:AlternateContent xmlns:ve="…"> 1

 <ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors"> 2

 … 3

 </ve:Choice> 4

 <ve:Fallback> 5

 … 6

 </ve:Fallback> 7

</ve:AlternateContent> 8

 9

The file would then appear as follows after the choice is processed: 10

<w:p> 11

 <w:r> 12

 <w:rPr> 13

 <w:color w:val="FF0000" /> 14

 </w:rPr> 15

 <w:t>R</w:t> 16

 </w:r> 17

 <w:r> 18

 <w:rPr> 19

 <w:color w:val="00FF00" /> 20

 </w:rPr> 21

 <w:t>a</w:t> 22

 </w:r> 23

 … 24

</w:p> 25

End of informative text. 26

Introduction to SpreadsheetML

 93

3. Introduction to SpreadsheetML 1

This clause is informative. 2

This clause contains a detailed introduction to the structure of a SpreadsheetML document. 3

3.1 Workbook 4

3.1.1 Overview 5

A workbook is composed of book-level properties and a collection of one or more sheets. The sheets are the 6

central working surface for a spreadsheet application. The workbook part and corresponding properties 7

comprise data used to set application- and workbook-level operational state. The workbook also serves to bind 8

all the sheets and child objects into an organized single file. The workbook properties include information 9

about what application last saved the file, where and how the windows of the workbook were positioned, and 10

an enumeration of the worksheets in the workbook. 11

3.1.2 Minimum Workbook Scenario 12

For the sake of simplicity, it is important to minimize the required set of workbook properties that must be 13

present to compose a valid workbook. The smallest possible (blank) workbook must contain the following: 14

 A single sheet 15

 A sheet ID 16

 A relationship Id that points to the location of the sheet definition 17

For example: 18

<workbook> 19

 <sheets> 20

 <sheet name="Sheet1" sheetId="1" r:id="rId1"/> 21

 </sheets> 22

</workbook> 23

3.1.3 Example Workbook Properties 24

Consider the following graphical representation of a workbook: 25

Introduction to SpreadsheetML

 94

 1

 2

The above example will have the following workbook properties definition: 3

<workbook> 4

 <fileVersion lastEdited="4" lowestEdited="4" rupBuild="3814"/> 5

 <workbookPr backupFile="1" saveExternalLinkValues="0" updateLinks="never"/> 6

 <calcPr calcId="122211" calcMode="manual" iterate="1"/> 7

 <bookViews> 8

 <workbookView showHorizontalScroll="0" showVerticalScroll="0" 9

 showSheetTabs="0" xWindow="45" yWindow="15" windowWidth="9420" 10

 windowHeight="5460" tabRatio="701"/> 11

 </bookViews> 12

 <sheets> 13

 <sheet name="Sheet1" sheetId="1" sh:id="rId1"/> 14

 <sheet name="Sheet2" sheetId="2" sh:id="rId2"/> 15

 <sheet name="Sheet3" sheetId="3" sh:id="rId3"/> 16

 </sheets> 17

</workbook> 18

The elements and attributes used here are discussed in more detail in the following subclauses. 19

Introduction to SpreadsheetML

 95

3.1.4 fileVersion 1

This contains file versioning properties, as follows. 2

 lastEdited – The version of the application that last saved the file. 3

 lowestEdited – The earliest version of the application that saved the file. This value is reset any time an 4

application that understands all data in the file saves the file. 5

 rupBuild – An incremental public release of the application (e.g., RTM version or SP1 version). 6

 workbookPr – A group of various workbook properties. 7

 backupFile – A flag that indicates whether the application should create a backup of the file in 8

question during a save operation. 9

 saveExternalLinkValues – A flag that indicates whether the application should cache values retrieved 10

from other workbooks via an externally linking formula during save. If yes, a supporting part is written 11

out containing a cached cell table from the external workbook. 12

 updateLinks – A flag that dictates how external links are handled upon opening the file. In this 13

example, never means don't ask the user if they want to refresh the cached values from an external 14

workbook, and in fact, don't ever do it until the user initiates the action. 15

 calcPr – Various calculation properties grouped together. 16

 calcId – The version of the calculation engine used to calculate values in the workbook. When a newer 17

version of the application opens a file with an older calcId value, the application performs a full 18

calculation of all formulas immediately after opening the workbook, to ensure proper calculation 19

results. 20

 calcMode – A flag that indicates when the application should calculate formulas: 21

 Manual means to wait for the user to initate the action. 22

 Automatic means to perform only the needed calculations whenever a cell value changes. 23

 Iterate – When formula references are circular (i.e., they refer back on themselves for required input), 24

the iterate flag specifies that this is an intended and valid state. Further properties not discussed 25

here control the number of iterative calculations to perform before stopping calculation. 26

 bookViews – A collection of views. 27

3.1.5 workbookView 28

A single view definition represented using the following flags: 29

 showHorizontalScroll – Controls visibility of the horizontal scroll bar of the application. In the example 30

above, it is set to not being visible. 31

 showVerticalScroll – Controls visibility of the vertical scroll bar of the application. In the example 32

above, it is set to not being visible. 33

 showSheetTabs – Controls visibility of the worksheet tabs in the application. In the example above, 34

they are set to not being visible. 35

 xWindow – Specifies the x coordinate (in twips) of the upper right corner of the workbook window. 36

 yWindow – Specifies the y coordinate (in twips) of the upper right corner of the workbook window. 37

Introduction to SpreadsheetML

 96

 windowWidth – Specifies the width of the workbook window. 1

 windowHeight – Specifies the height of the workbook window. 2

 tabRatio – Specifies the ratio between the workbook tabs bar and the horizontal scroll bar. 3

 Sheets – A collection of worksheets in the workbook. 4

 Sheet – A single sheet definition (book-level). 5

 Name – The name of the worksheet. These must be unique within the workbook. 6

 sheetId – The internal Id of the sheet. These must be unique within the workbook. 7

 Id - The relationship Id that points to the sheet part definition. 8

3.2 Sheets 9

Sheets are the central structures within a workbook, and are where a user does most of his spreadsheet work. 10

The most common type of sheet is the worksheet, which is represented as a grid of cells. Worksheet cells can 11

contain text, numbers, dates, and formulas. Cells can also be formatted. A workbook usually contains more 12

than one sheet. To aid in the analysis of data and the making of informed decisions, spreadsheet applications 13

often implement features and objects which help calculate, sort, filter, organize, and graphically display 14

information. Since these features are often connected very tightly with the spreadsheet grid, these are also 15

included in the sheet definition on disk. 16

Other types of sheets include chart sheets and dialog sheets. 17

3.2.1 Minimum Worksheet Scenario 18

The smallest possible (blank) sheet is as follows: 19

<worksheet> 20

 <sheetData/> 21

</worksheet> 22

The empty sheetData collection represents an empty grid; this element is required. As defined in the schema, 23

some optional sheet property collections can appear before sheetData, and some can appear after. To simplify 24

the logic required to insert a new sheetData collection into an existing (but empty) sheet, the sheetData 25

collection is required, even when empty. 26

3.2.2 Example Sheet 27

Consider the following graphical representation of a worksheet: 28

Introduction to SpreadsheetML

 97

 1

 2

Notice that cells A2 and A3 contain text. Cell B1 contains a formula linking to another workbook, whose value 3

is 1. Cell B2 contains a formula as well; this formula appears in the formula bar (top of picture) because it is the 4

active cell. Cells D5:H5 contain bold-faced text that serves as headers for the table of data residing in D6:H11. 5

The table of data has a filter feature applied to it (evidenced by drop down arrows in the header row), and 6

columns G and H have different types of conditional formatting applied. Finally, cells D13:H14 are part of a 7

merged cell feature, where a series of cells behave together as a single, larger cell. 8

When saved, the above example will have the syntax below written out in the corresponding sheet part. Sheet 9

information is organized into three main sections: 10

1. Top-level sheet properties (everything before sheetData) 11

2. The cell table (sheetData) 12

3. Supporting sheet features (everything after sheetData) 13

Therefore, the XML for the above example would look like this, broken into three sections: 14

3.2.3 Sheet Properties 15

<worksheet> 16

 <sheetPr filterMode="1"/> 17

 <dimension ref="A2:H14"/> 18

=‘C:*ExternalBook.xlsx+Sheet1’!A1

Introduction to SpreadsheetML

 98

 <sheetViews> 1

 <sheetView tabSelected="1" workbookViewId="0"> 2

 <selection activeCell="B3" sqref="B3"/> 3

 </sheetView> 4

 </sheetViews> 5

 <sheetFormatPr defaultRowHeight="15"/> 6

 <cols> 7

 <col min="1" max="1" width="12.85546875" bestFit="1" customWidth="1"/> 8

 <col min="3" max="3" width="3.28515625" customWidth="1"/> 9

 <col min="4" max="4" width="11.140625" bestFit="1" customWidth="1"/> 10

 <col min="8" max="8" width="17.140625" style="1" customWidth="1"/> 11

 </cols> 12

3.2.4 Sheet Data 13

sheetData, which represents the cell table, directly after the cols collection: 14

<sheetData> 15

 <row r="2" spans="1:2" customFormat="1"> 16

 <c r="A2" s="1" t="s"> 17

 <v>0</v> 18

 </c> 19

 <c r="B2"> 20

 <f>[1]Sheet1!A1</f> 21

 <v>1</v> 22

 </c> 23

 </row> 24

 <row r="3" spans="1:8" customFormat="1"> 25

 <c r="A3" s="1" t="s"> 26

 <v>1</v> 27

 </c> 28

 <c r="B3"> 29

 <f>B2+1</f> 30

 <v>2</v> 31

 </c> 32

 <c r="H3" s="1"/> 33

 </row> 34

 <row r="4" spans="1:8"> 35

 <c r="H4"/> 36

 </row> 37

 <row r="5" spans="4:8"> 38

 <c r="D5" s="1" t="s"> 39

 <v>4</v> 40

 </c> 41

Introduction to SpreadsheetML

 99

 <c r="E5" s="1" t="s"> 1

 <v>5</v> 2

 </c> 3

 <c r="F5" s="1" t="s"> 4

 <v>6</v> 5

 </c> 6

 <c r="G5" s="1" t="s"> 7

 <v>7</v> 8

 </c> 9

 <c r="H5" s="1" t="s"> 10

 <v>8</v> 11

 </c> 12

 </row> 13

 <row r="6" spans="4:8"> 14

 <c r="D6" t="s"> 15

 <v>2</v> 16

 </c> 17

 <c r="E6"> 18

 <v>0.18460660235998017</v> 19

 </c> 20

 <c r="F6"> 21

 <v>0.93463071023892952</v> 22

 </c> 23

 <c r="G6"> 24

 <v>0.58647760893211043</v> 25

 </c> 26

 <c r="H6" s="1"> 27

 <f ce="1">SUM(E6:G6)</f> 28

 <v>1.7057149215310201</v> 29

 </c> 30

 </row> 31

 <row r="7" spans="4:8"> 32

 <c r="D7" t="s"> 33

 <v>2</v> 34

 </c> 35

 <c r="E7"> 36

 <v>0.50425224796279555</v> 37

 </c> 38

 <c r="F7"> 39

 <v>0.25118866081991786</v> 40

 </c> 41

Introduction to SpreadsheetML

 100

 <c r="G7"> 1

 <v>0.26918159410869791</v> 2

 </c> 3

 <c r="H7" s="1"> 4

 <f t="shared" ref="H7:H11" ce="1" si="0">SUM(E7:G7)</f> 5

 <v>1.0246225028914113</v> 6

 </c> 7

 </row> 8

 <row r="8" spans="4:8"> 9

 <c r="D8" t="s"> 10

 <v>2</v> 11

 </c> 12

 <c r="E8"> 13

 <v>0.6006019062877066</v> 14

 </c> 15

 <c r="F8"> 16

 <v>0.18319235857964333</v> 17

 </c> 18

 <c r="G8"> 19

 <v>0.12254334000604317</v> 20

 </c> 21

 <c r="H8" s="1"> 22

 <f t="shared" ce="1" si="0">SUM(E8:G8)</f> 23

 <v>0.9063376048733931</v> 24

 </c> 25

 </row> 26

 <row r="9" spans="4:8" hidden="1"> 27

 <c r="D9" t="s"> 28

 <v>2</v> 29

 </c> 30

 <c r="E9"> 31

 <v>0.78015011938458589</v> 32

 </c> 33

 <c r="F9"> 34

 <v>0.78159963723670689</v> 35

 </c> 36

 <c r="G9"> 37

 <v>6.7448346870105036E-2</v> 38

 </c> 39

Introduction to SpreadsheetML

 101

 <c r="H9" s="1"> 1

 <f t="shared" ce="1" si="0">SUM(E9:G9)</f> 2

 <v>1.6291981034913978</v> 3

 </c> 4

 </row> 5

 <row r="10" spans="4:8" hidden="1"> 6

 <c r="D10" t="s"> 7

 <v>3</v> 8

 </c> 9

 <c r="E10"> 10

 <v>0.63608141933645479</v> 11

 </c> 12

 <c r="F10"> 13

 <v>0.35635845012920608</v> 14

 </c> 15

 <c r="G10"> 16

 <v>0.67122053637107193</v> 17

 </c> 18

 <c r="H10" s="1"> 19

 <f t="shared" ce="1" si="0">SUM(E10:G10)</f> 20

 <v>1.6636604058367328</v> 21

 </c> 22

 </row> 23

 <row r="11" spans="4:8" hidden="1"> 24

 <c r="D11" t="s"> 25

 <v>3</v> 26

 </c> 27

 <c r="E11"> 28

 <v>0.33327331908137214</v> 29

 </c> 30

 <c r="F11"> 31

 <v>0.2256497329592122</v> 32

 </c> 33

 <c r="G11"> 34

 <v>0.5793989116090501</v> 35

 </c> 36

 <c r="H11" s="1"> 37

 <f t="shared" ce="1" si="0">SUM(E11:G11)</f> 38

 <v>1.1383219636496344</v> 39

 </c> 40

 </row> 41

Introduction to SpreadsheetML

 102

 <row r="13" spans="4:8"> 1

 <c r="D13" s="2" t="s"> 2

 <v>9</v> 3

 </c> 4

 <c r="E13" s="3"/> 5

 <c r="F13" s="3"/> 6

 <c r="G13" s="3"/> 7

 <c r="H13" s="4"/> 8

 </row> 9

 <row r="14" spans="4:8"> 10

 <c r="D14" s="5"/> 11

 <c r="E14" s="6"/> 12

 <c r="F14" s="6"/> 13

 <c r="G14" s="6"/> 14

 <c r="H14" s="7"/> 15

 </row> 16

</sheetData> 17

3.2.5 Supporting Features 18

The supporting feature definitions follow the cell table data: 19

<sheetProtection objects="0" scenarios="0"/> 20

<autoFilter ref="D5:H11"> 21

 <filterColumn colId="0"> 22

 <filters> 23

 <filter val="A"/> 24

 </filters> 25

 </filterColumn> 26

 <filterColumn colId="1"> 27

 <customFilters and="1"> 28

 <customFilter operator="greaterThan" val="0"/> 29

 <customFilter operator="lessThan" val="0.7"/> 30

 </customFilters> 31

 </filterColumn> 32

</autoFilter> 33

<mergeCells> 34

 <mergeCell ref="D13:H14"/> 35

</mergeCells> 36

<conditionalFormatting sqref="H6:H11"> 37

 <cfRule type="dataBar" priority="3" stopIfTrue="0"> 38

 <formula>MAX(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "", 39

 H6:H11)))</formula> 40

 <formula>MIN(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "", 41

 H6:H11)))</formula> 42

Introduction to SpreadsheetML

 103

 <dataBar minLength="10" maxLength="90" showValue="1"> 1

 <cfvo type="min" val="0"/> 2

 <cfvo type="max" val="0"/> 3

 <color rgb="FF63C384"/> 4

 </dataBar> 5

 </cfRule> 6

</conditionalFormatting> 7

<conditionalFormatting sqref="G6:G11"> 8

 <cfRule type="cellIs" dxfId="0" priority="1" stopIfTrue="0" 9

 operator="greaterThan"> 10

 <formula>0.5</formula> 11

 </cfRule> 12

</conditionalFormatting> 13

<printOptions/> 14

<pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" 15

 header="0.3" footer="0.3"/> 16

<pageSetup orientation="portrait" horizontalDpi="300" verticalDpi="300"/> 17

<headerFooter/> 18

These elements are discussed in more detail in the following subclauses. 19

3.2.6 Sheet Properties 20

Referring back to §3.2.3, note that several sheet-level properties are expressed before the sheetData cell table 21

is encountered. 22

sheetPr indicates that an AutoFilter has been applied on this sheet. Dimension indicates the used range on 23

this sheet. There should be no data or formulas outside this range. The sheetViews collection indicates which 24

cell is active on the sheet, and indicates whether this particular sheet is the active sheet in the workbook. 25

A collection of column-level settings appears in the cols collection. 26

Finally, within sheetFormatPr, a default row height is set. 27

3.2.7 sheetData Cell Table 28

The cell table is the core structure of a worksheet. It consists of all the text, numbers, and formulas in the grid. 29

3.2.8 Row 30

<row r="2" spans="1:2" customFormat="1"> 31

 <c r="A2" s="1" t="s"> 32

 <v>0</v> 33

 </c> 34

Introduction to SpreadsheetML

 104

 <c r="B2"> 1

 <f>[1]Sheet1!A1</f> 2

 <v>1</v> 3

 </c> 4

</row> 5

The cells in the cell table are organized by row. Each row has an index (attribute r) so that empty rows need 6

not be written out. Each row indicates the number of cells defined for it, as well as their relative position in the 7

sheet. In this example, the first row of data is row 2. 8

3.2.9 Cell 9

<c r="B3"> 10

 <f>B2+1</f> 11

 <v>2</v> 12

</c> 13

The cell itself is expressed by the c collection. Each cell indicates it's location in the grid using A1-style 14

reference notation. A cell can also indicate a style identifier (attribute s) and a data type (attribute t). The cell 15

types include string, number, and Boolean. In order to optimize load/save operations, default data values are 16

not written out. 17

3.2.9.1 Cell Values 18

Cells contain values, whether the values were directly typed in (e.g., cell A2 in our example has the value 19

External Link:) or are the result of a calculation (e.g., cell B3 in our example has the formula B2+1). 20

String values in a cell are not stored in the cell table unless they are the result of a calculation. Therefore, 21

instead of seeing External Link: as the content of the cell's v node, instead you see a zero-based index 22

into the shared string table where that string is stored uniquely. This is done to optimize load/save 23

performance and to reduce duplication of information. To determine whether the 0 in v is a number or an 24

index to a string, the cell's data type must be examined. When the data type indicates string, then it is an index 25

and not a numeric value. 26

3.2.9.2 Formulas 27

Cells can contain formulas, which calculate results. Formulas are expressed in the file the same way the user 28

sees them at runtime of the application. This is specifically a design choice meant to aid in creation and 29

processing of workbook contents. 30

A formula can have attributes on it indicating how to handle calculation of the cell. 31

Introduction to SpreadsheetML

 105

3.2.9.2.1 Shared Formulas 1

<row r="7" spans="4:8"> 2

 <c r="H7" s="1"> 3

 <f t="shared" ref="H7:H11" ce="1" si="0">SUM(E7:G7)</f> 4

 <v>1.0246225028914113</v> 5

 </c> 6

</row> 7

<row r="8" spans="4:8"> 8

 <c r="H8" s="1"> 9

 <f t="shared" ce="1" si="0">SUM(E8:G8)</f> 10

 <v>0.9063376048733931</v> 11

 </c> 12

</row> 13

Just as strings in cells can be extremely pervasive and redundant in a sheet (and therefore must be optimized), 14

formulas are also extremely pervasive in a sheet, and often can be optimized. Consider the table in the above 15

example, where column H contains a formula that sums the numbers in columns E through G, for each row. 16

The only difference between the formulas in H6:H12 is that the reference increases by 1 row from one row to 17

the next. Therefore, an optimization is created where only the formula in H6 needs to be written out, with 18

some additional information indicating how far to propagate the formula once loaded. This enables the loading 19

application to load and parse only the first of the shared formulas, and then more quickly apply the necessary 20

transforms to produce the additional related formulas in subsequent cells. 21

Note that while formulas can be shared, it is desirable to enable easy access to the contents of a cell. 22

Therefore, it is allowed that all formulas may be written out, but only the primary formula in a shared formula 23

need be loaded and parsed. 24

3.2.9.2.2 External Referencing Formulas 25

<c r="B2"> 26

 <f>[1]Sheet1!A1</f> 27

 <v>1</v> 28

</c> 29

In the above example, cell B2 contains a formula that references a cell in another workbook, namely 30

‘C:\[ExternalBook.xlsx]Sheet1’!A1. This formula is referencing ExternalBook.xlsx located 31

at c:\. Furthermore, the formula is requesting the value of cell A1 on Sheet1 of that particular workbook. 32

Instead of writing ‘C:\[ExternalBook.xlsx]Sheet1’!A1 directly in the formula, it is desirable to 33

make all external references much more accessible, especially given the potentially enormous size of a cell 34

table. Therefore, the URL and file location is persisted using the relationships semantic, in a relationship file, 35

and then referenced inline with the formula: [1]Sheet1!A1. In this way, external resource files can more 36

easily be determined and updated if needed. 37

Introduction to SpreadsheetML

 106

Note that whenever a workbook contains a formula referencing another workbook, some values from that 1

external workbook are also cached with the referencing workbook. This is done so that if a recalculation of the 2

workbook is needed and the workbook isn't accessible, a cached value may be used to complete the 3

calculation. 4

3.2.10 Supporting Sheet Features 5

3.2.11 Defined Names 6

<definedNames> 7

 <definedName name="FMLA">Sheet1!B3</definedName> 8

 <definedName name="SheetLevelName" comment="This name is scoped to Sheet1" 9

 localSheetId="0">Sheet1!B3</definedName> 10

</definedNames> 11

Defined names can be used in place of cell references in formulas. For example, instead of using B3+1 to add 1 12

to the value that's in B3, one could define a name, as in FMLA, and assign it to B3. Then FMLA+1 can be used to 13

perform the calculation. 14

Names can be defined and assigned to a cell location or range or to a formula or constant value. Names can be 15

referenced in formulas. Names can be scoped to either the entire workbook (default) or just the local sheet. 16

Names scoped to the local sheet cannot be referenced from other sheets. Names scoped to the workbook can 17

be referenced from any sheet. 18

Defined names are actually stored in the workbook part, but are discussed here in the context of the sheet 19

because they are so closely related to cells and formulas. 20

3.2.12 AutoFilter 21

<autoFilter ref="D5:H11"> 22

 <filterColumn colId="0"> 23

 <filters> 24

 <filter val="A"/> 25

 </filters> 26

 </filterColumn> 27

 <filterColumn colId="1"> 28

 <customFilters and="1"> 29

 <customFilter operator="greaterThan" val="0"/> 30

 <customFilter operator="lessThan" val="0.7"/> 31

 </customFilters> 32

 </filterColumn> 33

</autoFilter> 34

AutoFilters specify criteria for which cells in a table should be displayed. In this example, the first column (zero-35

based index colId) in the table (cells D5:D11), has a criteria specifying that only rows in the table whose value 36

in column D are equal to A will be shown. The rest of the rows are hidden. 37

Introduction to SpreadsheetML

 107

A second criterion is specified as well, on the 2nd column, E: only rows whose values in column E are greater 1

than 0 and less than 0.7. 2

The resulting grid could be rendered like this: 3

 4

3.2.13 Merged Cells 5

<mergeCells> 6

 <mergeCell ref="D13:H14"/> 7

</mergeCells> 8

In the example, cells D13:H14 have been merged into a single, larger cell. Note that the cell table itself doesn't 9

reflect this merge, but it does reflect the data content and formatting. Specifically, the top-left cell in a merged 10

collection of cells contains the value, and all the cells reflect the various border formatting. 11

3.2.14 Conditional Formatting 12

<conditionalFormatting sqref="H6:H11"> 13

 <cfRule type="dataBar" priority="3" stopIfTrue="0"> 14

 <formula>MAX(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "", 15

 H6:H11)))</formula> 16

 <formula>MIN(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "", 17

 H6:H11)))</formula> 18

Introduction to SpreadsheetML

 108

 <dataBar minLength="10" maxLength="90" showValue="1"> 1

 <cfvo type="min" val="0"/> 2

 <cfvo type="max" val="0"/> 3

 <color rgb="FF63C384"/> 4

 </dataBar> 5

 </cfRule> 6

</conditionalFormatting> 7

<conditionalFormatting sqref="G6:G11"> 8

 <cfRule type="cellIs" dxfId="0" priority="1" stopIfTrue="0" 9

operator="greaterThan"> 10

 <formula>0.5</formula> 11

 </cfRule> 12

</conditionalFormatting> 13

There are two conditional formats applied: one to the table of data in column H and the other to the table of 14

data in column G. 15

In column G, a red fill is applied to any cell whose value is greater than 0.5. Notice that sqref specifies the 16

range to which the rule applies. The formatting is specified by dxfId, which is a reference to a formatting 17

expression in the central styles part. 18

In column H there is a dataBar formatting rule, which applies a variable length bar to the cell background, 19

where the length of the bar depends on the relative value of the cell. 20

3.3 Shared String Table 21

3.3.1 Overview 22

A workbook may contain thousands of cells containing string (non-numeric) data. Furthermore, this data is 23

very likely to be repeated across many rows or columns. The goal of implementing a single string table that is 24

shared across the workbook is to improve performance in opening and saving the file by only reading and 25

writing the repetitive information once. 26

For example, consider a workbook summarizing information for cities within various countries. There may be a 27

column for the name of the country, a column for the name of each city in that country, and a column 28

containing the data for each city: 29

Introduction to SpreadsheetML

 109

 1

In this case, the country name is repetitive, being duplicated in many cells. In many cases, the repetition is 2

extensive, and a tremendous savings is realized by making use of a shared string table when saving the 3

workbook. 4

3.3.2 File Architecture 5

 6

 7

There is a single shared strings part for all the strings in a workbook. This part is related to the workbook. Each 8

cell (in sheet1.xml, for example) containing a string value refers by index to a string expressed in the shared 9

Shared

Strings

Workbook

Sheet

1
Sheet2

Introduction to SpreadsheetML

 110

strings part. The solid arrows represent relationships among the parts and the dotted arrows represent 1

references by index to a string in the shared strings part. 2

3.3.3 Example: Plain Text 3

This first example demonstrates plain text in cells. Note that in this example, some of the cells are formatted 4

(e.g., the column headers "Country", "City", and "Data" are bold faced). Since the formatting is applied at the 5

cell level, cell styles and formatting is used to describe the formatting, rather than using text formatting on the 6

text itself. 7

A later example demonstrates how to handle a variety of text formatting (rich text) within a single cell. 8

3.3.4 Illustration 9

Consider the example in the introduction: 10

 11

In this example, the country names in the column titled 'Country'—"United States", "Argentina", and "Japan"—12

would appear a single time in the shared strings part. Additionally, all the city names (in the column titled 13

'City') would appear a single time in the shared strings part, as would the column titles themselves in B2:D2. 14

The numeric values in the 'Data' column would be expressed inline with the cell table definition (e.g., in 15

Sheet1.xml). 16

3.3.5 The XML 17

The shared string table XML for this example looks like this: 18

Introduction to SpreadsheetML

 111

<sst … count="35" uniqueCount="22"> 1

 <si> 2

 <t>United States</t> 3

 </si> 4

 <si> 5

 <t>Seattle</t> 6

 </si> 7

 <si> 8

 <t>Denver</t> 9

 </si> 10

 <si> 11

 <t>New York</t> 12

 </si> 13

 <si> 14

 <t>Philadelphia</t> 15

 </si> 16

 <si> 17

 <t>Houton</t> 18

 </si> 19

 <si> 20

 <t>San Diego</t> 21

 </si> 22

 <si> 23

 <t>San Francisco</t> 24

 </si> 25

 <si> 26

 <t>Argentina</t> 27

 </si> 28

 <si> 29

 <t>Buenos Aires</t> 30

 </si> 31

 <si> 32

 <t>San Juan</t> 33

 </si> 34

 <si> 35

 <t>Salta</t> 36

 </si> 37

 <si> 38

 <t>Rosario</t> 39

 </si> 40

 <si> 41

 <t>La Plata</t> 42

 </si> 43

Introduction to SpreadsheetML

 112

 <si> 1

 <t>Japan</t> 2

 </si> 3

 <si> 4

 <t>Tokyo</t> 5

 </si> 6

 <si> 7

 <t>Nagoya</t> 8

 </si> 9

 <si> 10

 <t>Yokohama</t> 11

 </si> 12

 <si> 13

 <t>Sendai</t> 14

 </si> 15

 <si> 16

 <t>Country</t> 17

 </si> 18

 <si> 19

 <t>City</t> 20

 </si> 21

 <si> 22

 <t>Data</t> 23

 </si> 24

</sst> 25

The cell table for this example looks like this: 26

<sheetData> 27

 <row r="2" spans="2:4" customFormat="1"> 28

 <c r="B2" s="1" t="s"> 29

 <v>19</v> 30

 </c> 31

 <c r="C2" s="1" t="s"> 32

 <v>20</v> 33

 </c> 34

 <c r="D2" s="1" t="s"> 35

 <v>21</v> 36

 </c> 37

 </row> 38

 <row r="3" spans="2:4" customFormat="1"> 39

 <c r="B3" t="s"> 40

 <v>0</v> 41

 </c> 42

Introduction to SpreadsheetML

 113

 <c r="C3" t="s"> 1

 <v>1</v> 2

 </c> 3

 <c r="D3"> 4

 <f t="shared" ref="D3:D18" ca="1" si="0">ROUND(RAND()*1000,2)</f> 5

 <v>374.9</v> 6

 </c> 7

 </row> 8

 <row r="4" spans="2:4" customFormat="1"> 9

 <c r="B4" t="s"> 10

 <v>0</v> 11

 </c> 12

 <c r="C4" t="s"> 13

 <v>2</v> 14

 </c> 15

 <c r="D4"> 16

 <f t="shared" ca="1" si="0"/> 17

 <v>452.82</v> 18

 </c> 19

 </row> 20

 <row r="5" spans="2:4" customFormat="1"> 21

 <c r="B5" t="s"> 22

 <v>0</v> 23

 </c> 24

 <c r="C5" t="s"> 25

 <v>3</v> 26

 </c> 27

 <c r="D5"> 28

 <f t="shared" ca="1" si="0"/> 29

 <v>632.1</v> 30

 </c> 31

 </row> 32

 <row r="6" spans="2:4" customFormat="1"> 33

 <c r="B6" t="s"> 34

 <v>0</v> 35

 </c> 36

 <c r="C6" t="s"> 37

 <v>4</v> 38

 </c> 39

Introduction to SpreadsheetML

 114

 <c r="D6"> 1

 <f t="shared" ca="1" si="0"/> 2

 <v>886.37</v> 3

 </c> 4

 </row> 5

 <row r="7" spans="2:4" customFormat="1"> 6

 <c r="B7" t="s"> 7

 <v>0</v> 8

 </c> 9

 <c r="C7" t="s"> 10

 <v>5</v> 11

 </c> 12

 <c r="D7"> 13

 <f t="shared" ca="1" si="0"/> 14

 <v>291.14</v> 15

 </c> 16

 </row> 17

 <row r="8" spans="2:4" customFormat="1"> 18

 <c r="B8" t="s"> 19

 <v>0</v> 20

 </c> 21

 <c r="C8" t="s"> 22

 <v>6</v> 23

 </c> 24

 <c r="D8"> 25

 <f t="shared" ca="1" si="0"/> 26

 <v>114.97</v> 27

 </c> 28

 </row> 29

 <row r="9" spans="2:4" customFormat="1"> 30

 <c r="B9" t="s"> 31

 <v>0</v> 32

 </c> 33

 <c r="C9" t="s"> 34

 <v>7</v> 35

 </c> 36

 <c r="D9"> 37

 <f t="shared" ca="1" si="0"/> 38

 <v>291.99</v> 39

 </c> 40

 </row> 41

Introduction to SpreadsheetML

 115

 <row r="10" spans="2:4" customFormat="1"> 1

 <c r="B10" t="s"> 2

 <v>8</v> 3

 </c> 4

 <c r="C10" t="s"> 5

 <v>9</v> 6

 </c> 7

 <c r="D10"> 8

 <f t="shared" ca="1" si="0"/> 9

 <v>335.42</v> 10

 </c> 11

 </row> 12

 <row r="11" spans="2:4" customFormat="1"> 13

 <c r="B11" t="s"> 14

 <v>8</v> 15

 </c> 16

 <c r="C11" t="s"> 17

 <v>10</v> 18

 </c> 19

 <c r="D11"> 20

 <f t="shared" ca="1" si="0"/> 21

 <v>664.72</v> 22

 </c> 23

 </row> 24

 <row r="12" spans="2:4" customFormat="1"> 25

 <c r="B12" t="s"> 26

 <v>8</v> 27

 </c> 28

 <c r="C12" t="s"> 29

 <v>11</v> 30

 </c> 31

 <c r="D12"> 32

 <f t="shared" ca="1" si="0"/> 33

 <v>992.62</v> 34

 </c> 35

 </row> 36

 <row r="13" spans="2:4" customFormat="1"> 37

 <c r="B13" t="s"> 38

 <v>8</v> 39

 </c> 40

 <c r="C13" t="s"> 41

 <v>12</v> 42

 </c> 43

Introduction to SpreadsheetML

 116

 <c r="D13"> 1

 <f t="shared" ca="1" si="0"/> 2

 <v>148.5</v> 3

 </c> 4

 </row> 5

 <row r="14" spans="2:4" customFormat="1"> 6

 <c r="B14" t="s"> 7

 <v>8</v> 8

 </c> 9

 <c r="C14" t="s"> 10

 <v>13</v> 11

 </c> 12

 <c r="D14"> 13

 <f t="shared" ca="1" si="0"/> 14

 <v>193.53</v> 15

 </c> 16

 </row> 17

 <row r="15" spans="2:4" customFormat="1"> 18

 <c r="B15" t="s"> 19

 <v>14</v> 20

 </c> 21

 <c r="C15" t="s"> 22

 <v>15</v> 23

 </c> 24

 <c r="D15"> 25

 <f t="shared" ca="1" si="0"/> 26

 <v>849.36</v> 27

 </c> 28

 </row> 29

 <row r="16" spans="2:4" customFormat="1"> 30

 <c r="B16" t="s"> 31

 <v>14</v> 32

 </c> 33

 <c r="C16" t="s"> 34

 <v>16</v> 35

 </c> 36

 <c r="D16"> 37

 <f t="shared" ca="1" si="0"/> 38

 <v>765.46</v> 39

 </c> 40

 </row> 41

Introduction to SpreadsheetML

 117

 <row r="17" spans="2:4" customFormat="1"> 1

 <c r="B17" t="s"> 2

 <v>14</v> 3

 </c> 4

 <c r="C17" t="s"> 5

 <v>17</v> 6

 </c> 7

 <c r="D17"> 8

 <f t="shared" ca="1" si="0"/> 9

 <v>350.26</v> 10

 </c> 11

 </row> 12

 <row r="18" spans="2:4" customFormat="1"> 13

 <c r="B18" t="s"> 14

 <v>14</v> 15

 </c> 16

 <c r="C18" t="s"> 17

 <v>18</v> 18

 </c> 19

 <c r="D18"> 20

 <f t="shared" ca="1" si="0"/> 21

 <v>979.22</v> 22

 </c> 23

 </row> 24

</sheetData> 25

3.3.6 Shared String Table 26

<sst … count="35" uniqueCount="22"> 27

 <si> 28

 <t>United States</t> 29

 </si> 30

 <si> 31

 <t>Seattle</t> 32

 </si> 33

 <si> 34

 <t>Denver</t> 35

 </si> 36

Examining the XML for the shared string part, it can be found that the first entry in the string table is "United 37

States", residing in position 0. The value "Seattle" can be found in position 1 and "Denver" can be found in 38

position 2. 39

Introduction to SpreadsheetML

 118

3.3.7 Cell Table 1

<row r="2" spans="2:4" customFormat="1"> 2

 <c r="B2" s="1" t="s"> 3

 <v>19</v> 4

 </c> 5

 <c r="C2" s="1" t="s"> 6

 <v>20</v> 7

 </c> 8

 <c r="D2" s="1" t="s"> 9

 <v>21</v> 10

 </c> 11

</row> 12

The first cell in our spreadsheet that contains data is B2. The XML indicates that it is of type 'string' (t="s"). 13

This indicates that the numeric value found inside the <v> element is an index to a string in the string table 14

rather than an actual number in the spreadsheet. The value for cell B2 is '19'. The 19th entry in the shared 15

string table (counting the first entry as 0) has a value of "Country". Therefore, cell B2 contains the word 16

"Country". 17

<row r="3" spans="2:4" customFormat="1"> 18

 <c r="B3" t="s"> 19

 <v>0</v> 20

 </c> 21

 <c r="C3" t="s"> 22

 <v>1</v> 23

 </c> 24

 <c r="D3"> 25

 <f t="shared" ref="D3:D18" ca="1" si="0">ROUND(RAND()*1000,2)</f> 26

 <v>374.9</v> 27

 </c> 28

</row> 29

Cell B3 (<c @r="B3"…>) is also of type string, and the '0' inside the v element refers to the 0th item in the 30

string table, which corresponds to the string value "United States". Cell C3 is a string type of cell and 31

references the shared string found in position 1 in the string table, corresponding to the value "Seattle". 32

Cell D3 contains an f element, indicating a formula. 33

<row r="4" spans="2:4" customFormat="1"> 34

 <c r="B4" t="s"> 35

 <v>0</v> 36

 </c> 37

 <c r="C4" t="s"> 38

 <v>2</v> 39

 </c> 40

Introduction to SpreadsheetML

 119

 <c r="D4"> 1

 <f t="shared" ca="1" si="0"/> 2

 <v>452.82</v> 3

 </c> 4

</row> 5

Examining the cell table entries for the data in row 4 of the spreadsheet, we see that cell B4 also contains the 6

string value "United States". This is the 2nd occurrence of the value "United States" in this example. Since this 7

value only occurs once in the string table, again the cell is using an index of 0 to reference the string item in the 8

string table. Cell C4 is of type string and an index value of '2' indicates that "Denver" is the value of this cell. 9

3.3.8 Example: Rich Text 10

In this example, a single string cell value has multiple types of text formatting applied to various parts of the 11

text. 12

3.3.9 Illustration 13

 14

3.3.10 Shared String Table 15

The main difference between plain text and rich text is seen in the string table itself. The si element is capable 16

of containing rich text expressions: 17

<si> 18

 <r> 19

 <t xml:space="preserve">This </t> 20

 </r> 21

 <r> 22

 <rPr> 23

 24

 <sz val="11"/> 25

 <color theme="1"/> 26

 <rFont val="Calibri"/> 27

 <family val="2"/> 28

 <scheme val="minor"/> 29

 </rPr> 30

 <t xml:space="preserve">string </t> 31

 </r> 32

Introduction to SpreadsheetML

 120

 <r> 1

 <rPr> 2

 <sz val="11"/> 3

 <color rgb="FFFF0000"/> 4

 <rFont val="Calibri"/> 5

 <family val="2"/> 6

 <scheme val="minor"/> 7

 </rPr> 8

 <t>has</t> 9

 </r> 10

 <r> 11

 <rPr> 12

 <sz val="11"/> 13

 <color theme="1"/> 14

 <rFont val="Calibri"/> 15

 <family val="2"/> 16

 <scheme val="minor"/> 17

 </rPr> 18

 <t xml:space="preserve"> a </t> 19

 </r> 20

 <r> 21

 <rPr> 22

 <i/> 23

 <sz val="11"/> 24

 <color rgb="FF00B050"/> 25

 <rFont val="Calibri"/> 26

 <family val="2"/> 27

 <scheme val="minor"/> 28

 </rPr> 29

 <t>variety</t> 30

 </r> 31

 <r> 32

 <rPr> 33

 <sz val="11"/> 34

 <color theme="1"/> 35

 <rFont val="Calibri"/> 36

 <family val="2"/> 37

 <scheme val="minor"/> 38

 </rPr> 39

 <t xml:space="preserve"> of </t> 40

 </r> 41

 <r> 42

Introduction to SpreadsheetML

 121

 <rPr> 1

 <u/> 2

 <sz val="11"/> 3

 <color theme="1"/> 4

 <rFont val="Calibri"/> 5

 <family val="2"/> 6

 <scheme val="minor"/> 7

 </rPr> 8

 <t>formatting</t> 9

 </r> 10

 <r> 11

 <rPr> 12

 <sz val="11"/> 13

 <color theme="1"/> 14

 <rFont val="Calibri"/> 15

 <family val="2"/> 16

 <scheme val="minor"/> 17

 </rPr> 18

 <t xml:space="preserve"> applied</t> 19

 </r> 20

</si> 21

Reading the string from left to right as it appears in the cell, each word represents a change in formatting. This 22

change in formatting corresponds to separate run elements r to separate the text with different formatting. 23

Every word is expressed using a run element r, which expresses the properties of the text rPr and the text 24

itself t. 25

Since there are no properties associated with the first word "This", the text inherits the default formatting for 26

the cell. 27

The rich text expression for the second string "string" contains a bold faced font element indicator b in the run 28

properties rPr, therefore this text will have bold face applied. While other text formatting properties are 29

expressed, they are the same as the cell formatting. This additional information is expressed for the sake of 30

clarity and completeness of expression. 31

The rich text expression for the third string "has" contains a color element indicator color in the run 32

properties rPr. Therefore, the color of the text associated with this set of run properties will be red, according 33

to the color value expressed. 34

The formatting for the remaining words in this rich text string can be deduced in a similar manner, such that 35

"a" has default formatting applied, "variety" is both italicized and green, "of" has default formatting applied, 36

"formatting" is underlined, and "applied" has default formatting applied. 37

Introduction to SpreadsheetML

 122

3.4 Tables 1

3.4.1 Overview 2

A table helps organize and provide structure to lists of information in a worksheet. Tables have clearly labeled 3

columns, rows, and data regions. Tables enable users to sort, analyze, format, manage, add, and delete 4

information. Here's an example of what a table can look like: 5

 6

Notice that this table has column headings "State", "City", and "Zipcode". There is a row summarizing the data, 7

in this case a count of zip codes. The formatting helps make clear where the column headings are (Bold faced, 8

bordered on top and bottom all the way across), where the data region is (banded row stripes), and where the 9

totals row is (double border separating data from totals, bold face totals label). 10

Because the table feature has been applied to this data, special behaviors can be applied which help the user 11

perform useful actions. For example, if the user types additional data in row 10, the table can expand and 12

automatically add that data to the data region of the table. Similarly, adding a column is as easy as typing a 13

new column heading to the right or left of the current column headings. Filter and sort abilities are 14

automatically surfaced to the user via the drop down arrows. Special calculated columns can be created which 15

summarize or calculate data in the table. These columns have the ability to expand and shrink according to size 16

of the table, and maintain proper formula referencing. 17

Tables can be made from data already present in the worksheet. Tables can also be the result of an external 18

data query. Finally, tables can be the result of mapping a collection of repeating XML elements to a worksheet 19

range. 20

3.4.2 File Architecture 21

 22

 23

 24

 25

Workbook

Sheet

Table

Introduction to SpreadsheetML

 123

 1

 2

Each table is referred to by a relationship from a sheet to the table. The relationship is found in the sheet's 3

_rels directory. The sheet XML also references the ID of this relationship, because there can be more than one 4

table in a sheet. 5

The sheet XML stores the numeric and textual data. The table XML records the various attributes for the 6

particular table object. 7

3.4.3 Example: Table 8

This example demonstrates a table created from data that was previously entered in the sheet. (See §3.15 for 9

a discussion of Tables with XML data bindings.) 10

3.4.4 Illustration 11

Consider the example provided in §3.4.1 above: 12

 13

Notice that this table has column headings "State", "City", and "Zipcode". There is a row summarizing the data, 14

in this case a count of Zip codes. In the "State" column abbreviations of United States State names are listed. In 15

the City column are listed names of Cities within those states. Finally, within the Zipcode column are postal 16

codes residing within those cities. 17

The table has a style applied, which provides unique formatting for: 18

 The column heading area, with bold facing and top and bottom borders 19

 The data area, with banded striping 20

 The total row area, with a top double border and bold facing 21

 The last column area, with a solid background fill of blue. 22

Introduction to SpreadsheetML

 124

3.4.5 The Sheet XML 1

The sheet XML for this example references the table definition part: 2

 … 3

 <tableParts count="1"> 4

 <tablePart r:id="rId1"/> 5

 </tableParts> 6

</worksheet> 7

3.4.6 The Table XML 8

The tableParts collection appears after the sheetData section of the sheet. This sheet references a table 9

whose relationship Id r:id value is rId1. 10

The Table definition XML for this example: 11

<table xmlns= … id="8" name="Table19" displayName="Table19" ref="B3:D10" 12

 totalsRowCount="1"> 13

 <autoFilter ref="B3:D10"/> 14

 <tableColumns count="3"> 15

 <tableColumn id="1" name="State" totalsRowLabel="Count" 16

 totalsRowDxfId="0"/> 17

 <tableColumn id="2" name="City"/> 18

 <tableColumn id="3" name="Zipcode" totalsRowFunction="count"/> 19

 </tableColumns> 20

 <tableStyleInfo name="TableStyleMedium16" showFirstColumn="0" 21

 showLastColumn="1" 22

 showRowStripes="1" showColumnStripes="0"/> 23

</table> 24

name indicates that the Table's name is Table19, and the ref value indicates that it occupies the range 25

B3:D10 on the relevant sheet. totalsRowCount value of 1 indicates that this Table's total row is visible. 26

The autoFilter element indicates that the autoFilter feature is applied to the range B3:D10. The 27

tableColumns collection indicates there are 3 columns in the table, whose names are "State", "City", and 28

"Zipcode". Furthermore, the column titled "State" has a label in the total row, whose caption is "Count", and 29

the column titled "Zipcode" has a total row function applied, whose function is "count". 30

The tableStyleInfo element indicates various attributes of this Table's style and formatting. In this example, 31

name indicates that the Table style named "TableStyleMedium16" has been applied. Additionally, even though 32

formatting has been defined by this table style to indicate uniquely the first column of the table, since 33

showFirstColumn is set to 0 (false), this first column formatting will not be applied to the table. The same is 34

true for column stripes. Since showColumnStripes is set to 0 (false), even though formatting for column 35

stripes is defined by the table style, it is not applied to this table. However, both row striping and last column 36

formatting is set to be applied to this table, as indicated by showRowStripes and showLastColumn. 37

Introduction to SpreadsheetML

 125

3.5 Calculation Chain 1

3.5.1 Overview 2

The Calculation Chain part specifies the order in which cells in the workbook were last calculated. It only 3

records information about cells containing formulas. It does not include any information about the formula-4

dependency calculation tree. In other words, the Calculation Chain part does not indicate the dependencies 5

that formulas have on other cell values; it only indicates the order in which the cells were last calculated. 6

Any particular calculation event can cause the calculation chain order to be rearranged or altered. For 7

example, adding more formulas to the workbook will add references in the Calculation Chain part. 8

Another example of how the calculation order can be updated involves the idea of partial calculation. Partial 9

calculation is an optimization a spreadsheet application can implement to calculate only those cells that are 10

dependent on other cells whose values have changed, and to ignore other formulas in the workbook. This 11

helps to avoid redundantly recalculating results that are already known. Therefore, if a set of formulas that 12

were previously ignored during a calculation become required for calculation (due to a cell's value changing), 13

then these formulas will move to "first" on the calculation chain so they can be evaluated. 14

While calculation chain information can be loaded by a spreadsheet application, it is not required. A 15

calculation chain can be constructed in memory at load-time based on the formulas and their 16

interdependence, if the spreadsheet application finds this information useful. The order expressed in the 17

Calculation Chain part does not force or dictate to the implementing application the order in which 18

calculations must be performed at runtime. 19

3.5.2 Example 20

Consider the following set of formulas in a workbook: 21

 22

 23

Note that the content of each cell is displayed on the left side of the cell, and the evaluated value is 24

superimposed on the right side of each cell. 25

Introduction to SpreadsheetML

 126

Cell A1 contains the numeric constant 1. Cell A2 contains the formula =A1+1, and this formula is filled down 1

to A10. Cell B1 contains the numeric constant 11. Cell B2 contains the formula =B1+1, and this formula is filled 2

down to B10. C10 contains the formula =B10+A10, whose current value is 30. D10 contains the formula 3

=C10+10, whose current value is 40. 4

Because dependencies among formulas do affect calculation order, dependencies will be discussed briefly 5

here. The formula in D10 depends on the result from C10. The formula in C10 depends on the results from 6

both A10 and B10. The formulas in column A each depend on the cell above them, ultimately depending on 7

the constant value in A1. The formulas in column B each depend on the cell above them, ultimately depending 8

on the constant value in B1. 9

This example was created by first entering the values in A1 then B1. Next, typing the formula in A2, and filling 10

that across to B2. Then the formulas in A2 and B2 were concurrently filled down to A10:B10. Next, the 11

formula was typed into C10, and finally the formula in D10 was entered. The application was in 12

automatic/partial calculation mode when this information was entered. 13

3.5.2.1 Partial Calculation 14

The calculation chain might be saved after initially entering the data and saving the workbook, as follows: 15

<calcChain xmlns="…"> 16

 <c r="D10" i="1"/> 17

 <c r="C10"/> 18

 <c r="A3"/> 19

 <c r="B3"/> 20

 <c r="A4"/> 21

 <c r="B4"/> 22

 <c r="A5"/> 23

 <c r="B5"/> 24

 <c r="A6"/> 25

 <c r="B6"/> 26

 <c r="A7"/> 27

 <c r="B7"/> 28

 <c r="A8"/> 29

 <c r="B8"/> 30

 <c r="A9"/> 31

 <c r="B9"/> 32

 <c r="A10"/> 33

 <c r="B10"/> 34

 <c r="B2"/> 35

 <c r="A2"/> 36

</calcChain> 37

Every c element represents a cell containing a formula. The first cell calculated appears first (top-to-bottom), 38

and so on. The reference attribute r indicates the cell's address in the sheet. The index attribute i indicates the 39

Introduction to SpreadsheetML

 127

index of the sheet with which that cell is associated. The sub-chain attribute s (not present in this first 1

example) indicates that this cell can be treated as a sub chain of the preceding cell. Sub-chains can be useful 2

when calculation can be multi-threaded or calculated concurrently. Whenever a cell does not contain an i or s 3

attribute, it is understood to inherit these values from the previous cell. 4

Because of the way in which the workbook was initially created and saved, cell D10 should be the first cell 5

calculated. The reason for this, which cannot be determined from examining the XML, is that cell D10 is the 6

only cell that needs calculating, due to the partial calculation optimization. Since the cells A2:B10 and C10 7

were previously calculated (as a result of entering formulas in those cells), when entering the formula in D10, 8

D10 is the only cell that needs to be calculated. 9

This calculation chain indicates that after D10 is calculated, C10 can be evaluated. In looking at the 10

dependencies, it is understood that during a full calculation, C10 would be evaluated before D10 can be 11

evaluated. However, because of the partial calculation optimization, at the time C10 was entered, it was 12

placed first on the calculation chain to be evaluated. Subsequent to that, D10 was entered, and so C10 was 13

moved to second position in the calculation chain, and that is why it is currently in the second place. 14

Moving through the rest of the cells with this same logic, just before C10 was entered, A3, then B3, then A4, 15

then B4, and so on up to A10 and B10 were added and then evaluated as part of the fill-down operation. 16

Finally, cells A2 and B2 were the first formulas to be added and calculated. All formulas in the workbook were 17

added after A2 and B2 were evaluated. Since A2 and B2 didn't need to be re-evaluated (due to the partial 18

calculation optimization) after that, they eventually settled to the end of the calculation chain. 19

3.5.2.2 First Full Calculation 20

Below is how the calculation chain will look after changing the values of A1 and B1, or after forcing the 21

application to perform a full calculation on the entire set of formulas: 22

<calcChain xmlns="…"> 23

 <c r="B2" i="1"/> 24

 <c r="B3" s="1"/> 25

 <c r="B4" s="1"/> 26

 <c r="B5" s="1"/> 27

 <c r="B6" s="1"/> 28

 <c r="B7" s="1"/> 29

 <c r="B8" s="1"/> 30

 <c r="B9" s="1"/> 31

 <c r="B10" s="1"/> 32

 <c r="C10" s="1"/> 33

 <c r="D10" s="1"/> 34

 <c r="A2"/> 35

 <c r="A3" s="1"/> 36

 <c r="A4" s="1"/> 37

Introduction to SpreadsheetML

 128

 <c r="A5" s="1"/> 1

 <c r="A6" s="1"/> 2

 <c r="A7" s="1"/> 3

 <c r="A8" s="1"/> 4

 <c r="A9" s="1"/> 5

 <c r="A10" s="1"/> 6

</calcChain> 7

Now the order of calculation seems more in line with the way in which the formulas depend on each other: 8

cells B2:B10 are calculated in order, and cells A2:A10 are calculated in order. 9

Additionally, the application has discovered that the formulas in column B can be calculated in parallel with the 10

formulas in column A (i.e., they don't depend on each other). This is evidenced by the presence of s="1" on the 11

cell element for cells B2:B10, indicating that B2:10 are part of a "child-chain" starting with B2. Note also that 12

C10 and B10 are included in that child chain, even though these formulas do, in fact, depend on calculated 13

values from column A. This is due to the multi-threaded nature of the calculation engine. Currently the chain 14

on which C10 and D10 reside can be calculated concurrently with the chain on which A2:A10 reside because 15

by the time C10 and D10 need to be calculated (e.g., by CPU #1), A10 has already been calculated (e.g., by 16

CPU #2). In some future calculation, the timing may be different, and at that time, the application will need to 17

resort to moving C10 and D10 to a new calculation level (see §3.5.2.3). 18

3.5.2.3 Twentieth 20th Full Calculation 19

After several full calculation iterations, this particular calculation chain will settle into a stable state. For 20

example: 21

<calcChain xmlns="…"> 22

 <c r="B2" i="1"/> 23

 <c r="B3" s="1"/> 24

 <c r="B4" s="1"/> 25

 <c r="B5" s="1"/> 26

 <c r="B6" s="1"/> 27

 <c r="B7" s="1"/> 28

 <c r="B8" s="1"/> 29

 <c r="B9" s="1"/> 30

 <c r="B10" s="1"/> 31

 <c r="A2"/> 32

 <c r="A3" s="1"/> 33

 <c r="A4" s="1"/> 34

 <c r="A5" s="1"/> 35

 <c r="A6" s="1"/> 36

Introduction to SpreadsheetML

 129

 <c r="A7" s="1"/> 1

 <c r="A8" s="1"/> 2

 <c r="A9" s="1"/> 3

 <c r="A10" s="1"/> 4

 <c r="C10" l="1"/> 5

 <c r="D10" s="1"/> 6

</calcChain> 7

The difference introduced here is the concept of a dependency-level attribute l. This flag indicates that all 8

chain and child chain concurrent calculation must be completed (and all cells will have newly calculated values) 9

before proceeding with calculation. 10

In this example, cells C10 and D10 are marked to exist in a new and separate dependency level from the cells 11

A2:A10 and B2:B10. This makes sense given how the dependencies for these formulas are set up: A2:A10 12

can be calculated concurrently with B2:B10 because they do not depend on each other. A2:A10 exists as one 13

calculation chain, and B2:B10 exist as another parallel calculation chain. However, C10 and D10 are both 14

dependent on calculated results from the two parallel chains, and so can only be calculated after the first set 15

of parallel calculations are completed. 16

Dependency-Level l flags indicate where calculation must wait for all concurrent threads to complete before 17

continuing with calculation 18

3.6 Comments 19

3.6.1 Overview 20

A comment is a rich text note that is attached to, and associated with, a cell, separate from other cell content. 21

Comment content is stored separate from the cell, and is displayed in a drawing object (like a text box) that is 22

separate from, but associated with, a cell. Comments are used as reminders, such as noting how a complex 23

formula works, or to provide feedback to other users. Comments can also be used to explain assumptions 24

made in a formula or to call out something special about the cell. 25

3.6.2 Example 26

Consider the following graphic representation of a worksheet: 27

 28

Introduction to SpreadsheetML

 130

Note that cells D4 and J4 have comments. 1

3.6.3 File Architecture 2

Inside the file, the comment content ("Comments1") is expressed separately from the sheet information 3

("Sheet1"), and separately from the drawing information ("legacyDrawing1") for the containing object: 4

 5

The parts are related using relationships from the sheet to the comments and drawings parts. Comments are 6

stored together at the sheet-level. Therefore, if there are five worksheets in a workbook, and three of those 7

contain cells with associated comments, there will be three comment parts in the file, one for each sheet. 8

3.6.4 The XML 9

<comments> 10

 <authors> 11

 <author>Chad</author> 12

 <author>CBR</author> 13

 </authors> 14

 <commentList> 15

 <comment ref="D4" authorId="0"> 16

 <text> 17

 <r> 18

 <rPr> 19

 20

 <sz val="8"/> 21

 <color indexed="81"/> 22

 <rFont val="Calibri"/> 23

 <charset val="1"/> 24

 <scheme val="minor"/> 25

 </rPr> 26

 <t>Chad:</t> 27

 </r> 28

Sheet1

legacyDrawing1

(drawingML)

Comments1

Introduction to SpreadsheetML

 131

 <r> 1

 <rPr> 2

 <sz val="8"/> 3

 <color indexed="81"/> 4

 <rFont val="Calibri"/> 5

 <charset val="1"/> 6

 <scheme val="minor"/> 7

 </rPr> 8

 <t xml:space="preserve">Why such high expense?</t> 9

 </r> 10

 </text> 11

 </comment> 12

 <comment ref="J4" authorId="1"> 13

 <text> 14

 <r> 15

 <rPr> 16

 17

 <sz val="8"/> 18

 <color indexed="81"/> 19

 <rFont val="Calibri"/> 20

 <charset val="1"/> 21

 <scheme val="minor"/> 22

 </rPr> 23

 <t>CBR:</t> 24

 </r> 25

 <r> 26

 <rPr> 27

 <sz val="8"/> 28

 <color indexed="81"/> 29

 <rFont val="Calibri"/> 30

 <charset val="1"/> 31

 <scheme val="minor"/> 32

 </rPr> 33

 <t xml:space="preserve"> 34

 Pending a couple expenses in December.</t> 35

 </r> 36

 </text> 37

 </comment> 38

 </commentList> 39

</comments> 40

Introduction to SpreadsheetML

 132

3.6.5 Authors 1

<comments> 2

 <authors> 3

 <author>Chad</author> 4

 <author>CBR</author> 5

 </authors> 6

The authors collection is a unique list of author names for all comments on a particular sheet. In this example, 7

there are two authors listed. Each comment definition references the authors collection by zero-based index. 8

3.6.6 Comments 9

<commentList> 10

 <comment ref="D4" authorId="0"> 11

 <text> 12

 <r> 13

 <rPr> 14

 15

 <sz val="8"/> 16

 <color indexed="81"/> 17

 <rFont val="Calibri"/> 18

 <charset val="1"/> 19

 <scheme val="minor"/> 20

 </rPr> 21

 <t>Chad:</t> 22

 </r> 23

 <r> 24

 <rPr> 25

 <sz val="8"/> 26

 <color indexed="81"/> 27

 <rFont val="Calibri"/> 28

 <charset val="1"/> 29

 <scheme val="minor"/> 30

 </rPr> 31

 <t xml:space="preserve"> 32

 Why such high expense?</t> 33

 </r> 34

 </text> 35

 </comment> 36

commentList is a listing of all comments on a sheet. The first comment in this example has ref="D4" and 37

authorId="0". This indicates that the comment is associated with cell D4 and is associated with the author 38

"Chad". 39

Introduction to SpreadsheetML

 133

The content of comment is rich text, following the rich text schematics, including the author name and actual 1

comment. 2

3.7 Styles 3

3.7.1 Overview 4

There are several ways to express formatting applied to objects in a worksheet. SpreadsheetML supports the 5

concepts of Styles, Themes, and Direct Formatting applied to cell ranges, Tables, PivotTables, Charts, and 6

Shapes. 7

A Style is a named collection of formatting elements. A cell style can specify number format, cell alignment, 8

font information, cell border specifications, colors, and background / foreground fills. Table styles specify 9

formatting elements for the regions of a table (e.g. make the header row & totals bold face, and apply light 10

gray fill to alternating rows in the data portion of the table to achieve striped or banded rows). PivotTable 11

styles specify formatting elements for the regions of a PivotTable (e.g. 1st & 2nd level subtotals, row axis, 12

column axis, and page fields). 13

A Style can specify color, fonts, and shape effects directly, or these elements can be referenced indirectly by 14

referring to a Theme definition. Using styles allows for quicker application of formatting and more consistently 15

stylized documents. 16

Themes define a set of colors, font information, and effects on shapes (including Charts). If a style or 17

formatting element defines its color, font, or effect by referencing a theme, then picking a new theme switches 18

all the colors, fonts, and effects for that formatting element. 19

Applying Direct Formatting means that particular elements of formatting (e.g. a bold font face or a number 20

format) have been applied, but the elements of formatting have been chosen individually instead of 21

collectively by choosing a named Style. Note that when applying direct formatting, themes can still be 22

referenced, causing those elements to change as the theme is changed. 23

3.7.2 File Architecture 24

 25

For a workbook, a single Styles part holds all its formatting definitions. Similarly, a single Themes part defines 26

the theme information used in the workbook. These parts are referenced by relationship from the Workbook 27

Sheet1

Workbook

Styles Themes

Introduction to SpreadsheetML

 134

part. Each of the formatted objects refers by index to a master formatting definition record expressed in the 1

Styles part. This master formatting record references additional supporting formatting element collections in 2

the Styles part. If the formatting element in the Styles part is defined in terms of a theme, then this formatting 3

element will reference an index to a theme element defined in the Theme part. The solid arrows denote that 4

there are relationships expressed from the Workbook part to each of the Sheet1, Styles, and Themes parts. 5

The dotted arrow from the Sheet1 part to the Styles part indicates that there are references in the Sheet1 6

part's markup that refer, by index, to elements defined in the markup in the Styles part. Similarly, the dotted 7

arrow from the Styles part to the Themes part indicates that there are references in the Styles part's markup 8

that refer, by index, to elements defined in the markup in the Themes part. 9

3.7.3 Organization in the Styles Part 10

The Styles part is organized into element collections as described in the following subclauses. The element 11

collections must appear in the order presented below. The element collections are siblings in the Styles part 12

XML definition, whose parent, the root node of this part, is <styleSheet>. 13

Please refer to the reference material or schemas themselves for more precise descriptions on the required 14

order of elements. 15

3.7.3.1 Number Format Expressions 16

This is where cell number formats used in this workbook are expressed. This collection never references a 17

theme. In this collection the numFmtId attribute is an actual ID, unlike the other sibling collections. That is, 18

instead of relying on the order in which a particular numFmt appears, it is referenced elsewhere by calling out 19

the numFmtId value. Then the corresponding numFmt record can be found by finding the numFmt record with 20

the matching numFmtId value. In the case of number formats, a set of numFmtId values are predefined and 21

fixed by this specification. These values map to actual number formatting expressions. 22

The following XML would format a cell containing the value 1234 to look like this: 23

 24

<numFmts count="1"> 25

 <numFmt numFmtId="165" formatCode=""$"#,##0.00"/> 26

</numFmts> 27

A <numFmt> definition is referenced by ID (numFmtId) from either a <cellXf> or a <cellStyleXf>. 28

To read more about how to interpret number format codes like the value found in formatCode above, please 29

read the reference section on numFmt, in the Styles section. 30

3.7.3.2 Font Definitions 31

This is where font definitions used in this workbook are expressed. Elements of the font definition may 32

reference theme definitions. 33

Introduction to SpreadsheetML

 135

<fonts count="1"> 1

 2

 3

 <sz val="11"/> 4

 <color theme="1"/> 5

 <name val="Calibri"/> 6

 <family val="2"/> 7

 8

</fonts> 9

This font definition specifies bold face, font size of "11", a font color specified in the Theme part, specifically 10

the color whose index is "1" in the <clrScheme> collection, a font name of "Calibri", and whose font family 11

value is "2" (for more explanation on font family, please refer to the Styles reference material). A 12

definition is referenced by index (fontId) from either a <cellXf> or a <cellStyleXf>. 13

A font record is referenced by zero-based index, meaning the numerical order in which the font appears 14

under fonts. 15

3.7.3.3 Fill Definitions 16

This is where fills used in the workbook are expressed. 17

<fills count="1"> 18

 <fill> 19

 <patternFill patternType="solid"> 20

 <fgColor theme="4"/> 21

 <bgColor theme="4"/> 22

 </patternFill> 23

 </fill> 24

</fills> 25

This fill definition specifies a solid pattern fill, whose color uses a themed color, whose index is "4" in the 26

<clrScheme> collection of the Theme part. A <fill> definition is referenced by index (fillId) from either 27

a <cellXf> or a <cellStyleXf>. 28

A fill record is referenced by zero-based index, meaning the numerical order in which the fill appears 29

under fills. 30

 31

3.7.3.4 Borders Definitions 32

This is where border formats are specified. 33

<borders count="1"> 34

 <border> 35

 <left/> 36

Introduction to SpreadsheetML

 136

 <right/> 1

 <top/> 2

 <bottom/> 3

 <diagonal/> 4

 </border> 5

</borders> 6

This example specifies a cell with left, right, top, and bottom borders. A <border> definition is referenced by 7

index (borderId) from either a <cellXf> or a <cellStyleXf>. 8

A border record is referenced by zero-based index, meaning the numerical order in which the border 9

appears under borders. 10

 11

3.7.3.5 Master Records - Cell Styles 12

The 'master' cell style record (<xf>) ties together all the formatting (e.g. number format, font information, 13

and fill) for a named cell style. An <xf> inside <cellStyleXfs> is referenced by zero-based index (not ID) 14

(xfId) from a <cellStyle> definition, which names a particular cell style. 15

<cellStyleXfs count="1"> 16

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0"/> 17

</cellStyleXfs> 18

3.7.3.6 Master Records - Formatting 19

The 'master' cell style record (<xf>) ties together all the formatting (e.g. number format, font information, 20

and fill) for a cell's direct formatting. An <xf> inside <cellXfs> is referenced by zero-based index (not ID) (s) 21

from a cell definition (<c>) in one of the sheets. 22

<cellXfs count="1"> 23

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0"/> 24

</cellXfs> 25

3.7.3.7 Cell Styles 26

This is a collection of cell styles used in the workbook. 27

<cellStyles count="1"> 28

 <cellStyle name="Accent1" xfId="1" builtinId="29"/> 29

</cellStyles> 30

3.7.3.8 Differential Formatting Records 31

"Differential formatting" enables subsets of formatting to be specified, without overriding other elements of 32

formatting. For example, if it is desired to express "add bold face to whatever formatting is already there", 33

then a <dxf> definition can be used. <dxf> definitions are used to express additional (or "differential") 34

formatting that will be applied via Table styles or PivotTable styles. <dxf> definitions are referenced by index 35

Introduction to SpreadsheetML

 137

(dxfId) from a <tableStyleElement>. The formatting elements used in a <dxf> definition are subsets of 1

formatting collections described above. 2

A dxf record is referenced by zero-based index, meaning the numerical order in which the dxf appears under 3

dxfs. 4

 5

<dxfs count="1"> 6

 <dxf> 7

 8

 9

 <color theme="0"/> 10

 11

 <fill> 12

 <patternFill patternType="solid"> 13

 <fgColor theme="5"/> 14

 <bgColor theme="5"/> 15

 </patternFill> 16

 </fill> 17

 </dxf> 18

</dxfs> 19

3.7.3.9 Custom Table Style Definitions 20

Built-in Table and PivotTable styles are not saved out, only custom-defined styles are saved out. In this 21

example, a custom table style defines formatting for an element of a table, the "whole table" region. 22

<tableStyles count="1" defaultTableStyle="TableStyleMedium9" 23

defaultPivotStyle="PivotStyleLight16"> 24

 <tableStyle name="TableStyleMedium10 - Custom" pivot="0" count="1"> 25

 <tableStyleElement type="wholeTable" dxfId="6"/> 26

 </tableStyle> 27

</tableStyles> 28

3.7.4 Example 29

3.7.4.1 Illustration 30

For this example, consider this graphic representation of a worksheet: 31

Introduction to SpreadsheetML

 138

 1

Looking at the top left region of the illustration, cells D2, F2, H2, J2, and B3:B4 have the cell style "Accent1" 2

applied to them. "Accent1" is a theme-driven style, and results in a blue cell fill and white / Calibri font 3

formatting. Additionally these cells have direct border formatting applied which isn't specified as part of the 4

"Accent1" cell style. 5

Cells D3:D4, F3:F4, H3:H4, and J3:J4 have a light blue cell fill applied. The light blue color is part of a themed 6

color scheme, and will update when a new theme is selected. 7

Cells D5, F5, H5, and J5 have a currency number format applied as well as a green cell fill. While the cell fill is a 8

themed color, the number format is fixed and will not vary or change if a new theme is selected. 9

The table in L2:O6 has a table style applied, called "TableStyleMedium10", which specifies formatting for the 10

header row, row striping, and total row (even though the total row isn't shown in this example). 11

The PivotTable in L9:N17 has a PivotTable style applied, called "PivotStyleMedium10", which specifies 12

formatting for the regions of a PivotTable, including the page field area in L9:M9, the header row area in 13

L11:N12, the totals row in L17:N17, and the body of data in L13:N16. 14

Introduction to SpreadsheetML

 139

3.7.4.2 File Architecture 1

 2

All of the cells illustrated are defined in the "Sheet1" part in this example. The table is defined in the "Table1" 3

part and the PivotTable is defined in the part named "PivotTable1". Each of the formatted objects refers to a 4

set of formatting definitions which are expressed in the "Styles" part. If the formatting element is part of a 5

themed set, the element will reference a theme element defined in the "Themes" part. The solid arrows 6

represent relationships among the parts, the dotted arrows represent references by Id or index to various 7

elements in the target part. 8

3.7.4.3 The XML For This Example 9

<styleSheet> 10

 <numFmts count="1"> 11

 <numFmt numFmtId="164" formatCode=""$"#,##0.00"/> 12

 </numFmts> 13

 <fonts count="5"> 14

 15

 <sz val="11"/> 16

 <color theme="1"/> 17

 <name val="Calibri"/> 18

 <scheme val="minor"/> 19

 20

 21

 22

 <sz val="11"/> 23

 <color theme="1"/> 24

 <name val="Calibri"/> 25

 <family val="2"/> 26

 27

Sheet1

Workbook

Styles Themes

Table1 PivotTable1

Introduction to SpreadsheetML

 140

 1

 2

 <sz val="8"/> 3

 <color indexed="81"/> 4

 <name val="Calibri"/> 5

 <charset val="1"/> 6

 <scheme val="minor"/> 7

 8

 9

 <sz val="8"/> 10

 <color indexed="81"/> 11

 <name val="Calibri"/> 12

 <charset val="1"/> 13

 <scheme val="minor"/> 14

 15

 16

 <sz val="11"/> 17

 <color theme="0"/> 18

 <name val="Calibri"/> 19

 <scheme val="minor"/> 20

 21

 </fonts> 22

 <fills count="5"> 23

 <fill> 24

 <patternFill patternType="none"/> 25

 </fill> 26

 <fill> 27

 <patternFill patternType="gray125"/> 28

 </fill> 29

 <fill> 30

 <patternFill patternType="solid"> 31

 <fgColor theme="4"/> 32

 <bgColor theme="4"/> 33

 </patternFill> 34

 </fill> 35

 <fill> 36

 <patternFill patternType="solid"> 37

 <fgColor theme="6" tint="0.59999389629810485"/> 38

 <bgColor indexed="65"/> 39

 </patternFill> 40

 </fill> 41

 <fill> 42

 <patternFill patternType="solid"> 43

Introduction to SpreadsheetML

 141

 <fgColor theme="4" tint="0.79998168889431442"/> 1

 <bgColor indexed="65"/> 2

 </patternFill> 3

 </fill> 4

 </fills> 5

 <borders count="5"> 6

 <border> 7

 <left/> 8

 <right/> 9

 <top/> 10

 <bottom/> 11

 <diagonal/> 12

 </border> 13

 <border> 14

 <left/> 15

 <right/> 16

 <top/> 17

 <bottom style="double"> 18

 <color indexed="64"/> 19

 </bottom> 20

 <diagonal/> 21

 </border> 22

 <border> 23

 <left style="thick"> 24

 <color auto="1"/> 25

 </left> 26

 <right style="thick"> 27

 <color auto="1"/> 28

 </right> 29

 <top style="thick"> 30

 <color auto="1"/> 31

 </top> 32

 <bottom style="thick"> 33

 <color auto="1"/> 34

 </bottom> 35

 <diagonal/> 36

 </border> 37

 <border> 38

 <left style="thick"> 39

 <color auto="1"/> 40

 </left> 41

 <right style="thick"> 42

 <color auto="1"/> 43

Introduction to SpreadsheetML

 142

 </right> 1

 <top style="thick"> 2

 <color auto="1"/> 3

 </top> 4

 <bottom/> 5

 <diagonal/> 6

 </border> 7

 <border> 8

 <left style="thick"> 9

 <color auto="1"/> 10

 </left> 11

 <right style="thick"> 12

 <color auto="1"/> 13

 </right> 14

 <top/> 15

 <bottom style="thick"> 16

 <color auto="1"/> 17

 </bottom> 18

 <diagonal/> 19

 </border> 20

 </borders> 21

 <cellStyleXfs count="2"> 22

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0"/> 23

 <xf numFmtId="0" fontId="4" fillId="2" borderId="0" 24

applyNumberFormat="0" applyBorder="0" applyAlignment="0" applyProtection="0"> 25

 <protection/> 26

 </xf> 27

 </cellStyleXfs> 28

 <cellXfs count="14"> 29

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0"/> 30

 <xf numFmtId="0" fontId="1" fillId="0" borderId="0" xfId="0" 31

applyFont="1"/> 32

 <xf numFmtId="4" fontId="0" fillId="0" borderId="0" xfId="0" 33

applyNumberFormat="1" applyBorder="1"/> 34

 <xf numFmtId="164" fontId="0" fillId="0" borderId="0" xfId="0" 35

applyNumberFormat="1" applyBorder="1"/> 36

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0" 37

pivotButton="1"/> 38

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0" 39

applyAlignment="1"> 40

 <alignment horizontal="left"/> 41

 </xf> 42

Introduction to SpreadsheetML

 143

 <xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0" 1

applyNumberFormat="1"/> 2

 <xf numFmtId="0" fontId="4" fillId="2" borderId="2" xfId="1" 3

applyBorder="1"/> 4

 <xf numFmtId="0" fontId="4" fillId="2" borderId="3" xfId="1" 5

applyBorder="1"/> 6

 <xf numFmtId="0" fontId="4" fillId="2" borderId="4" xfId="1" 7

applyBorder="1"/> 8

 <xf numFmtId="0" fontId="1" fillId="3" borderId="0" xfId="0" 9

applyFont="1" applyFill="1"/> 10

 <xf numFmtId="164" fontId="0" fillId="3" borderId="0" xfId="0" 11

applyNumberFormat="1" applyFill="1" applyBorder="1"/> 12

 <xf numFmtId="4" fontId="0" fillId="4" borderId="0" xfId="0" 13

applyNumberFormat="1" applyFill="1" applyBorder="1"/> 14

 <xf numFmtId="4" fontId="0" fillId="4" borderId="1" xfId="0" 15

applyNumberFormat="1" applyFill="1" applyBorder="1"/> 16

 </cellXfs> 17

 <cellStyles count="2"> 18

 <cellStyle name="Accent1" xfId="1" builtinId="29"/> 19

 <cellStyle name="Normal" xfId="0" builtinId="0"/> 20

 </cellStyles> 21

 <dxfs count="7"> 22

 <dxf> 23

 <fill> 24

 <patternFill patternType="solid"> 25

 <fgColor theme="0" tint="-0.14999847407452621"/> 26

 <bgColor theme="0" tint="-0.14999847407452621"/> 27

 </patternFill> 28

 </fill> 29

 </dxf> 30

 <dxf> 31

 <fill> 32

 <patternFill patternType="solid"> 33

 <fgColor theme="0" tint="-0.14999847407452621"/> 34

 <bgColor theme="0" tint="-0.14999847407452621"/> 35

 </patternFill> 36

 </fill> 37

 </dxf> 38

 <dxf> 39

 40

 41

 <color theme="0"/> 42

 43

Introduction to SpreadsheetML

 144

 <fill> 1

 <patternFill patternType="solid"> 2

 <fgColor theme="5"/> 3

 <bgColor theme="5"/> 4

 </patternFill> 5

 </fill> 6

 </dxf> 7

 <dxf> 8

 9

 10

 <color theme="0"/> 11

 12

 <fill> 13

 <patternFill patternType="solid"> 14

 <fgColor theme="5"/> 15

 <bgColor theme="5"/> 16

 </patternFill> 17

 </fill> 18

 </dxf> 19

 <dxf> 20

 <border> 21

 <top style="double"> 22

 <color theme="1"/> 23

 </top> 24

 </border> 25

 </dxf> 26

 <dxf> 27

 28

 29

 <color theme="0"/> 30

 31

 <fill> 32

 <patternFill patternType="solid"> 33

 <fgColor theme="5"/> 34

 <bgColor theme="5"/> 35

 </patternFill> 36

 </fill> 37

 <border> 38

 <bottom style="medium"> 39

 <color theme="1"/> 40

 </bottom> 41

 </border> 42

 </dxf> 43

Introduction to SpreadsheetML

 145

 <dxf> 1

 2

 <color theme="1"/> 3

 4

 <border> 5

 <top style="medium"> 6

 <color theme="1"/> 7

 </top> 8

 <bottom style="medium"> 9

 <color theme="1"/> 10

 </bottom> 11

 </border> 12

 </dxf> 13

 </dxfs> 14

 <tableStyles count="1" defaultTableStyle="TableStyleMedium9" 15

defaultPivotStyle="PivotStyleLight16"> 16

 <tableStyle name="TableStyleMedium10 - Custom" pivot="0" count="7"> 17

 <tableStyleElement type="wholeTable" dxfId="6"/> 18

 <tableStyleElement type="headerRow" dxfId="5"/> 19

 <tableStyleElement type="totalRow" dxfId="4"/> 20

 <tableStyleElement type="firstColumn" dxfId="3"/> 21

 <tableStyleElement type="lastColumn" dxfId="2"/> 22

 <tableStyleElement type="firstRowStripe" dxfId="1"/> 23

 <tableStyleElement type="firstColumnStripe" dxfId="0"/> 24

 </tableStyle> 25

 </tableStyles> 26

 <colors/> 27

</styleSheet> 28

3.7.4.4 Cell D2 Formatting 29

 30

Cell D2 contains the text "Q1" and is defined in the cell table of sheet1 as: 31

<c r="D2" s="7" t="s"> 32

 <v>0</v> 33

</c> 34

Introduction to SpreadsheetML

 146

On this cell, the attribute value s="7" indicates that the 7th (zero-based) <xf> definition of <cellXfs> holds 1

the formatting information for the cell. The 7th <xf> of <cellXfs> is defined as: 2

<xf numFmtId="0" fontId="4" fillId="2" borderId="2" xfId="1" applyBorder="1"/> 3

The number formatting information cannot be found in a <numFmt> definition because it is a built-in format; 4

instead, it is implicitly understood to be the 0th built-in number format. Remembering that the indexes to 5

other element collections are also zero-based, the font information can be found in the 4th definition; 6

the fill information in the 2nd <fill> definition; and the border information in the 2nd <border> definition. 7

The cell uses a cell style which is defined in the 1st <cellStyleXf> definition and, finally, borders specified in 8

this master formatting record should be applied. 9

Remember that these collections are zero-based. 10

Additionally the <fill> definition for D2 references a themed color, whose index is 4th in the <clrScheme> 11

definition of the theme part: 12

 <fill> 13

 <patternFill patternType="solid"> 14

 <fgColor theme="4"/> 15

 <bgColor theme="4"/> 16

 </patternFill> 17

 </fill> 18

Graphically, the index references can be shown like this: 19

Introduction to SpreadsheetML

 147

 1

3.7.4.5 Custom Table Style 2

 3

This range of cells is a Table object with a custom Table style applied. The table definition in table1 specifies 4

which table style is applied, and which aspects of the table style definition are 'turned on' and should be 5

applied: 6

(built-in)

Start

Introduction to SpreadsheetML

 148

<table id="2" name="Table11" displayName="Table11" ref="L20:O24" 1

totalsRowShown="0"> 2

 <tableStyleInfo name="TableStyleMedium10 - Custom" showFirstColumn="0" 3

showLastColumn="0" showRowStripes="1" showColumnStripes="0"/> 4

</table> 5

The <tableStyleInfo> element indicates that this Table uses the "TableStyleMedium10 - Custom" style 6

and that "first column", "last column", and "column stripes" formatting are OFF. It also indicates that "row 7

stripes" formatting is ON. 8

Here is the "TableStyleMedium10 - Custom" definition in the Styles part: 9

 <tableStyles count="1" defaultTableStyle="TableStyleMedium9" 10

defaultPivotStyle="PivotStyleLight16"> 11

 <tableStyle name="TableStyleMedium10 - Custom" pivot="0" count="7"> 12

 <tableStyleElement type="wholeTable" dxfId="6"/> 13

 <tableStyleElement type="headerRow" dxfId="5"/> 14

 <tableStyleElement type="totalRow" dxfId="4"/> 15

 <tableStyleElement type="firstColumn" dxfId="3"/> 16

 <tableStyleElement type="lastColumn" dxfId="2"/> 17

 <tableStyleElement type="firstRowStripe" dxfId="1"/> 18

 <tableStyleElement type="firstColumnStripe" dxfId="0"/> 19

 </tableStyle> 20

 </tableStyles> 21

 <colors/> 22

</styleSheet> 23

Note that even though column stripes are defined for this table style, they are not used for this instance of the 24

table. 25

The header row formatting for this table is defined by the 5th <dxf> definition: 26

 <dxf> 27

 28

 29

 <color theme="0"/> 30

 31

 <fill> 32

 <patternFill patternType="solid"> 33

 <fgColor theme="5"/> 34

 <bgColor theme="5"/> 35

 </patternFill> 36

 </fill> 37

 <border> 38

 <bottom style="medium"> 39

Introduction to SpreadsheetML

 149

 <color theme="1"/> 1

 </bottom> 2

 </border> 3

 </dxf> 4

This formatting indicates that for the header row of this table, the font is bold face and uses a themed color; 5

the fill is solid and uses a themed color; and there is a bottom border on the cells. 6

3.8 Worksheet Metadata 7

3.8.1 Overview 8

Value and cell metadata are additional properties that can be associated with a particular cell or value. Cell 9

metadata properties can be carried along with the cell as it moves (e.g., via insert, shift, copy/paste, merge, or 10

unmerge) and value metadata properties can be propagated along with the value as it is referenced in 11

formulas. 12

All of this metadata is stored separately in the metadata.xml part in the workbook. 13

While the architecture of this feature allows for future extensions, only MDX metadata—metadata that is 14

associated with a particular cube function and it's results—is currently defined. For example, if a CUBEMEMBER 15

function call is used to identify a particular member in an OLAP cube, then the metadata would express the 16

OLAP connection name, the mdx expression identifying that member, and various operational attributes of 17

that metadata (e.g., whether it propagates through formula assignment, shifts with the cell when the cell 18

moves locations in the grid, and so on). 19

Introduction to SpreadsheetML

 150

3.8.1.1 OLAP Cube Review 1

 2

Consider the 3-dimensional OLAP cube above. The three dimensions of the cube are "Product", "Geography", 3

and "Time". "Sales Amount" is the measure being summarized, and is often considered an additional 4

dimension of the cube. OLAP cubes can be N-dimensional, while this one has three dimensions. 5

Within each dimension are hierarchies, or ways of organizing the dimension into various levels of granularity. 6

For example, within the Time dimension there can exist the Calendar Year / Quarter / Month / Day hierarchy. 7

Likewise, the Time dimension can also have the Fiscal Year / Quarter / Month / Day hierarchy. Each of Year / 8

Quarter / Month / Day represents levels in the hierarchy. '2003' is considered a member of the 'Year' level 9

within the hierarchy. Likewise, the Product dimension can have multiple hierarchies. A hierarchy could be 10

constructed based on the type of product while another hierarchy could be constructed based on the color of 11

the product. 12

In the example above, picking a member from one dimension would be visualized as a slice through the cube. 13

For example, picking 'Australia' from the Geography dimension could be a relatively thick slice of the cube, if 14

there were many levels underneath 'Country', like 'State', 'City', and 'PostalCode'. Picking a member from 15

Geography that is more granular than 'Australia" results in a thinner slice of the cube in the Geography 16

dimension, because now some of Australia will have been omitted from the data. 17

A tuple is the intersection of two or more members from distinct dimensions. In the example above, three 18

members from three dimensions are expressed: 19

Introduction to SpreadsheetML

 151

1. From Geography we have [Geography].[Country].&[Australia] 1

2. From Product we have [Product].[Cars].children 2

3. From Time we have [Time].[Calendar].[Calendar Year].&[2003] 3

3.8.1.2 OLAP Function Summary 4

There are seven recognized “CUBE” functions that can be used in cell formulas. These functions enable 5

formulas in any cell to fetch data from Analysis Services. Specifically, the functions can fetch any member, set, 6

aggregated value, property, or KPI from the OLAP cube. Because it is formula-driven, the layout of this data is 7

as flexible as cells and formulas. The OLAP data can be placed anywhere on the spreadsheet, intermingled with 8

other local calculations or within other formulas. 9

The function names are: CUBEKPIMEMBER, CUBEMEMBER, CUBEMEMBERPROPERTY, CUBERANKEDMEMBER, 10

CUBESET, CUBESETCOUNT, and CUBEVALUE. 11

3.8.2 File Architecture – Relationships 12

 13

 14

 15

 16

 17

The workbook holds the relationship to the metadata part, and cells within a sheet reference the items in the 18

metadata part. 19

3.8.3 Example 20

In the following example, Cube functions are used to build up a report of internet sales by country, for all 21

products, for the calendar years 2003 and 2004. 22

Metadata Sheet

Workbook

Introduction to SpreadsheetML

 152

3.8.3.1 Illustration 1

 2

3.8.3.1.1 Function Summary 3

CUBEMEMBER(connection, member-expression, caption) returns a member in the cube (e.g., Bicycles, Cars, All 4

Products, CY 2004) (member can be a tuple) 5

CUBESET(connection, set-expression, caption, sort-order, sort-by) returns a set of members (e.g., all 6

Countries) 7

CUBERANKEDMEMBER(connection, set-expression, rank, caption) returns one member of the referenced set 8

(e.g., Australia) 9

CUBEVALUE(connection, member-expression-1, member-expression-2, …) returns the aggregate summarized 10

value for the intersection of members specified. 11

3.8.3.1.2 Walk Through 12

C1 contains a CUBEMEMBER function call specifying the "Internet Sales Amount" member from the Measures 13

dimension. C2 contains a CUBEMEMBER function call specifying "CY 2003" from the Date dimension. D2 14

contains a similar function specifying "CY2004" from the Date dimension. C3 contains a CUBEMEMBER function 15

call specifying "All Products" from the Product dimension. Each of these cells contain simple string values (e.g., 16

"All Products" in C3), and each of these cells is associated with mdx metadata which specifies the mdx 17

expression identifying a particular member of a particular dimension (e.g., [Measures].[Internet Sales 18

Amount]). 19

Introduction to SpreadsheetML

 153

A5 contains a CUBESET function call specifying a set of members. Additionally, the CUBESET function call 1

allows for specifying a caption for the cell ("Countries"), a sort order for sorting the set (in this case, 2

"2" corresponds to descending), and a sort by field (in this case the set will be sorted by the member as 3

expressed in the mdx associated with cell D5, labeled "2004 Sales"). Finally, it should be noted that CUBESET 4

returns a set of members, not just a single member. 5

Cells A6:A11 use the CUBERANKEDMEMBER function to return the individual members, by rank, returned from 6

the CUBESET function call in A5. For example, A6 uses the "xlextdat9 Adventure Works" connection to connect 7

to the OLAP cube, and addresses the first member (because "ROW(A1)" resolves to "1") in the set returned 8

in A5. 9

Cell C6 uses the CUBEVALUE function to return measure data identified by intersecting the mdx expression 10

found in A6 with the mdx expression found in C5 ("CY 2003 Internet Sales for All Products in the United 11

States"). C7:C11 use similar CUBEVALUE function calls. D6:D11 involves similar functions as well, but using 12

"CY 2004" instead. 13

The power of metadata in this example is that anytime a CUBE function argument referenced another cell, and 14

that argument requires a set or member mdx expression, the mdx metadata for that referenced cell is 15

returned to the calling function instead of the simple string value. For example, A6 contains a 16

CUBERANKEDMEMBER function call, whose second argument is expecting a set of members. The reference for 17

that argument is A5. Instead of using the A5's string value of "Countries" (which would result in a error), 18

A5's mdx expression metadata is used instead, which returns a set. Similarly any of the CUBEVALUE function 19

calls rely on cell references, where those cells contain mdx metadata used to pinpoint the measure data 20

requested. Furthermore, each of the cells referenced by C6:D11, in turn reference other cells' mdx metadata. 21

In this way, the mdx metadata is able to propagate through the formula calculation chain. 22

3.8.3.2 Worksheet Metadata XML 23

3.8.3.2.1 General Organization 24

<metadata> 25

 <metadataTypes/> 26

 <metadataStrings/> 27

 <mdxMetadata/> 28

 <valueMetadata/> 29

</metadata> 30

There are four general collections in the metadata part: 31

 metadataTypes - expresses various application runtime behaviors that apply to a set of metadata. 32

 metadataStrings - expresses supporting string resources for the metadata part. This includes the 33

connection name to the OLAP cube as well as mdx expressions identifying members and sets. 34

 mdxMetadata - expresses the tuples in use in this workbook. 35

 valueMetadata - The block (bk) elements stored in valueMetadata are referenced from cells in the 36

sheet definition (vm on the cell is an index (1-based) to a bk element). Each record in a block 37

Introduction to SpreadsheetML

 154

references additional element collections in the metadata part to define fully the metadata associated 1

with this particular record, and therefore the full metadata definition for a particular cell's value. The 2

records in valueMetadata serve as the bridge between the metadata definitions and the cells or values 3

in the sheet. 4

3.8.3.2.2 Metadata Behaviors 5

The metadata type expresses operations on cells that allow the metadata to remain associated with the cell. 6

Operations not listed or set to '0' would cause the metadata to no longer be associated with the cell. 7

<metadataTypes count="1"> 8

 <metadataType name="XLMDX" minSupportedVersion="120000" copy="1" 9

 pasteAll="1" pasteValues="1" merge="1" splitFirst="1" 10

 rowColShift="1" clearFormats="1" clearComments="1" assign="1" 11

 coerce="1"/> 12

</metadataTypes> 13

Regarding metadataTypes: 14

 count is the number of metadataType elements. 15

 type is a particular set of cell operations. 16

Regarding metadataType: 17

 name is the name of this particular metadata type. 18

 minSupportedVersion indicates the earliest version of the application which supports this metadata 19

type. 20

 copy value of 1 indicates that this metadata will be copied to other cells when the cell is copied. 21

 pasteAll value of 1 indicates that this metadata will be pasted to another cell when 'paste all' is chosen 22

during a copy/paste operation. 23

 pasteValues value of 1 indicates that this metadata will be pasted to another cell when only the 24

values of the cell is pasted during a copy/paste operation. 25

 merge value of 1 indicates that when the cell is merged, the metadata associated with the cell 26

remains. 27

 splitFirst value of 1 indicates that when a merged cell is split, the metadata associated with the 28

merged cell is only applied to the first (from top left) cell resulting from the split. 29

 rowColShift value of 1 indicates that metadata associated with a cell remains after rows and columns 30

are inserted, even when the cell is moved. 31

 clearFormats value of 1 indicates that the metadata remains after the cell has been cleared of all 32

formatting. 33

 clearComments value of 1 indicates that the metadata remains after comments have been cleared 34

from the cell. 35

 assign value of 1 indicates that the metadata propagates through formula assignment operations 36

Introduction to SpreadsheetML

 155

 coerce value of 1 indicates that the metadata can be removed when the data type is coerced to 1

another type. 2

3.8.3.2.3 Metadata Strings 3

This collection is a set of string resources for the metadata part. Most follow the format of an mdx expression. 4

Connection names (to OLAP cubes) are also expressed here. 5

<metadataStrings count="12"> 6

 <s v="xlextdat9 Adventure Works"/> 7

 <s v="[Measures].[Internet Sales Amount]"/> 8

 <s v="[Date].[Calendar].[Calendar Year].&[2003]"/> 9

 <s v="[Date].[Calendar].[Calendar Year].&[2004]"/> 10

 <s v="[Product].[Product Categories].[All Products]"/> 11

 <s v="[Customer].[Customer Geography].[All Customers].children"/> 12

 <s v="[Customer].[Customer Geography].[Country].&[Australia]"/> 13

 <s v="[Customer].[Customer Geography].[Country].& 14

 [United States]"/> 15

 <s v="[Customer].[Customer Geography].[Country].& 16

 [United Kingdom]"/> 17

 <s v="[Customer].[Customer Geography].[Country].&[Germany]"/> 18

 <s v="[Customer].[Customer Geography].[Country].&[France]"/> 19

 <s v="[Customer].[Customer Geography].[Country].&[Canada]"/> 20

</metadataStrings> 21

Regarding metadataStrings: 22

 count indicates the number of strings in the collection. 23

 s is the string container element 24

 v is the string value itself. 25

3.8.3.2.4 mdxMetadata 26

This collection expresses mdx metadata, and builds up the mdx members, sets, KPIs, and member properties. 27

valueMetadata records reference these records. 28

<mdxMetadata count="26"> 29

 <mdx n="0" f="m"> 30

 <t c="1"> 31

 <n x="1"/> 32

 </t> 33

 </mdx> 34

Introduction to SpreadsheetML

 156

 <mdx n="0" f="m"> 1

 <t c="1"> 2

 <n x="2"/> 3

 </t> 4

 </mdx> 5

 <mdx n="0" f="m"> 6

 <t c="1"> 7

 <n x="3"/>" 8

 </t> 9

 </mdx> 10

 <mdx n="0" f="m"> 11

 <t c="1"> 12

 <n x="4"/> 13

 </t> 14

 </mdx> 15

 <mdx n="0" f="m"> 16

 <t c="3"> 17

 <n x="1"/> 18

 <n x="2"/> 19

 <n x="4"/> 20

 </t> 21

 </mdx> 22

 <mdx n="0" f="m"> 23

 <t c="3"> 24

 <n x="1"/> 25

 <n x="3"/> 26

 <n x="4"/> 27

 </t> 28

 </mdx> 29

 <mdx n="0" f="r"> 30

 <t c="1"> 31

 <n x="6"/> 32

 </t> 33

 </mdx> 34

 <mdx n="0" f="r"> 35

 <t c="1"> 36

 <n x="7"/> 37

 </t> 38

 </mdx> 39

Introduction to SpreadsheetML

 157

 <mdx n="0" f="r"> 1

 <t c="1"> 2

 <n x="8"/> 3

 </t> 4

 </mdx> 5

 <mdx n="0" f="r"> 6

 <t c="1"> 7

 <n x="9"/> 8

 </t> 9

 </mdx> 10

 <mdx n="0" f="r"> 11

 <t c="1"> 12

 <n x="10"/> 13

 </t> 14

 </mdx> 15

 <mdx n="0" f="r"> 16

 <t c="1"> 17

 <n x="11"/> 18

 </t> 19

 </mdx> 20

 <mdx n="0" f="v"> 21

 <t c="4" ct="en-US"> 22

 <n x="1"/> 23

 <n x="2"/> 24

 <n x="4"/> 25

 <n x="6"/> 26

 </t> 27

 </mdx> 28

 <mdx n="0" f="v"> 29

 <t c="4" ct="en-US"> 30

 <n x="1"/> 31

 <n x="3"/> 32

 <n x="4"/> 33

 <n x="7"/> 34

 </t> 35

 </mdx> 36

Introduction to SpreadsheetML

 158

 <mdx n="0" f="v"> 1

 <t c="4" ct="en-US"> 2

 <n x="1"/> 3

 <n x="2"/> 4

 <n x="4"/> 5

 <n x="7"/> 6

 </t> 7

 </mdx> 8

 <mdx n="0" f="v"> 9

 <t c="4" ct="en-US"> 10

 <n x="1"/> 11

 <n x="3"/> 12

 <n x="4"/> 13

 <n x="8"/> 14

 </t> 15

 </mdx> 16

 <mdx n="0" f="v"> 17

 <t c="4" ct="en-US"> 18

 <n x="1"/> 19

 <n x="2"/> 20

 <n x="4"/> 21

 <n x="8"/> 22

 </t> 23

 </mdx> 24

 <mdx n="0" f="v"> 25

 <t c="4" ct="en-US"> 26

 <n x="1"/> 27

 <n x="3"/> 28

 <n x="4"/> 29

 <n x="9"/> 30

 </t> 31

 </mdx> 32

 <mdx n="0" f="v"> 33

 <t c="4" ct="en-US"> 34

 <n x="1"/> 35

 <n x="2"/> 36

 <n x="4"/> 37

 <n x="9"/> 38

 </t> 39

 </mdx> 40

Introduction to SpreadsheetML

 159

 <mdx n="0" f="v"> 1

 <t c="4" ct="en-US"> 2

 <n x="1"/> 3

 <n x="3"/> 4

 <n x="4"/> 5

 <n x="10"/> 6

 </t> 7

 </mdx> 8

 <mdx n="0" f="v"> 9

 <t c="4" ct="en-US"> 10

 <n x="1"/> 11

 <n x="2"/> 12

 <n x="4"/> 13

 <n x="10"/> 14

 </t> 15

 </mdx> 16

 <mdx n="0" f="v"> 17

 <t c="4" ct="en-US"> 18

 <n x="1"/> 19

 <n x="3"/> 20

 <n x="4"/> 21

 <n x="11"/> 22

 </t> 23

 </mdx> 24

 <mdx n="0" f="v"> 25

 <t c="4" ct="en-US"> 26

 <n x="1"/> 27

 <n x="2"/> 28

 <n x="4"/> 29

 <n x="11"/> 30

 </t> 31

 </mdx> 32

 <mdx n="0" f="v"> 33

 <t c="4" ct="en-US"> 34

 <n x="1"/> 35

 <n x="3"/> 36

 <n x="4"/> 37

 <n x="6"/> 38

 </t> 39

 </mdx> 40

Introduction to SpreadsheetML

 160

 <mdx n="0" f="s"> 1

 <ms ns="5" c="3" o="d"> 2

 <n x="1"/> 3

 <n x="3"/> 4

 <n x="4"/> 5

 </ms> 6

 </mdx> 7

 <mdx n="0" f="c"> 8

 <ms ns="5" c="3" o="d"> 9

 <n x="1"/> 10

 <n x="3"/> 11

 <n x="4"/> 12

 </ms> 13

 </mdx> 14

</mdxMetadata> 15

Regarding mdxMetadata: 16

 count indicates the number of mdx statements in the collection. 17

Regarding mdx, which is a particular mdx statement: 18

 n indicates the index of the record in metadataStrings containing the connection name. 19

 f indicates the name of the calling cube function in the workbook. 20

Regarding t, which is an mdx tuple: 21

 c is the count of member expressions in the mdx tuple. 22

Regarding n: 23

 x is the index value into metadataStrings indicating the particular member expression for this 24

dimension of the tuple expression. 25

For example, cell C5 has a CUBEMEMBER function call expressing the result of "Internet Sales Amount of All 26

Products for CY 2003". In sheet1.xml, cell C5 has vm="5", which means it has an associated valueMetadata 27

record whose index is "5". Looking ahead into the valueMetadata records, the 5th (1-based) record points to 28

the 4th (zero-based) mdx collection in mdxMetadata. 29

The 5th mdx collection: 30

Introduction to SpreadsheetML

 161

 <mdx n="0" f="m"> 1

 <t c="3"> 2

 <n x="1"/> 3

 <n x="2"/> 4

 <n x="4"/> 5

 </t> 6

 </mdx> 7

Where <n x="1"/> corresponds to the 1st position in the string store, namely 8

<s v="[Measures].[Internet Sales Amount]"/> 9

and where <n x="2"/> corresponds to the 2nd position in the string store, namely 10

<s v="[Date].[Calendar].[Calendar Year].&[2003]"/> 11

and where <n x="4"/> corresponds to the 4th position in the string store, namely 12

<s v="[Product].[Product Categories].[All Products]"/>. 13

Therefore this data point in the cube is addressed by intersecting these three hierarchies, one in each 14

dimension of the OLAP cube: 15

 [Measures].[Internet Sales Amount] 16

 [Date].[Calendar].[Calendar Year].[2003] 17

 [Product].[Product Categories].[All Products] 18

Regarding ms: 19

 ns is the index of the mdx set definition in the string store. 20

 c is the number of sort-by member indicies, in this case 3 because the set is sorted by the contents 21

of D5, which happens to be a member defined by 3 coordinates in the cube. 22

 o indicates the order of the sort; in this case, 'descending'. 23

 n is the index indicating the mdx expressions in the string store used to identify the members used to 24

define the sort-by set. 25

3.8.3.2.5 valueMetadata 26

This collection defines cell or value metadata information (depending on the value of metadataType's 27

cellMeta) 28

<valueMetadata count="26"> 29

 <bk> 30

 <rc t="1" v="0"/> 31

 </bk> 32

Introduction to SpreadsheetML

 162

 <bk> 1

 <rc t="1" v="1"/> 2

 </bk> 3

 <bk> 4

 <rc t="1" v="2"/> 5

 </bk> 6

 <bk> 7

 <rc t="1" v="3"/> 8

 </bk> 9

 <bk> 10

 <rc t="1" v="4"/> 11

 </bk> 12

 <bk> 13

 <rc t="1" v="5"/> 14

 </bk> 15

 <bk> 16

 <rc t="1" v="6"/> 17

 </bk> 18

 <bk> 19

 <rc t="1" v="7"/> 20

 </bk> 21

 <bk> 22

 <rc t="1" v="8"/> 23

 </bk> 24

 <bk> 25

 <rc t="1" v="9"/> 26

 </bk> 27

 <bk> 28

 <rc t="1" v="10"/> 29

 </bk> 30

 <bk> 31

 <rc t="1" v="11"/> 32

 </bk> 33

 <bk> 34

 <rc t="1" v="12"/> 35

 </bk> 36

 <bk> 37

 <rc t="1" v="13"/> 38

 </bk> 39

 <bk> 40

 <rc t="1" v="14"/> 41

 </bk> 42

Introduction to SpreadsheetML

 163

 <bk> 1

 <rc t="1" v="15"/> 2

 </bk> 3

 <bk> 4

 <rc t="1" v="16"/> 5

 </bk> 6

 <bk> 7

 <rc t="1" v="17"/> 8

 </bk> 9

 <bk> 10

 <rc t="1" v="18"/> 11

 </bk> 12

 <bk> 13

 <rc t="1" v="19"/> 14

 </bk> 15

 <bk> 16

 <rc t="1" v="20"/> 17

 </bk> 18

 <bk> 19

 <rc t="1" v="21"/> 20

 </bk> 21

 <bk> 22

 <rc t="1" v="22"/> 23

 </bk> 24

 <bk> 25

 <rc t="1" v="23"/> 26

 </bk> 27

 <bk> 28

 <rc t="1" v="24"/> 29

 </bk> 30

 <bk> 31

 <rc t="1" v="25"/> 32

 </bk> 33

</valueMetadata> 34

Regarding valueMetadata: 35

 count indicates the number of metadata block records. 36

Regarding bk, which is a metadata block, and rc, which is a metadata record: 37

 t indicates the index of the metadataType record in metadataTypes collection. 38

 v is the index of metadata record value in the storage corresponding to record type. 39

Introduction to SpreadsheetML

 164

Looking at the first block using the bk element, the type of metadata with which this record is associated is the 1

first (and only) metadataType record, which is of type "XLMDX". This indicates that the v index is pointing to 2

the 0th mdxMetadata record. 3

3.9 Pivot Table, Pivot Cache, and Common Types 4

3.9.1 Feature Overview 5

PivotTables display aggregated views of data easily and in an understandable layout. Hundreds or thousands of 6

pieces of underlying information can be aggregated on row & column axes, revealing the meanings behind the 7

data. PivotTable reports are used to organize and summarize your data in different ways. Creating a PivotTable 8

report is about moving pieces of information around to see how they fit together. In a few gestures the pivot 9

rows and columns can be moved into different arrangements and layouts. 10

A PivotTable object has a row axis area, a column axis area, a values area, and a report filter area. Additionally, 11

PivotTables have a corresponding field list pane displaying all the fields of data which can be placed on one of 12

the PivotTable areas. 13

Consider this source data: 14

 15

This data can be consolidated and summarized in a PivotTable. One way to organize the information would 16

look like this: 17

Introduction to SpreadsheetML

 165

 1

Here is the corresponding PivotTable field list: 2

Introduction to SpreadsheetML

 166

 1

3.9.2 File Architecture 2

The workbook points to (and owns the longevity of) the pivotCacheDefinition part, which in turn points to and 3

owns the pivotCacheRecords part. The workbook also points to and owns the sheet part, which in turn points 4

to and owns a pivotTable part definition, when a PivotTable is on the sheet (there can be multiple PivotTables 5

on a sheet). The pivotTable part points to the appropriate pivotCacheDefinition which it is using. Since multiple 6

PivotTables can use the same cache, the pivotTable part does not own the longevity of the 7

pivotCacheDefinition. 8

The pivotTable part describes the particulars of the layout of the PivotTable on the sheet. It indicates what 9

fields are on the row axis, the column axis, report filter, and values areas of the PivotTable. It also indicates 10

Introduction to SpreadsheetML

 167

formatting information about the PivotTable. If conditional formatting has been applied to the PivotTable, that 1

is also expressed in the pivotTable part. 2

The pivotCacheRecords part contains the underlying data to be aggregated. It is a cache of the source data. 3

The pivotCacheDefinition part defines each field in the pivotCacheRecords part, including field name and 4

information about the data contained in the field. The pivotCacheDefinition part also defines pivot items that 5

are shared among the pivotTable and pivotRecords parts. 6

3.9.3 Example - Native with Range Source 7

3.9.3.1 Illustration 8

Consider the source data pictured in the overview section. There are 28 fields of data in total (some aren't 9

shown). A corresponding PivotTable summary of the data can look like this: 10

 11

Regarding the layout of the PivotTable, notice that "Country", "State", and "City" are in the report filter area of 12

the PivotTable. "Product Category" and "Product Subcategory" are on the row axis ("Bikes" belongs to the 13

"Product Category" field and both "Mountain Bikes" and "Road Bikes" belong to the "Product Subcategory" 14

field). On the column axis are "Year" ("2001"), "Quarter" ("3"), and "Month" ("July", "August", and 15

"September") fields. 16

Row Grand Totals are turned on, and column Subtotals are turned on for Quarter and Year (if there was more 17

than 1 quarter in the source data the Year Subtotal would be more interesting). 18

3.9.3.2 XML - pivotCacheDefinition part 19

The pivotCacheDefinition part defines each field in the source data, including the name, the string resources of 20

the instance data (for shared items), and information about the type of data appearing in the field. Note: some 21

of the "Customer Name" and "City" values have been removed to improve readability and reduce length. 22

Introduction to SpreadsheetML

 168

<pivotCacheDefinition xmlns:r="…" r:id="rId1" refreshedBy="AnonUser" 1

 refreshedDate="2006-05-22T10:07:16" createdVersion="3" 2

 refreshedVersion="3" minRefreshableVersion="3" recordCount="182"> 3

 <cacheSource type="worksheet"> 4

 <worksheetSource name="Table1"/> 5

 </cacheSource> 6

 <cacheFields count="28"> 7

 <cacheField name="Customer Name" numFmtId="0"> 8

 <sharedItems count="7"> 9

 <s v="Michele Raman"/> 10

 <s v="Misty Raji"/> 11

 <s v="Tabitha E Arthur"/> 12

 <s v="Clarence D Rai"/> 13

 <s v="Jimmy L Moreno"/> 14

 <s v="Rob Verhoff"/> 15

 <s v="Levi Sai"/> 16

 </sharedItems> 17

 </cacheField> 18

 <cacheField name="Group" numFmtId="0"> 19

 <sharedItems/> 20

 </cacheField> 21

 <cacheField name="Country" numFmtId="0"> 22

 <sharedItems count="1"> 23

 <s v="Australia"/> 24

 </sharedItems> 25

 </cacheField> 26

 <cacheField name="Region" numFmtId="0"> 27

 <sharedItems/> 28

 </cacheField> 29

 <cacheField name="State" numFmtId="0"> 30

 <sharedItems count="5"> 31

 <s v="Victoria"/> 32

 <s v="Queensland"/> 33

 <s v="South Australia"/> 34

 <s v="New South Wales"/> 35

 <s v="Tasmania"/> 36

 </sharedItems> 37

 </cacheField> 38

Introduction to SpreadsheetML

 169

 <cacheField name="City" numFmtId="0"> 1

 <sharedItems count="7"> 2

 <s v="Bendigo"/> 3

 <s v="Brisbane"/> 4

 <s v="Caloundra"/> 5

 <s v="Cloverdale"/> 6

 <s v="Coffs Harbour"/> 7

 <s v="Cranbourne"/> 8

 <s v="Darlinghurst"/> 9

 </sharedItems> 10

 </cacheField> 11

 <cacheField name="Postal Code" numFmtId="0"> 12

 <sharedItems/> 13

 </cacheField> 14

 <cacheField name="Product Category" numFmtId="0"> 15

 <sharedItems count="1"> 16

 <s v="Bikes"/> 17

 </sharedItems> 18

 </cacheField> 19

 <cacheField name="Product Subcategory" numFmtId="0"> 20

 <sharedItems count="2"> 21

 <s v="Road Bikes"/> 22

 <s v="Mountain Bikes"/> 23

 </sharedItems> 24

 </cacheField> 25

 <cacheField name="Product Name" numFmtId="0"> 26

 <sharedItems/> 27

 </cacheField> 28

 <cacheField name="Product Description" numFmtId="0"> 29

 <sharedItems/> 30

 </cacheField> 31

 <cacheField name="Promotion Category" numFmtId="0"> 32

 <sharedItems/> 33

 </cacheField> 34

 <cacheField name="Promotion" numFmtId="0"> 35

 <sharedItems/> 36

 </cacheField> 37

 <cacheField name="Promotion Type" numFmtId="0"> 38

 <sharedItems/> 39

 </cacheField> 40

Introduction to SpreadsheetML

 170

 <cacheField name="Year" numFmtId="0"> 1

 <sharedItems count="1"> 2

 <s v="2001"/> 3

 </sharedItems> 4

 </cacheField> 5

 <cacheField name="Quarter" numFmtId="0"> 6

 <sharedItems containsSemiMixedTypes="0" containsString="0" 7

 containsNumber="1" containsInteger="1" minValue="3" maxValue="3" 8

 count="1"> 9

 <n v="3"/> 10

 </sharedItems> 11

 </cacheField> 12

 <cacheField name="Month" numFmtId="0"> 13

 <sharedItems count="3"> 14

 <s v="September"/> 15

 <s v="July"/> 16

 <s v="August"/> 17

 </sharedItems> 18

 </cacheField> 19

 <cacheField name="Currency" numFmtId="0"> 20

 <sharedItems/> 21

 </cacheField> 22

 <cacheField name="Order Quantity" numFmtId="0"> 23

 <sharedItems containsSemiMixedTypes="0" containsString="0" 24

 containsNumber="1" containsInteger="1" minValue="1" 25

 maxValue="1"/> 26

 </cacheField> 27

 <cacheField name="Unit Price" numFmtId="0"> 28

 <sharedItems containsSemiMixedTypes="0" containsString="0" 29

 containsNumber="1" minValue="699.09820000000002" 30

 maxValue="3578.27"/> 31

 </cacheField> 32

 <cacheField name="Extended Amount" numFmtId="0"> 33

 <sharedItems containsSemiMixedTypes="0" containsString="0" 34

 containsNumber="1" minValue="699.09820000000002" 35

 maxValue="3578.27"/> 36

 </cacheField> 37

 <cacheField name="Discount Pct" numFmtId="0"> 38

 <sharedItems containsSemiMixedTypes="0" containsString="0" 39

 containsNumber="1" containsInteger="1" minValue="0" 40

 maxValue="0"/> 41

 </cacheField> 42

Introduction to SpreadsheetML

 171

 <cacheField name="Discount Amount" numFmtId="0"> 1

 <sharedItems containsSemiMixedTypes="0" containsString="0" 2

 containsNumber="1" containsInteger="1" minValue="0" 3

 maxValue="0"/> 4

 </cacheField> 5

 <cacheField name="Product Standard Cost" numFmtId="0"> 6

 <sharedItems containsSemiMixedTypes="0" containsString="0" 7

 containsNumber="1" minValue="413.1463" 8

 maxValue="2171.2941999999998"/> 9

 </cacheField> 10

 <cacheField name="Total Product Cost" numFmtId="0"> 11

 <sharedItems containsSemiMixedTypes="0" containsString="0" 12

 containsNumber="1" minValue="413.1463" 13

 maxValue="2171.2941999999998"/> 14

 </cacheField> 15

 <cacheField name="Sales Amount" numFmtId="0"> 16

 <sharedItems containsSemiMixedTypes="0" containsString="0" 17

 containsNumber="1" minValue="699.09820000000002" 18

 maxValue="3578.27"/> 19

 </cacheField> 20

 <cacheField name="Tax Amount" numFmtId="0"> 21

 <sharedItems containsSemiMixedTypes="0" containsString="0" 22

 containsNumber="1" 23

 minValue="55.927900000000001" maxValue="286.26159999999999"/> 24

 </cacheField> 25

 <cacheField name="Freight" numFmtId="0"> 26

 <sharedItems containsSemiMixedTypes="0" containsString="0" 27

 containsNumber="1" minValue="17.477499999999999" 28

 maxValue="89.456800000000001"/> 29

 </cacheField> 30

 </cacheFields> 31

</pivotCacheDefinition> 32

In the context of pivotCacheDefinition: 33

 r:id indicates the relationship id pointing to the corresponding pivotCacheRecords part. 34

 refreshedBy indicates the username of whomever last refreshed the PivotCache. 35

 refreshedDate indicates when the PivotCache was last refreshed. 36

 createdVersion indicates the version of the producer which created the PivotCache. 37

 refreshedVersion indicates the version of the producer which last refreshed the PivotCache. 38

 minRefreshableVersion indicates the minimum version of the producer required to be able to refresh 39

this PivotCache. 40

In the context of cacheSource: 41

Introduction to SpreadsheetML

 172

 type indicates that data in a worksheet is the source for this PivotCache. 1

 worksheetSource identifies the particular location of the source data. In this case, it is a named range 2

whose name is "Table1". 3

In the context of cacheFields, which is a collection of all the field definitions in the source data: 4

 cacheField indicates the name of the field and provides number format information. 5

In the context of cacheField: 6

 sharedItems indicates various flags about the data in this field. Child elements express the values of 7

the shared items. 8

In the context of sharedItems: 9

 containsSemiMixedTypes "1" indicates that this field contains text values possibly mixed with other 10

types of values, this can contain blanks. In this example the value is "0". 11

 containsString value of "1" indicates that this field contains a text value. In this example, the value 12

is "0". 13

 containsNumber value of "1" indicates that this field contains numeric values. 14

 containsInteger indicates that this field contains integer values. 15

 minValue indicates that this field's minimum value is "3". 16

 maxValue indicates that this field's maximum value is "3". 17

 s indicates string content for this item value (expressed in v). 18

 n indicates the numeric content for this item value (expressed in v). 19

If there are no shared items expressed for a particular field, then the values are expressed directly in the 20

pivotCacheRecords part. 21

Items in the PivotCacheDefinition can be shared, in order to reduce the redundancy of those values, since 22

they're referenced in multiple places across all the PivotTable parts. For example, a value might be part of a 23

filter, it might appear on a row or column axis, and will appear in the pivotCacheRecords definition as well. 24

However, because of the performance cost of creating the optimized shared items, items are only shared if 25

they are actually in use in the PivotTable. Therefore, depending on user actions on the PivotTable layout, the 26

pivotCacheDefinition and underlying PivotCacheRecords part may be updated. 27

3.9.3.3 XML - pivotCacheRecords part 28

This part expresses the underlying source data that the PivotTable is aggregating. (Note that the data has been 29

trimmed down to two records to increase readability.) 30

<pivotCacheRecords … xmlns:r="…" count="2"> 31

 <r> 32

 <x v="0"/> 33

 <s v="Pacific"/> 34

Introduction to SpreadsheetML

 173

 <x v="0"/> 1

 <s v="Australia"/> 2

 <x v="0"/> 3

 <x v="0"/> 4

 <s v="3550"/> 5

 <x v="0"/> 6

 <x v="0"/> 7

 <s v="Road-150 Red, 62"/> 8

 <s v="This bike is ridden by race winners. Developed with the Adventure 9

Works Cycles professional race team, it has a extremely light heat-treated 10

aluminum frame, and steering that allows precision control."/> 11

 <s v="No Discount"/> 12

 <s v="No Discount"/> 13

 <s v="No Discount"/> 14

 <x v="0"/> 15

 <x v="0"/> 16

 <x v="0"/> 17

 <s v="Australian Dollar"/> 18

 <n v="1"/> 19

 <n v="3578.27"/> 20

 <n v="3578.27"/> 21

 <n v="0"/> 22

 <n v="0"/> 23

 <n v="2171.2941999999998"/> 24

 <n v="2171.2941999999998"/> 25

 <n v="3578.27"/> 26

 <n v="286.26159999999999"/> 27

 <n v="89.456800000000001"/> 28

 </r> 29

 <r> 30

 <x v="1"/> 31

 <s v="Pacific"/> 32

 <x v="0"/> 33

 <s v="Australia"/> 34

 <x v="0"/> 35

 <x v="0"/> 36

 <s v="3550"/> 37

 <x v="0"/> 38

 <x v="0"/> 39

 <s v="Road-150 Red, 44"/> 40

 <s v="This bike is ridden by race winners. Developed with the Adventure 41

Works Cycles professional race team, it has a extremely light heat-treated 42

aluminum frame, and steering that allows precision control."/> 43

Introduction to SpreadsheetML

 174

 <s v="No Discount"/> 1

 <s v="No Discount"/> 2

 <s v="No Discount"/> 3

 <x v="0"/> 4

 <x v="0"/> 5

 <x v="1"/> 6

 <s v="Australian Dollar"/> 7

 <n v="1"/> 8

 <n v="3578.27"/> 9

 <n v="3578.27"/> 10

 <n v="0"/> 11

 <n v="0"/> 12

 <n v="2171.2941999999998"/> 13

 <n v="2171.2941999999998"/> 14

 <n v="3578.27"/> 15

 <n v="286.26159999999999"/> 16

 <n v="89.456800000000001"/> 17

 </r> 18

</pivotCacheRecords> 19

In the context of pivotCacheRecords: 20

 r contains one record. 21

In the context of r: 22

 x is an index value referencing an item for this field, as defined in the pivotCacheDefinition part. 23

 s indicates that a value is being expressed inline in this record, and it is a string value. 24

 n indicates that a value is being expressed inline in this record, and it is a numeric value. 25

3.9.3.4 XML - pivotTable part 26

The pivotTable part is organized into 11 sections. 27

 Top-level attributes 28

 Location information 29

 Collection of Fields 30

 Fields on the row axis 31

 Items on the row axis (specific values) 32

 Fields on the column axis 33

 Items on the column axis (specific values) 34

 Fields in the report filter area 35

 Fields in the values area 36

 Style information 37

 This is what the shell of that structure looks like: 38

Introduction to SpreadsheetML

 175

<pivotTableDefinition> 1

 <location/> 2

 <pivotFields/> 3

 <rowFields/> 4

 <rowItems/> 5

 <colFields/> 6

 <colItems/> 7

 <pageFields/> 8

 <dataFields/> 9

 </dataFields> 10

 <conditionalFormats/> 11

 <pivotTableStyleInfo/> 12

</pivotTableDefinition> 13

Each collection will now be addressed section by section. 14

3.9.3.4.1 Attributes on pivotTableDefinition 15

<pivotTableDefinition xmlns:sh="…" name="PivotTable2" cacheId="5" 16

 applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="0" 17

 applyPatternFormats="0" applyAlignmentFormats="0" 18

 applyWidthHeightFormats="1" 19

 dataCaption="Values" updatedVersion="3" minRefreshableVersion="3" 20

 showCalcMbrs="0" useAutoFormatting="1" colGrandTotals="0" 21

 itemPrintTitles="1" 22

 createdVersion="3" indent="0" outline="1" outlineData="1" 23

 multipleFieldFilters="0"> 24

In the context of pivotTableDefinition: 25

 name indicates the name of the PivotTable. 26

 cacheId references by Id a particular pivotCache in the pivotCaches collection listed in workbook.xml. 27

 applyNumberFormats value of "1" means to apply legacy autoformat number format properties. 28

 applyBorderFormats value of "1" means to apply legacy autoformat border format properties. 29

 applyFontFormats value of "1" means to apply legacy autoformat Font format properties. 30

 applyPatternFormats value of "1" means to apply legacy autoformat pattern format properties. 31

 applyAlignmentFormats value of "1" means to apply legacy autoformat alignment format properties. 32

 applyWidthHeightFormats value of "1" means to apply legacy autoformat width and height format 33

properties. 34

 dataCaption is the name of the values area header cell which can appear in the PivotTable when two 35

or more fields are in the values area. 36

 updatedVersion is the Pivot version that last updated the PivotTable. 37

 minRefreshableVersion is the minimum Pivot version required to update this PivotTable's Pivot 38

Cache. 39

Introduction to SpreadsheetML

 176

 showCalcMbrs indicates whether calculated members should be shown in the PivotTable. Only applies 1

to PivotTables based on OLAP sources. 2

 useAutoFormatting indicates whether autoformatting has been applied to the PivotTable. 3

 colGrandTotals indicates whether column grand totals are on for this PivotTable. 4

 rowGrandTotals defaults to "1" and therefore is not written. 5

 itemPrintTitles flag indicating whether PivotItem names should be repeated at the top of each 6

printed page. 7

 createdVersion The Pivot version that created the cache. 8

 indent indentation increment for compact row axis, which means the Report Layout is set to Compact 9

Form. 10

 outline flag indicating whether new fields should have their outline form flag set to "1". 11

 outlineData flag indicating whether the values field in the PivotTable should be displayed in outline 12

form. 13

 multipleFieldFilters flag indicating whether each field of a pivot table can have multiple filters set on 14

it. 15

3.9.3.4.2 Location Information 16

Location provides details on where the PivotTable is located in the sheet. 17

<location ref="B6:G13" firstHeaderRow="1" firstDataRow="4" 18

 firstDataCol="1" rowPageCount="3" colPageCount="1"/> 19

In the context of location: 20

 ref the location of the PivotTable area, not including the report filter area. 21

 firstHeaderRow the first row of the PivotTable header, relative to the top left cell in ref value. 22

 firstDataRow the first row of the PivotTable values area, relative to the top left cell in ref value. 23

 firstDataCol the first column of the PivotTable values area, relative to the top left cell in ref value. 24

 rowPageCount indicates how many rows the report filter area will occupy, as fields are added to it, 25

before taking up another column (there can be multiple rows and columns of fields in the report filter 26

area). By default there is a single column of report filter fields and the fields occupy as many rows as 27

there are fields.. 28

 colPageCount indicates how many columns the report filter region will occupy, as fields are added to 29

it, before taking up another row (there can be multiple rows and columns of fields in the report filter 30

region). By default, there is a single column of report filter fields and the fields occupy as many rows as 31

there are fields. 32

3.9.3.4.3 PivotTable Fields 33

This collection expresses item order and field information for each field associated with the PivotTable, 34

whether shown in the PivotTable report or not. (Note that items have been removed from the "Customer 35

Name" and "City" fields (1st and 6th) to shorten the example.) 36

Introduction to SpreadsheetML

 177

<pivotFields count="28"> 1

 <pivotField showAll="0" includeNewItemsInFilter="1"> 2

 <items count="8"> 3

 <item x="66"/> 4

 <item x="133"/> 5

 <item x="74"/> 6

 <item x="27"/> 7

 <item x="118"/> 8

 <item x="63"/> 9

 <item x="141"/> 10

 <item t="default"/> 11

 </items> 12

 </pivotField> 13

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 14

 <pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1"> 15

 <items count="2"> 16

 <item x="0"/> 17

 <item t="default"/> 18

 </items> 19

 </pivotField> 20

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 21

 <pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1"> 22

 <items count="6"> 23

 <item x="3"/> 24

 <item x="1"/> 25

 <item x="2"/> 26

 <item x="4"/> 27

 <item x="0"/> 28

 <item t="default"/> 29

 </items> 30

 </pivotField> 31

 <pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1"> 32

 <items count="8"> 33

 <item x="0"/> 34

 <item x="1"/> 35

 <item x="2"/> 36

 <item x="3"/> 37

 <item x="4"/> 38

 <item x="5"/> 39

 <item x="6"/> 40

 <item t="default"/> 41

 </items> 42

 </pivotField> 43

Introduction to SpreadsheetML

 178

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 1

 <pivotField axis="axisRow" showAll="0" includeNewItemsInFilter="1"> 2

 <items count="2"> 3

 <item x="0"/> 4

 <item t="default"/> 5

 </items> 6

 </pivotField> 7

 <pivotField axis="axisRow" showAll="0" includeNewItemsInFilter="1"> 8

 <items count="3"> 9

 <item x="1"/> 10

 <item x="0"/> 11

 <item t="default"/> 12

 </items> 13

 </pivotField> 14

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 15

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 16

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 17

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 18

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 19

 <pivotField axis="axisCol" showAll="0" includeNewItemsInFilter="1"> 20

 <items count="2"> 21

 <item x="0"/> 22

 <item t="default"/> 23

 </items> 24

 </pivotField> 25

 <pivotField axis="axisCol" showAll="0" includeNewItemsInFilter="1"> 26

 <items count="2"> 27

 <item x="0"/> 28

 <item t="default"/> 29

 </items> 30

 </pivotField> 31

 <pivotField axis="axisCol" showAll="0" includeNewItemsInFilter="1"> 32

 <items count="4"> 33

 <item x="1"/> 34

 <item x="2"/> 35

 <item x="0"/> 36

 <item t="default"/> 37

 </items> 38

 </pivotField> 39

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 40

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 41

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 42

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 43

Introduction to SpreadsheetML

 179

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 1

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 2

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 3

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 4

 <pivotField dataField="1" showAll="0" includeNewItemsInFilter="1"/> 5

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 6

 <pivotField showAll="0" includeNewItemsInFilter="1"/> 7

</pivotFields> 8

In the context of pivotField: 9

 showAll flag indicating whether to show all items for this field. 10

 includeNewItemsInFilter Flag indicating if new items in the data source are included in the filter 11

automatically after refresh when there was at least one hidden item for the field. 12

 axis indicates on which axis this field is shown on the PivotTable. 13

 dataField indicates that this field is in the values area of the PivotTable. 14

In the context of items, which is a listing of items (by index) in this field. The order in which the items are listed 15

is the order they would appear on a particular axis (row or column, for example). In this example, the first field 16

is "Customer Name" and the first item referenced here is <item x="66"/>,which references the value "Adam L 17

Flores" in the pivotCacheDefinition. Therefore if one added "Customer Name" to the row axis, "Adam L Flores" 18

would be the first row item listed. 19

In the context of item: 20

 t value of 'default' indicates the subtotal or total item. 21

3.9.3.4.4 Row Axis Fields 22

This collection indicates which fields are on the row axis of the PivotTable. 23

<rowFields count="2"> 24

 <field x="7"/> 25

 <field x="8"/> 26

</rowFields> 27

In the context of field within rowFields: 28

 x is a zero based index into the pivotFields collection. 29

For this example, this collection indicates that "Product Category" and "Product Subcategory" are on the row 30

axis of the PivotTable, in that order. 31

Introduction to SpreadsheetML

 180

3.9.3.4.5 Row Items 1

This collection is a listing of all the values on the row axis of the PivotTable. In the spreadsheet example, the 2

item values are found in cells B10:B13. For example, "Bikes" is in B10, and corresponds to the first I element 3

below. 4

<rowItems count="4"> 5

 <i> 6

 <x/> 7

 </i> 8

 <i r="1"> 9

 <x/> 10

 </i> 11

 <i r="1"> 12

 <x v="1"/> 13

 </i> 14

 <i t="grand"> 15

 <x/> 16

 </i> 17

</rowItems> 18

In the context of rowItems: 19

 i expresses all the values (for all fields) in one row of the row axis. There will be an I element for every 20

row in the PivotTable. 21

In the context of i: 22

 r indicates how many fields/item values to "fill down" from the previous row item. 23

Note that the first item has no r explicitly written. Since a default of "0" is specified in the schema, for any 24

item whose r is missing, a default value of "0" is implied. 25

In the context of x: 26

 v is a zero-based index referencing a pivotField item value. There will be as many x elements as 27

there are item values in any particular row. Note that these x elements may not be explicitly written, 28

but instead "inherited" from the previous row/i element, via the value of r. Note also that the 29

pivotField items don't list values explicitly, but instead reference a shared item value in the 30

pivotCacheDefinition part. 31

Note that the first instance of x has no attribute value v associated with it, so v's default value of "0" is implied. 32

Looking at the layout of the PivotTable in the spreadsheet for this example, "Bikes" is the first (and only) item 33

value in the first row, in cell B10. In the XML defining the PivotTable row item values, the first I element 34

corresponds to the first row. There is a single index element x. The first (and only) x element corresponds to 35

Introduction to SpreadsheetML

 181

the first field on the row axis, namely "Product Category", and an index value of "0" indicates that the 0th item 1

in the items collection for that pivotField definition is how to obtain the item value. Note that "Bikes" isn't 2

explicitly listed as a value here, but instead the 0th item is an index to this field's shared items collection in the 3

pivotCacheDefinition part. 4

For the second row, there are two item values, one item value (Bikes) from the first field in that row (Product 5

Category) and one item value (Mountain Bikes) from the second field in that row (Product Subcategory). In the 6

PivotTable, the first item value "Bikes" is hidden from view. In the XML for this example, the second I element 7

expresses both item values for this row. The first item value "Bikes" is expressed implicitly, because the value 8

of r on the second i element is '1', indicating that the first item value from the previous row will be reused 9

again as the first item value for the current row. The second item value is expressed explicitly via the x element 10

under the second i element. The index of '0' indicates that the 0th item in the pivotField element for that field 11

is how to obtain the item value. Note again that the 0th item is itself an index into this field's shared items 12

collection in the pivotCacheDefinition part. 13

The item values for the third row can be discovered in a similar way, so will not be discussed in detail here. 14

In the context of item: 15

 t value of 'default' indicates a grand total as the last row item value. 16

3.9.3.4.6 Column Axis Fields 17

This collection indicates which fields are on the column axis of the PivotTable. 18

<colFields count="3"> 19

 <field x="14"/> 20

 <field x="15"/> 21

 <field x="16"/> 22

</colFields> 23

In the context of field: 24

 x is a zero based index into the pivotFields collection defined in this part. 25

For this example, the collection indicates that "Year", "Quarter" and "Month" are on the column axis of the 26

PivotTable, in that order. 27

3.9.3.4.7 Column Items 28

This collection is a listing of all the values on the column axis of the PivotTable. In this example, the item values 29

are found in cells C6:H8. For example, "2001" / "3" / "July" values are in C7:C9. Those are the first column 30

item values and are referenced by the first <i> element below. 31

Introduction to SpreadsheetML

 182

<colItems count="5"> 1

 <i> 2

 <x/> 3

 <x/> 4

 <x/> 5

 </i> 6

 <i r="2"> 7

 <x v="1"/> 8

 </i> 9

 <i r="2"> 10

 <x v="2"/> 11

 </i> 12

 <i t="default" r="1"> 13

 <x/> 14

 </i> 15

 <i t="default"> 16

 <x/> 17

 </i> 18

</colItems> 19

In the context of colItems: 20

 i expresses all the values (for all fields) in one column of the column axis. There will be an i element for 21

every column in the PivotTable column area. 22

In the context of i: 23

 r indicates how many fields/item values to "fill right" from the previous column. 24

Note that the first item has no r explicitly written so the default value of "0" is implied. 25

In the context of x: 26

 v is a zero-based index referencing a pivotField item value. There will be as many x elements as 27

there are item values in any particular column. Note that these x elements sometimes are not 28

explicitly written, but instead "inherited" from the previous column/i element, via the value of r. Note 29

also that the pivotField items don't list values explicitly, but instead reference a shared item value in 30

the pivotCacheDefinition part. 31

Note that the first instance of x has no attribute value v associated with it, so v's default value of "0" is 32

implied. 33

The first i collection represents all item values for the first column in the column axis area of the PivotTable. 34

The first x in the first i corresponds to the first field in the columns area of the PivotTable, namely "Year". The 35

implied index value of '0' on this x indicates that the item value for this first item in the column is the 0th item 36

Introduction to SpreadsheetML

 183

for this pivotField. The 0th item for this pivotField is itself an index to an item value into this field's shared 1

items collection in the pivotCacheDefinition part, namely "2001". 2

The item values corresponding to the second and third x elements can be found in the same way, arriving at 3

"3" for the second item value, and arriving at "July" for the third item value for this first column. 4

The second i collection expresses all three item values for the second column in the column axis area. The 5

r value of '2' indicates that the first two item values from the previous column will be repeated here, which 6

means that the first item value for this second column will be "2001" again and the second item value for this 7

second column will be "3". The third item value is expressed by the only x element under this second 8

i element, and without further explanation is understood to reference the item value "August". 9

3.9.3.4.8 Report Filter Area Fields 10

This collection describes which fields are found in the report filter area of the PivotTable. 11

<pageFields count="3"> 12

 <pageField fld="2" hier="0"/> 13

 <pageField fld="4" hier="0"/> 14

 <pageField fld="5" hier="0"/> 15

</pageFields> 16

In the context of pageField: 17

 fld is a zero-based index indicating the field to be on the report filter area. 18

 hier is an index of the OLAP hierarchy to which this belongs. 19

3.9.3.4.9 Values Area Fields 20

This collection describes which fields are found in the values area of the PivotTable. 21

<dataFields count="1"> 22

 <dataField name="Sum of Sales Amount" fld="25" baseField="0" baseItem="0"/> 23

</dataFields> 24

In the context of dataField: 25

 name is the name of the values field. 26

 fld is the index of the field being summarized. 27

 baseField is the index of the base field when showDataAs calculation is in use. 28

 baseItem is the index of the base item when showDataAs calculation is in use. 29

3.9.3.4.10 PivotTable Style Information 30

Styles information is discussed in the informative section on spreadsheetML styles. Therefore the XML is 31

provided for completeness, but will not be discussed here. 32

Introduction to SpreadsheetML

 184

<pivotTableStyleInfo name="PivotStyleDark8" showRowHeaders="1" 1

 showColHeaders="1" showRowStripes="0" showColStripes="0" 2

 showLastColumn="1"/> 3

</pivotTableDefinition> 4

3.10 Shared Workbook Revisions 5

3.10.1 Overview 6

The Shared Workbooks architecture enables a spreadsheet application to record revisions made to a workbook 7

(e.g., track changes), and is designed to enable multiple users to edit the same workbook at the same time. 8

Therefore, the application needs to support the ability to read changes made by another user, and update its 9

own state of the same workbook with those changes, even when those changes are made concurrently with 10

other changes made by other users. Inevitably, there will be conflicts, and therefore merge conflict resolution 11

should be supported by the runtime application. 12

This architecture supports the ability to track changes made by a single user as well. 13

3.10.2 How It Works 14

 15

 16

 17

 18

 19

 20

 21

Relationship diagram 22

A Shared Workbook must have shared mode turned on. For unsaved workbooks, this will require a save, 23

because revisions will be stored in the file. 24

Changes to the workbook are saved as Shared Workbook Revision Header parts within the document at each 25

save or time interval specified. 26

A table summarizing the revision logs (revisionHeaders.xml) tracks when changes are made, who made them, 27

and lists the relationship id to the specific Shared Workbook Revision Log part. 28

The application scans the summary table for new change logs and merges them into the workbook. 29

Workbook

Revision

Log

Changes 1

Changes 2

Changes 3

Introduction to SpreadsheetML

 185

3.10.3 Example 1

Consider a series of edits made by different users. 2

3.10.3.1 First Edit 3

Starting with a blank workbook, the first user types "A, B, C" into A1:C1, and "1, 2, 3; 4, 5, 6" into A2:C3, like 4

this: 5

 6

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this 7

change is written. 8

3.10.3.1.1 Summary Revision Table 9

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml). 10

Inside the summary table there is a revision header definition corresponding to the time of the edit: 11

<header guid="{902054C2-C7B5-48BA-BFB2-4D439D9758D6}" 12

 dateTime="2006-04-14T10:33:16" maxSheetId="4" userName="User 1" 13

 r:id="rId2" minRId="1" maxRId="11"> 14

 <sheetIdMap count="3"> 15

 <sheetId val="1"/> 16

 <sheetId val="2"/> 17

 <sheetId val="3"/> 18

 </sheetIdMap> 19

</header> 20

Notice that the user name, userName, and date and time stamp, dateTime, for the edit is stored along with 21

an outline of the sheet structure. Use the r:id value of rId2 and then follow the relationship expressed in 22

revisionHeaders.xml.rels. In this way, the corresponding Shared Workbook Revision Log can be located. 23

3.10.3.1.2 First Edit Revision Log 24

Inside the corresponding Shared Workbook Revision Log part is the following content: 25

Introduction to SpreadsheetML

 186

<revisions xmlns="…" xmlns:r="…"> 1

 <rcc rId="1" sId="1"> 2

 <nc r="A1" t="inlineStr"> 3

 <is> 4

 <t>A</t> 5

 </is> 6

 </nc> 7

 </rcc> 8

 <rcc rId="2" sId="1"> 9

 <nc r="B1" t="inlineStr"> 10

 <is> 11

 <t>B</t> 12

 </is> 13

 </nc> 14

 </rcc> 15

 <rcc rId="3" sId="1"> 16

 <nc r="C1" t="inlineStr"> 17

 <is> 18

 <t>C</t> 19

 </is> 20

 </nc> 21

 </rcc> 22

 <rrc rId="4" sId="1" eol="1" ref="A2:XFD2" action="insertRow"/> 23

 <rcc rId="5" sId="1"> 24

 <nc r="A2"> 25

 <v>1</v> 26

 </nc> 27

 </rcc> 28

 <rcc rId="6" sId="1"> 29

 <nc r="B2"> 30

 <v>2</v> 31

 </nc> 32

 </rcc> 33

 <rcc rId="7" sId="1"> 34

 <nc r="C2"> 35

 <v>3</v> 36

 </nc> 37

 </rcc> 38

 <rrc rId="8" sId="1" eol="1" ref="A3:XFD3" action="insertRow"/> 39

Introduction to SpreadsheetML

 187

 <rcc rId="9" sId="1"> 1

 <nc r="A3"> 2

 <v>4</v> 3

 </nc> 4

 </rcc> 5

 <rcc rId="10" sId="1"> 6

 <nc r="B3"> 7

 <v>5</v> 8

 </nc> 9

 </rcc> 10

 <rcc rId="11" sId="1"> 11

 <nc r="C3"> 12

 <v>6</v> 13

 </nc> 14

 </rcc> 15

</revisions> 16

rId is the revision Id, and indicates the order in which the particular revision should be applied. 17

sId indicates the sheet to which this revision applies. 18

rcc means "revision cell change" 19

nc means new cell, and is of type CT_Cell (see §3.2 for more information on the cell definition). Note that 20

instead of using a shared string table, strings are expressed inline for these cells. 21

rrc means "revision row/column". Note that rrc can have an associated action, like insertRow (or deleteRow), 22

which would cause a row to be inserted (or deleted) at that step in the series of revisions. 23

3.10.3.2 Second Edit 24

During the second edit, bold facing has been applied to A1:C1, and a formula has been applied to A4:C4 to 25

sum the data in the table. For example, A4 contains =SUM(A2:A3). 26

 27

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this 28

change is written. 29

3.10.3.2.1 Summary Revision Table 30

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml). 31

Introduction to SpreadsheetML

 188

Inside the summary table there is a revision header definition corresponding to the time of the edit: 1

<header guid="{A3A5EE09-2092-433C-895D-77D5A15DC847}" 2

 dateTime="2006-04-14T10:34:10" maxSheetId="4" userName="User 2" 3

 r:id="rId3" minRId="12" maxRId="15"> 4

 <sheetIdMap count="3"> 5

 <sheetId val="1"/> 6

 <sheetId val="2"/> 7

 <sheetId val="3"/> 8

 </sheetIdMap> 9

</header> 10

This time the user name has been updated. Use the r:id value of rId3 and then follow the relationship 11

expressed in revisionHeaders.xml.rels. In this way, the corresponding Shared Workbook Revision Log can be 12

located. 13

3.10.3.2.2 Second Edit Revision Log 14

Inside the corresponding Shared Workbook Revision Log part is the following content: 15

<revisions xmlns="…" xmlns:r="…"> 16

 <rfmt sheetId="1" sqref="A1:C1" start="0" length="2147483647"> 17

 <dxf> 18

 19

 20

 21

 </dxf> 22

 </rfmt> 23

 <rrc rId="12" sId="1" eol="1" ref="A4:XFD4" action="insertRow"/> 24

 <rcc rId="13" sId="1"> 25

 <nc r="A4"> 26

 <f>SUM(A2:A3)</f> 27

 </nc> 28

 </rcc> 29

 <rcc rId="14" sId="1"> 30

 <nc r="B4"> 31

 <f>SUM(B2:B3)</f> 32

 </nc> 33

 </rcc> 34

Introduction to SpreadsheetML

 189

 <rcc rId="15" sId="1"> 1

 <nc r="C4"> 2

 <f>SUM(C2:C3)</f> 3

 </nc> 4

 </rcc> 5

 <rcv guid="{34804977-BBD3-40C9-87A7-1779BEE2183C}" action="add"/> 6

</revisions> 7

rfmt indicates a formatting revision 8

start and length indicate where to apply the formatting on the string 9

eol indicates that an insert is happening at the end of a list of data (end row) 10

rcv means "revision custom view", and indicates that a custom view is to be added. 11

3.10.3.3 Third Edit 12

During this editing session, column A has been inserted, and columns have been inserted between the data. 13

Additionally, a row has been inserted between the data and the summary formula row, and at the top of the 14

worksheet. 15

 16

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this 17

change is written. 18

3.10.3.3.1 Summary Revision Table 19

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml). 20

<header guid="{894981D2-DACF-4C1B-951C-EB199EA01DBF}" 21

 dateTime="2006-04-14T10:36:10" maxSheetId="4" userName="User 2" 22

 r:id="rId4" minRId="16" maxRId="20"> 23

 <sheetIdMap count="3"> 24

 <sheetId val="1"/> 25

 <sheetId val="2"/> 26

 <sheetId val="3"/> 27

 </sheetIdMap> 28

</header> 29

Introduction to SpreadsheetML

 190

Use the r:id value of rId4 and then follow the relationship expressed in revisionHeaders.xml.rels. In this way, 1

the corresponding Shared Workbook Revision Log part can be located. 2

3.10.3.3.2 Third Edit Revision Log 3

Inside the corresponding Shared Workbook Revision Log part is the following content: 4

<revisions xmlns="…" xmlns:r="…"> 5

 <rrc rId="16" sId="1" ref="A1:XFD1" action="insertRow"/> 6

 <rrc rId="17" sId="1" ref="A1:A1048576" action="insertCol"/> 7

 <rrc rId="18" sId="1" ref="C1:C1048576" action="insertCol"/> 8

 <rrc rId="19" sId="1" ref="E1:E1048576" action="insertCol"/> 9

 <rrc rId="20" sId="1" ref="A5:XFD5" action="insertRow"/> 10

 <rcv guid="{34804977-BBD3-40C9-87A7-1779BEE2183C}" action="delete"/> 11

 <rcv guid="{34804977-BBD3-40C9-87A7-1779BEE2183C}" action="add"/> 12

</revisions> 13

rrc indicates a "revision to row/column". There are several row inserts and column inserts expressed here. 14

3.10.3.4 Fourth Edit 15

During this edit, a double-underscore cell border was applied to B4 and D4. Also, column F (the data titled "C") 16

was deleted. 17

 18

 19

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this 20

change is written. 21

3.10.3.4.1 Summary Revision Table 22

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml). 23

<header guid="{A478A962-DEB9-43AA-BB25-2C54AFA155F1}" 24

 dateTime="2006-04-14T10:37:14" maxSheetId="4" userName="User 2" 25

 r:id="rId5" minRId="21"> 26

Introduction to SpreadsheetML

 191

 <sheetIdMap count="3"> 1

 <sheetId val="1"/> 2

 <sheetId val="2"/> 3

 <sheetId val="3"/> 4

 </sheetIdMap> 5

</header> 6

Use the r:id value of rId5 and then follow the relationship expressed in revisionHeaders.xml.rels. In this way, 7

the corresponding Shared Workbook Revision Log part can be located. 8

3.10.3.4.2 Fourth Edit Revision Log 9

Inside the corresponding Shared Workbook Revision Log part is the following content: 10

<revisions xmlns="…" xmlns:r="…"> 11

 <rrc rId="21" sId="1" ref="F1:F1048576" action="deleteCol"> 12

 <rfmt sheetId="1" xfDxf="1" sqref="F1:F1048576" start="0" length="0"/> 13

 <rcc rId="0" sId="1" dxf="1"> 14

 <nc r="F2" t="inlineStr"> 15

 <is> 16

 <t>C</t> 17

 </is> 18

 </nc> 19

 <ndxf> 20

 21

 22

 <sz val="11"/> 23

 <color theme="1"/> 24

 <name val="Calibri"/> 25

 <scheme val="minor"/> 26

 27

 </ndxf> 28

 </rcc> 29

 <rcc rId="0" sId="1"> 30

 <nc r="F3"> 31

 <v>3</v> 32

 </nc> 33

 </rcc> 34

 <rcc rId="0" sId="1"> 35

 <nc r="F4"> 36

 <v>6</v> 37

 </nc> 38

 </rcc> 39

 <rcc rId="0" sId="1"> 40

 <nc r="F6"> 41

Introduction to SpreadsheetML

 192

 <f>SUM(F3:F4)</f> 1

 </nc> 2

 </rcc> 3

 </rrc> 4

 <rfmt sheetId="1" sqref="B4" start="0" length="0"> 5

 <dxf> 6

 <border> 7

 <left/> 8

 <right/> 9

 <top/> 10

 <bottom style="double"> 11

 <color auto="1"/> 12

 </bottom> 13

 </border> 14

 </dxf> 15

 </rfmt> 16

 <rfmt sheetId="1" sqref="D4" start="0" length="0"> 17

 <dxf> 18

 <border> 19

 <left/> 20

 <right/> 21

 <top/> 22

 <bottom style="double"> 23

 <color auto="1"/> 24

 </bottom> 25

 </border> 26

 </dxf> 27

 </rfmt> 28

</revisions> 29

The first rrc element, with action="deleteCol" expresses that column F was deleted. Additionally, child 30

collections of rrc contain all the column, formatting, and cell information (values and formulas) that was 31

deleted as part of deleting column F. 32

xfDxf true means a whole row/column of formatting was affected. 33

dxf true means cell change includes format change 34

The rfmt collections at the bottom of this XML indicate that borders were applied to B4 and D4. 35

3.10.3.5 Fifth Edit 36

Rename "Sheet1" to "Published Numbers". 37

Before: 38

Introduction to SpreadsheetML

 193

 1

After: 2

 3

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this 4

change is written. 5

3.10.3.5.1 Summary Revision Table 6

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml). 7

<header guid="{B0CB8BC9-63A4-4830-8821-E03C053BD326}" 8

 dateTime="2006-04-14T10:40:24" maxSheetId="4" userName="User 2" 9

 r:id="rId6" minRId="22"> 10

 <sheetIdMap count="3"> 11

 <sheetId val="1"/> 12

 <sheetId val="2"/> 13

 <sheetId val="3"/> 14

 </sheetIdMap> 15

</header> 16

Use the r:id value of rId6 and then follow the relationship expressed in revisionHeaders.xml.rels. In this way 17

the corresponding Shared Workbook Revision Log part can be located. 18

3.10.3.5.2 Fifth Edit Revision Log 19

Inside the corresponding Shared Workbook Revision Log part is the following content: 20

<revisions xmlns="…" xmlns:r="…"> 21

 <rsnm rId="22" sheetId="1" oldName="[SharedWorkbook.xlsx]Sheet1" 22

 newName="[SharedWorkbook.xlsx]Published Numbers"/> 23

</revisions> 24

rsnm means "revision: sheet name". 25

oldName indicates the name of the sheet before renaming it. 26

newName indicates the name of the sheet after renaming it. 27

Introduction to SpreadsheetML

 194

3.11 Query Tables 1

3.11.1 Overview 2

A QueryTable object is a range that is bound to an external data source. It is a cohesive range of cells in a sheet 3

that share a common collection of properties and behaviors, separate from the connection itself. A QueryTable 4

object can be associated with a cell range or a table definition. 5

3.11.2 Web Query Example 6

This example illustrates a range, B2:D6, QueryTable rendering, which is data-bound to a table found on 7

http://www.msn.com, specifically the financial information table usually found on that page. 8

 9

3.11.2.1 QueryTable XML 10

<queryTable xmlns="…" name="www.msn" preserveFormatting="0" 11

 connectionId="1" 12

 autoFormatId="16" applyNumberFormats="0" applyBorderFormats="0" 13

 applyFontFormats="1" applyPatternFormats="1" applyAlignmentFormats="0" 14

 applyWidthHeightFormats="0"/> 15

In the context of queryTable: 16

 name is the name of the QueryTable. 17

 preserveFormatting indicates whether to retain user-applied formatting after refresh or re-apply 18

source data formatting. 19

 connectionId is the workbook connection's id. 20

 autoFormatId identifies (by implied index) the auto-format applied to the QueryTable. 21

All remaining attributes beginning with apply… indicate whether to apply this particular aspect of the auto-22

format definition. 23

3.11.3 Text Import Example 24

This example illustrates a range (B2:D3) QueryTable rendering which is data-bound to a text file. Notice that 25

formulas are entered in E2:E3, the column directly to the right of the QueryTable range. 26

http://www.msn.com/

Introduction to SpreadsheetML

 195

 1

3.11.3.1 QueryTable XML 2

<queryTable xmlns="…" name="Text" refreshOnLoad="1" fillFormulas="1" 3

 removeDataOnSave="1" connectionId="3" autoFormatId="16" 4

 applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="1" 5

 applyPatternFormats="1" applyAlignmentFormats="0" 6

 applyWidthHeightFormats="0"/> 7

In the context of queryTable: 8

 refreshOnLoad value of 1 indicates that this QueryTable should be refreshed when the workbook is 9

opened. 10

 fillFormulas indicates that this QueryTable has immediately adjacent columns (which are not part of 11

the QueryTable range) containing formulas that need to be filled down as the QueryTable grows and 12

shrinks in size after refresh. 13

 removeDataOnSave indicates that the data in the worksheet resulting from the QueryTable refresh 14

should be removed from the worksheet when saved and closed. 15

3.11.4 Access Table Example 16

This example demonstrates a QueryTable that is applied to a Table object. This data came from connecting to 17

an Access database table with four fields: "ID", "Field1", "Field2", and "Field3". "Field3" has been deleted from 18

the QueryTable in the worksheet below. Notice that a calculated column has been added to the Table, in the 19

column titled "CustomClientColumn", which concatenates the values from "Field1" and "Field2". 20

 21

3.11.4.1 QueryTable XML 22

<queryTable xmlns="…" name="Database1.accdb" connectionId="2" 23

 autoFormatId="16" applyNumberFormats="0" applyBorderFormats="0" 24

 applyFontFormats="0" applyPatternFormats="0" applyAlignmentFormats="0" 25

 applyWidthHeightFormats="0"> 26

Introduction to SpreadsheetML

 196

 <queryTableRefresh nextId="6" unboundColumnsRight="1"> 1

 <queryTableFields count="4"> 2

 <queryTableField id="1" name="ID" tableColumnId="1"/> 3

 <queryTableField id="2" name="Field1" tableColumnId="2"/> 4

 <queryTableField id="3" name="Field2" tableColumnId="3"/> 5

 <queryTableField id="5" dataBound="0" tableColumnId="4"/> 6

 </queryTableFields> 7

 <queryTableDeletedFields count="1"> 8

 <deletedField name="Field3"/> 9

 </queryTableDeletedFields> 10

 </queryTableRefresh> 11

</queryTable> 12

In the context of queryTableRefresh: 13

 nextId is the next available Id that can be assigned to a field. This is an optimization done for 14

load/save, to avoid recalculating the value. 15

 unboundColumnsRight are the number of columns on the right side of the QueryTable that aren’t 16

data bound (don’t come from the external data) 17

In the context of queryTableFields: 18

 Each of the queryTableField elements expresses information about one of the columns in the Table 19

that is part of the QueryTable. For example, the right-most column's dataBound is set to 0, indicating 20

that this column is not bound to external data. 21

In the context of queryTable: 22

 queryTableDeletedFields collection expresses which fields returned by the connection have been 23

deleted from the QueryTable. This is tracked so that the connection information does not have to be 24

updated with which columns are no longer required. 25

3.12 External Connection 26

3.12.1 Overview 27

Many spreadsheet users want to be able to access data from external sources: databases, text files, web 28

pages, XML web services, OLAP cubes. Typically, a spreadsheet application will provide abilities for the user to 29

locate, browse, connect to, and query external data sources. Once the data source has been located, 30

connected to, and queried, the resulting data must be rendered in the spreadsheet application, and made 31

available for further analysis. 32

Data sources such as databases are made available for browsing and consumption via data-provider 33

technologies. Typically, the data provider provides a standard interface for accessing the data, and removes 34

the complexity introduced due to each database application's providing non-standard data access APIs. In this 35

Introduction to SpreadsheetML

 197

way, OLEDB providers, for example, can be written for myriad database implementations, and a consumer can 1

always use a single interface (defined by OLEDB) to access these disparate data sources. 2

A live connection to a data source is established by the application at runtime, and can only exist as a live 3

connection while the application is running. There are two types of information about a particular connection: 4

 The information used to establish the connection. 5

 The information and properties about how the connection should be used and how the connection 6

should behave in conjunction with the application. 7

Information about a connection can be supplied by the user as the connection is being established—for 8

example, providing a password, picking a table, applying a filter, or setting behavioral properties such as 9

whether to refresh the data when the workbook is opened and whether to store refreshed data in the 10

worksheet when the workbook is saved. 11

Information about a connection can also be persisted in a connection file separately from the workbook file. In 12

this way a directory or file share containing a variety of these connection files can be considered a library of 13

data connections, for example. 14

Any time a connection is established, whether by using information from a connection file or by gathering the 15

connection information directly from the user, a copy of the connection information is stored in the workbook. 16

Data providers and connection types discussed below are: 17

 ODBC 18

 OLEDB 19

 ADO 20

 DAO 21

 Text Import 22

 Web 23

The corresponding features in SpreadsheetML that render and analyze the data are: 24

 Query Table 25

 Table 26

 XML Map 27

 Pivot Table 28

 The CUBE* Functions 29

3.12.2 OLAP Connection 30

Below is a PivotTable that is rendering data from an OLAP source: 31

Introduction to SpreadsheetML

 198

 1

3.12.3 Pivot XML fragment 2

In this example, the PivotTable data cache records /cacheSource@connectionId="2", which associates 3

this PivotTable to the connection whose id="2" in the workbook connections part. 4

<pivotCacheDefinition … saveData="0" refreshedBy="Chad Rothschiller" 5

 refreshedDate="2006-04-13T16:02:14" backgroundQuery="1" 6

 createdVersion="3" 7

 refreshedVersion="3" minRefreshableVersion="3" recordCount="0"> 8

 <cacheSource type="external" connectionId="2"/> 9

 <cacheFields count="2"> 10

 <cacheField name="[Category].[Category Description]" 11

 caption="Category 12

 Description" numFmtId="0" hierarchy="1" level="1"> 13

 <sharedItems count="4"> 14

 <s v="[Category].[All Category].[Current Year's Actuals]" 15

 c="Current Year's Actuals"/> 16

3.12.4 Connection XML 17

Looking at the XML in the workbook connections part that describes the connection whose id="2": 18

<connection id="2" odcFile=" 19

 c:\…\externalData.odc" keepAlive="1" name="externalData" 20

 description="FoodMart 2000 - Budget Planing" type="5" 21

 refreshedVersion="3" background="1"> 22

 <dbPr connection="Provider=MSOLAP.2;Integrated Security=SSPI;Persist 23

 Security Info=True;Data Source=xlextdat8;Initial 24

 Catalog=AdamTest;Client 25

 Cache Size=25;Auto Synch Period=10000;MDX Compatibility=1" 26

 command="Budget" commandType="1"/> 27

 <olapPr sendLocale="1" rowDrillCount="1000"/> 28

</connection> 29

Attributes on the connection element express properties about the connection. 30

 odcFile indicates the location of the data connection file which was used to create this connection. 31

Data connection files can be created on the local machine, on any network share, or any web location 32

Introduction to SpreadsheetML

 199

whenever the connection is created so that the connection information can be reused if desired. The 1

connection information is copied from the connection file into the spreadsheet. When a connection 2

cannot be established, the spreadsheet application can check the external connection file to see if a 3

newer definition of the connection is available. 4

 name indicates the friendly name of the connection. This name must be unique within a workbook. 5

 keepAlive indicates that the application should hold the connection open once established, instead of 6

closing the connection after retrieving the data. 7

 type value of 5 indicates that this connection type is OLEDB. 8

 refreshedVersion indicates the version of the application which last refreshed this connection. 9

 background value of 1 indicates that background refresh (asynchronous refresh) is enabled. Note that 10

this is not a guarantee that the connection will be refreshed asynchronously. Certain objects may 11

require a connection to be refreshed either synchronously or asynchronously regardless of this setting. 12

Attributes on the dbPr element express additional properties on the connection. 13

 connection expresses the connection string that is needed to establish a connection to the external 14

data source. 15

 command can indicate a table name, a cube name, or an SQL expression requesting data. 16

 commandType indicates what kind of information is found in command: 1 means the value of 17

command is the name of an OLAP cube. 18

Attributes on the olapPr element express properties that apply to connections to OLAP data sources. 19

 sendLocale value of 1 indicates that the client application should send its user interface language 20

locale to the OLAP data provider in order to receive back from the server localized OLAP cube member 21

string values. 22

 rowDrillCount is number of rows to return on a drill through request. 23

3.12.5 Web Query 24

A possible user interface for picking a web source is: 25

 26

Introduction to SpreadsheetML

 200

A possible rendering in the spreadsheet grid might be: 1

 2

3.12.6 QueryTable XML 3

The XML expressing the definition of the QueryTable indicates that it is using the connection whose Id value 4

is 1 (connectionId): 5

<queryTable … name="msn" connectionId="1" autoFormatId="16" 6

 applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="1" 7

 applyPatternFormats="1" applyAlignmentFormats="0" 8

applyWidthHeightFormats="0"/> 9

3.12.7 Connection XML 10

The workbook connection whose Id is 1 is expressed below. 11

<connection id="1" name="Connection" type="4" refreshedVersion="3" 12

 background="1" saveData="1"> 13

 <webPr sourceData="1" parsePre="1" consecutive="1" xl2000="1" 14

 url="http://www.msn.com" htmlTables="1"> 15

 <tables count="1"> 16

 <x v="2"/> 17

 </tables> 18

 </webPr> 19

</connection> 20

Attributes and elements that have been previously discussed are not discussed here. 21

 type value of 4 indicates the connection is a web query connection. 22

 saveData value of 1 indicates that refreshed data will be kept in the sheet when saving the workbook. 23

0 indicates to remove the data from the workbook when saving the workbook. 24

 sourceData value of 1indicates to import and parse the XML data rather than consume the web page's 25

HTML definition. 26

 parsePre value of 1 indicates that text in <PRE> tags is interpreted as tables. 27

 consecutive value of 1 means consecutive delimiters are treated as one delimiter 28

 url is the address indicating where to retrieve data for this query. 29

 htmlTables true means only import html tables 30

tables indicates which HTML table to import from the web page. 31

 v value of 2 indicates that the second table is the one to import. 32

Introduction to SpreadsheetML

 201

3.12.8 Unused Connection 1

A connection can be expressed in a workbook, but not currently used. It remains until deleted by the user 2

explicitly. This simply means that there is no object or feature in the workbook; that is referencing the 3

connection. 4

3.12.9 ODBC 5

A database table imported to the grid, where the data provider is ODBC: 6

 7

When a table object is used to render external data, it is associated with a QueryTable object to store the 8

properties used when a range is associated with external data. Therefore, the Table object references the 9

QueryTable name, which in turns references connectionId to identify the connection in the workbook 10

connections part. 11

3.12.10 Connection XML 12

<connection id="4" name="Query from MS Access Database" type="1" 13

 refreshedVersion="3" background="1" saveData="1"> 14

 <dbPr connection="DSN=MS Access 15

 Database;DBQ=E:\…\Database1.accdb;DefaultDir=E:\Documents and 16

 Settings\chadroth\Desktop;DriverId=25;FIL=MS 17

 Access;MaxBufferSize=2048;PageTimeout=5;" 18

 command="SELECT Table1.ID, 19

 Table1.Field1, Table1.Field2, 20

 Table1.Field3_x000d__x000a_FROM 21

 `E:\…\Database1.accdb`.Table1 Table1"/> 22

</connection> 23

 type value of 1 indicates ODBC connection type. 24

 command contents are an SQL select statement. 25

3.12.11 SQL 26

An implementation might use a data connection wizard to connect to a SQL table; for example: 27

Introduction to SpreadsheetML

 202

 1

The resulting data is rendered in the grid: 2

 3

In this example, a table object is used to render external data, it is associated with a QueryTable object to store 4

the properties used when a range is associated with external data. Therefore, the Table object references the 5

QueryTable name, which in turns references connectionId to identify the connection in the workbook 6

connections part. 7

Introduction to SpreadsheetML

 203

3.12.12 Connection XML 1

<connection id="6" odcFile="c:\…\xlextdat8 Northwind Summary of Sales by 2

 Year.odc" keepAlive="1" 3

 name="xlextdat8 Northwind Summary of Sales by Year" 4

 type="5" refreshedVersion="3" background="1" saveData="1"> 5

 <dbPr connection="Provider=SQLOLEDB.1;Integrated Security=SSPI; 6

 Persist Security Info=True;Initial Catalog=Northwind;Data 7

 Source=xlextdat8;Use Procedure for Prepare=1;Auto 8

 Translate=True;Packet Size=4096;Workstation ID=CHADROTHO12;Use 9

 Encryption for Data=False;Tag with column collation when 10

 possible=False" command=""Northwind"."dbo" 11

 ."Summary of Sales by Year"" commandType="3"/> 12

</connection> 13

 type value of 5 indicates that this connection is using an OLEDB data provider. 14

 commandType value of 3 specifies that a table name is in command 15

 command specifies a table name. 16

3.12.13 Text Import 17

Text Import settings: 18

 19

Note that there are additional settings not pictured here. 20

The resulting data in the grid: 21

Introduction to SpreadsheetML

 204

 1

The range is associated with a QueryTable object. This query table definition references the connectionId used 2

to retrieve the data. 3

3.12.14 Connection XML 4

<connection id="5" name="Text" type="6" refreshedVersion="3" 5

 background="1" saveData="1">… 6

 <textPr codePage="437" sourceFile="E:\ …\Text.txt"> 7

 <textFields count="3"> 8

 <textField type="text"/> 9

 <textField position="5"/> 10

 <textField type="skip" position="10"/> 11

 </textFields> 12

 </textPr> 13

</connection> 14

connection defines the connection 15

 type value of 6 indicates that this is a text import type of connection. 16

textPr expresses properties which are specific to text import connections. 17

 codePage value of 437 indicates that the text file is using the IBM PC (OEM) code page 437 character 18

set. 19

 sourceFile indicates where the file is located. 20

textFields expresses information about the particular fields in the text file. 21

 delimited value of 1 (default) indicates that the text is delimited (variable length). Since this example 22

uses the default value, it is not saved as part of the connection information. 23

 type indicates the data type (user-specified) of the particular field. 24

 position indicates the starting position of the field for fixed-width fields. 25

 thousands specifies the thousands separator character (not in this example, but of enough interest to 26

mention). 27

 tab, space, comma attributes with values of 1 would flag these characters as delimiters (not in this 28

example, but of enough interest to mention). 29

Introduction to SpreadsheetML

 205

3.13 External Links 1

3.13.1 Overview 2

An external link is used to link a workbook to other workbook or to external data. The most frequent 3

occurrence for linking a workbook to other workbooks has to do with formulas. In this case, a formula 4

references a range or name defined in another workbook. Hyperlinks on cells and other spreadsheet objects 5

are also considered an external link. OLE links are yet another technology used to link the workbook to another 6

object. Finally, Dynamic Data Exchange (DDE) servers can be used to access external data. DDE servers are 7

accessed through formulas in the workbook. 8

The goal of the way in which external links are saved is to always write the target source in a relationship file, 9

so that external resources are easily discoverable in lightweight relationship XML rather than deep in the 10

application's XML. 11

3.13.2 Formula Example 12

Consider cells B2 and C2 in the following worksheet, Sheet1: 13

 14

Here, the formulas themselves are displayed in the cells. 15

 16

Here, the results of the formulas are displayed in the cells. 17

The formula is expressed in Sheet1's XML, as shown in the following subclause. 18

3.13.3 Sheet XML 19

The corresponding content from Sheet1.xml is: 20

Introduction to SpreadsheetML

 206

<worksheet …> 1

 <dimension ref="B1:C4"/> 2

 <sheetViews> 3

 <sheetView tabSelected="1" workbookViewId="0"> 4

 <selection activeCell="B2" sqref="B2"/> 5

 </sheetView> 6

 </sheetViews> 7

 <sheetFormatPr defaultRowHeight="15"/> 8

 <cols> 9

 <col min="1" max="1" width="1.7109375" customWidth="1"/> 10

 </cols> 11

 <sheetData> 12

 <row r="1" spans="2:3" customFormat="1" ht="9" customHeight="1"/> 13

 <row r="2" spans="2:3" customFormat="1"> 14

 <c r="B2"> 15

 <f>SUM([1]Sheet1!A1:A3)</f> 16

 <v>6</v> 17

 </c> 18

 <c r="C2"> 19

 <f>[2]!NameInExternalWorkbook</f> 20

 <v>2</v> 21

 </c> 22

 </row> 23

 <row r="4" spans="2:3" customFormat="1"> 24

 <c r="B4" s="1" t="s"> 25

 <v>0</v> 26

 </c> 27

 </row> 28

 </sheetData> 29

 <hyperlinks> 30

 <hyperlink ref="B4" r:id="rId1"/> 31

 </hyperlinks> 32

 <printOptions/> 33

 <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" 34

 header="0.3" footer="0.3"/> 35

 <headerFooter/> 36

</worksheet> 37

3.13.3.1 Cell B2 38

The formula expressed in cell B2 (cell B2 is the c element whose r="B2") is this: 39

SUM([1]Sheet1!A1:A3) 40

Introduction to SpreadsheetML

 207

The external reference to another workbook in this case is tokenized to [1]. The value inside the brackets is a 1

1-based index to the externalReferences collection in the workbook part. 2

3.13.3.2 Cell C2 3

The formula expressed in cell C2 (cell C2 is the c element whose r is C2) is this: 4

[2]!NameInExternalWorkbook 5

The external reference to another workbook in this case is tokenized to [2]. The value inside the brackets is a 6

1-based index to the externalReferences collection in the workbook part. 7

3.13.3.3 Workbook XML 8

The corresponding content from workbook.xml is 9

<workbook …> 10

 <fileVersion lastEdited="4" lowestEdited="4" rupBuild="4012"/> 11

 <workbookPr defaultThemeVersion="123820"/> 12

 <bookViews> 13

 <workbookView xWindow="360" yWindow="270" windowWidth="18735" 14

 windowHeight="11445"/> 15

 </bookViews> 16

 <sheets> 17

 <sheet name="Sheet1" sheetId="1" r:id="rId1"/> 18

 <sheet name="Sheet2" sheetId="2" r:id="rId2"/> 19

 <sheet name="Sheet3" sheetId="3" r:id="rId3"/> 20

 </sheets> 21

 <externalReferences> 22

 <externalReference r:id="rId4"/> 23

 <externalReference r:id="rId5"/> 24

 </externalReferences> 25

 <calcPr calcId="122211"/> 26

 <webPublishing codePage="1252"/> 27

</workbook> 28

The workbook part's externalReferences collection indicates that there are two external workbook references 29

in this workbook. The first supporting external workbook data cache, also stored in this workbook, can be 30

found by following the relationship from the workbook whose Id value is rId4. The second supporting external 31

workbook data cache, also stored in this workbook, can be found by following the relationship from the 32

workbook whose Id value is rId5. 33

3.13.4 Workbook Relationships 34

The corresponding content from workbook.xml.rels is: 35

Introduction to SpreadsheetML

 208

<Relationships xmlns="http://…/package/2006/relationships"> 1

 <Relationship Id="rId8" Type="http://…/sharedStrings" 2

Target="sharedStrings.xml"/> 3

 <Relationship Id="rId3" Type="http://…/worksheet" 4

Target="worksheets/sheet3.xml"/> 5

 <Relationship Id="rId7" Type="http://…/styles" Target="styles.xml"/> 6

 <Relationship Id="rId2" Type="http://…/worksheet" 7

Target="worksheets/sheet2.xml"/> 8

 <Relationship Id="rId1" Type="http://…/worksheet" 9

Target="worksheets/sheet1.xml"/> 10

 <Relationship Id="rId6" Type="http://…/theme" Target="theme/theme1.xml"/> 11

 <Relationship Id="rId5" Type="http://…/externalLink" 12

 Target="externalLinks/externalLink2.xml"/> 13

 <Relationship Id="rId4" Type="http://…/externalLink" 14

 Target="externalLinks/externalLink1.xml"/> 15

 <Relationship Id="rId9" Type="http://…/calcChain" Target="calcChain.xml"/> 16

</Relationships> 17

These relationship expressions indicate that cell B2 is supported by the external workbook data cache located 18

at externalLinks/externalLink1.xml in the package. These relationship expressions also indicate that 19

cell C2 is supported by the external workbook data cache located at externalLinks/externalLink2.xml 20

in the package. 21

3.13.5 Supporting Workbook Cache (Cell C2) 22

The corresponding content from externalLink2.xml is: 23

<externalLink …> 24

 <externalBook xmlns:r="http://schemas.openxmlformats.org 25

 /officeDocument/2006/relationships" r:id="rId1"> 26

 <sheetNames> 27

 <sheetName val="Sheet1"/> 28

 <sheetName val="Sheet2"/> 29

 <sheetName val="Sheet3"/> 30

 </sheetNames> 31

 <definedNames> 32

 <definedName name="NameInExternalWorkbook" 33

 refersTo="='Sheet1'!B1"/> 34

 </definedNames> 35

Introduction to SpreadsheetML

 209

 <sheetDataSet> 1

 <sheetData sheetId="0"> 2

 <row r="1"> 3

 <cell r="B1"> 4

 <v>2</v> 5

 </cell> 6

 </row> 7

 </sheetData> 8

 <sheetData sheetId="1"/> 9

 <sheetData sheetId="2"/> 10

 </sheetDataSet> 11

 </externalBook> 12

</externalLink> 13

Supporting workbook data caches store the top-level structure of the workbook (sheet names, defined names, 14

cell table). Only the cells referenced are cached. This supporting workbook data cache indicates that the 15

workbook being referenced by C2 has three sheets, whose names are "Sheet1", "Sheet2", and "Sheet3", and 16

has a defined name of "NameInExternalWorkbook". Additionally, the cell table shows that cell B1 in this 17

workbook is the cell being referenced. A copy of the cell table is stored locally, inside the workbook containing 18

the external link. 19

The r:id="rId1" on the top level externalLink element indicates the Id of the relationship from the 20

externalLink2.xml part, which indicates the location of the actual external workbook. 21

3.13.6 External Link (Cell C2) 22

The corresponding content from externalLink2.xml.rels is 23

<Relationships …> 24

 <Relationship Id="rId1" Type="http://…/externalLinkPath" 25

 Target="file:///C:\Source2.xlsx" TargetMode="External"/> 26

</Relationships> 27

This relationship indicates that the supporting workbook that C2 references resides on the local drive, at 28

c:\source2.xlsx. 29

3.13.7 Supporting Workbook Cache (Cell B2) 30

The corresponding content from externalLink1.xml is: 31

Introduction to SpreadsheetML

 210

<externalLink …> 1

 <externalBook xmlns:r="http://…/relationships" r:id="rId1"> 2

 <sheetNames> 3

 <sheetName val="Sheet1"/> 4

 <sheetName val="Sheet2"/> 5

 <sheetName val="Sheet3"/> 6

 </sheetNames> 7

 <sheetDataSet> 8

 <sheetData sheetId="0"> 9

 <row r="1"> 10

 <cell r="A1"> 11

 <v>1</v> 12

 </cell> 13

 </row> 14

 <row r="2"> 15

 <cell r="A2"> 16

 <v>2</v> 17

 </cell> 18

 </row> 19

 <row r="3"> 20

 <cell r="A3"> 21

 <v>3</v> 22

 </cell> 23

 </row> 24

 </sheetData> 25

 <sheetData sheetId="1"/> 26

 <sheetData sheetId="2"/> 27

 </sheetDataSet> 28

 </externalBook> 29

</externalLink> 30

This supporting workbook data cache indicates that the workbook being referenced by B2 has three sheets, 31

whose names are "Sheet1", "Sheet2", and "Sheet3". Additionally, the cell table shows that cells A1, A2, and A3, 32

whose values are 1, 2, and 3, respectively, in this workbook are being referenced. A copy of the cell table is 33

stored locally, inside the workbook containing the external link. 34

The r:id="rId1" on the top level externalLink element indicates the Id of the relationship from the 35

externalLink1.xml part, which indicates the location of the actual external workbook. 36

3.13.8 External Link (Cell B2) 37

The corresponding content from externalLink1.xml.rels is 38

Introduction to SpreadsheetML

 211

<Relationships …> 1

 <Relationship Id="rId1" Type="http://…/externalLinkPath" 2

 Target="file:///C:\Source.xlsx" TargetMode="External"/> 3

</Relationships> 4

This relationship indicates that the supporting workbook that C2 references resides on the local drive, at 5

c:\source.xlsx. 6

3.13.9 Hyperlink Example 7

Consider the following worksheet: 8

 9

Cell B4 contains a hyperlink, whose friendly name is "W3C Hyperlink", and whose target is 10

"http://www.w3.org/". 11

3.13.10 Worksheet XML 12

See §3.13.3 for the full XML. Here is the snippet expressing the hyperlink information, whose collection 13

appears immediately after the sheetData collection in this example. 14

<hyperlinks> 15

 <hyperlink ref="B4" r:id="rId1"/> 16

</hyperlinks> 17

The hyperlink XML indicates that cell B4 of this sheet has a hyperlink, whose target can be found by following 18

the relationship whose Id="rId1" from the current sheet. The 'friendly' name of the hyperlink is stored in the 19

cell definition. 20

3.13.11 Relationship 21

The corresponding content from sheet1.xml.rels is: 22

<Relationships …> 23

 <Relationship Id="rId1" Type="http://…/hyperlink" 24

 Target="http://www.w3.org/" TargetMode="External"/> 25

</Relationships> 26

This hyperlink points external to the workbook (TargetMode="External"), and the URL is found in the value of 27

Target to be "http://www.w3.org/". 28

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/

Introduction to SpreadsheetML

 212

3.14 Volatile Dependencies 1

3.14.1 Overview 2

The volatile dependencies part provides a supporting cache of data for Real Time Data (RTD) and CUBE 3

functions in the workbook. Both of these types of functions require connectivity to external servers to retrieve 4

their data. For RTD functions, an RTD interface has been defined for how to provide (on the server side) and 5

retrieve (on the client side) external data. Similarly, CUBE functions are able to access data in OLAP cubes. Each 6

type of function has its own function syntax resulting in a specific piece of information being returned. 7

In the event that the server providing the data is unavailable, a spreadsheet application may want to cache the 8

most recently retrieved values so that when recalculating the spreadsheet, calculated results may be acquired 9

instead of errors. 10

The volatile dependencies part provides that cache of data and supporting information about these functions 11

and their data servers and connections. 12

3.14.2 File Architecture - Relationships 13

 14

 15

 16

 17

The workbook holds the relationship to the volatile dependencies part. 18

3.14.3 Example 19

In this example, both a Real Time Data (RTD) function and CUBE functions are in use. 20

3.14.3.1 Illustration 21

 22

(values shown) 23

Workbook

volatileDependencies

Introduction to SpreadsheetML

 213

 1

(functions shown) 2

3.14.3.2 volatileDependencies.xml 3

<volTypes xmlns="…"> 4

 <volType type="realTimeData"> 5

 <main first="jrtdx.rtd"> 6

 <tp t="s"> 7

 <v>aaa: 4447</v> 8

 <stp/> 9

 <stp>aaa</stp> 10

 <tr r="A1" s="1"/> 11

 </tp> 12

 </main> 13

 </volType> 14

 <volType type="olapFunctions"> 15

 <main first="xlextdat9 Adventure Works DW Adventure Works"> 16

 <tp t="e"> 17

 <v>#N/A</v> 18

 <stp>1</stp> 19

 <tr r="A6" s="1"/> 20

 <tr r="A9" s="1"/> 21

 <tr r="A8" s="1"/> 22

 <tr r="A5" s="1"/> 23

 <tr r="A4" s="1"/> 24

 <tr r="A3" s="1"/> 25

 </tp> 26

 </main> 27

 </volType> 28

</volTypes> 29

3.14.3.2.1 RTD Supporting Data 30

/voltypes/volType@type indicates that the supporting information pertains to an RTD function call. Valid 31

values are realTimeData and olapFunctions 32

Introduction to SpreadsheetML

 214

/volTypes/volType/main@first indicates the ProgId of the RTD server. This value corresponds to the 1

first argument of an RTD function in a worksheet. 2

/volTypes/volType/main/tp contains a listing of topics within the main topic. For the RTD function, this 3

collection will express the remaining parameters of the function, and indicate the last known value and data 4

type of that value. 5

/volTypes/volType/main/tp@t indicates the data type of the value associated with this topics. For this 6

RTD example, the value is "aaa: 4447" whose data type is string. 7

/volTypes/volType/main/tp/v expresses the last known value of this RTD function, "aaa: 4447". 8

/volTypes/volType/main/tp/stp expresses the remaining topics, or function parameters, for this RTD 9

function. Notice that in the example, the second parameter is left empty, and the third parameter is "aaa". 10

/volTypes/volType/main/tp/tr expresses the cells which are dependent on this particular set of topics, 11

and which are associated with this supporting information. 12

3.14.3.2.2 Cube Function Supporting Data 13

Cube functions use the same persistence structure as the RTD supporting data, but the information is 14

interpreted slightly differently. At a high level, main@first indicates the connection name, and the 15

tr elements spell out the cells with cube function calls dependent on this connection. In most cases (when 16

the <stp> value is equal to "1") the remaining information can be ignored. 17

/volTypes/volType/main@first indicates the connection name for the related cube functions. 18

/volTypes/volType/main/tp@t can be ignored when stp value is 1. 19

/volTypes/volType/main/tp/v contains an error value of "#N/A", which can be ignored when stp value 20

is 1. 21

/volTypes/volType/main/tp/stp value of 1 indicates that all of the related cells with calling cube 22

functions have been refreshed. 23

/volTypes/volType/main/tp/tr expresses the cells contain cube functions which are dependent on this 24

connection, and which are associated with this supporting information. 25

3.15 Custom XML Mappings 26

3.15.1 Overview 27

With the pervasiveness of XML data structures and XML web services, it is appropriate for a spreadsheet 28

application to consume XML data structures and render the data in the sheet grid. Furthermore it is 29

appropriate and desirable for the spreadsheet application to be able to generate XML data structures. Finally, 30

since XML is extensible, the kinds of XML structures that can be consumed or produced by a spreadsheet 31

application should be as varied as the number of XML schemas that exist. 32

Introduction to SpreadsheetML

 215

The XML Mapping feature enables adding arbitrary XML data structures and arbitrary XML schema definitions 1

to the workbook, then mapping the various XML nodes to cells and ranges in the workbook. Once an XML 2

Mapping is set up, the application is able to import and export XML instance structures according to the 3

schema definition. 4

While the original schema or XML definition may reside on disk or at some file location outside the workbook, 5

a copy of the schema is stored in the workbook. 6

Every time an XML instance or schema is added to the workbook, a new map object is created which ties 7

together the schemas and where the various elements are mapped in the workbook. 8

Additional properties are stored on each cell and each column of a Table that has an XML map association. 9

3.15.2 File Architecture - Relationships 10

 11

 The workbook owns sheets and the xmlMap definitions. Each sheet references Tables and single cells which 12

are mapped to XML structures. 13

Workbook

Sheet

Table SingleCells

XmlMap

Introduction to SpreadsheetML

 216

3.15.3 Conceptual Model 1

 2

 3

Conceptually all the objects reference a common Map Object, by @id. It is in this way that they come together 4

into a single working feature that can import and export custom XML data. 5

3.15.4 Example 6

In this example both single cells and a Table are shown to have a data binding to an XML structure. 7

Map
Object

Schema
(via

SchemaId)

Table 1
(via

mapId)

Table 2
(via

mapId)

Cell 1 (via
mapId)

Cell 2 (via
mapId)

Introduction to SpreadsheetML

 217

3.15.4.1 Illustration 1

 2

The table in B8:G12 is also data bound to an XML mapping object. The first column, titled "type", is associated 3

with the XML Map named "expense-report_Map", specifically the attribute identified by the xpath expression 4

/expense-report/expense-item@type pointing into the corresponding XML structure. In similar fashion, 5

each of the columns in the Table correspond with elements or attributes in the related XML Map structure. 6

Additionally, cells B3:D3 and B6:D6 are each bound to a single, non-repeating element or attribute from the 7

same XML Map structure. For example, cell B3 corresponds to /expense-report@currency. 8

In this way XML instance structures can be refreshed into the cells and Table region, and XML instance 9

structures can be generated from the data in those ranges of the spreadsheet. In other words, XML structures 10

can be imported and exported to and from the worksheet via the XML Mapping feature. 11

3.15.4.2 The xmlMap XML 12

The xmlMaps part stores the custom schema that has been added to the workbook, and also stores the 13

xmlMap definitions. There can be multiple schemas and xmlMaps in a single workbook. 14

<MapInfo SelectionNamespaces=""> 15

 <Schema ID="Schema1"> 16

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 17

 <xsd:element nillable="true" name="expense-report"> 18

 <xsd:complexType> 19

 <xsd:sequence minOccurs="0"> 20

 <xsd:element minOccurs="0" nillable="true" 21

name="Person" form="unqualified"> 22

 <xsd:complexType> 23

 <xsd:sequence minOccurs="0"> 24

 <xsd:element minOccurs="0" nillable="true" 25

type="xsd:string" name="First" form="unqualified"></xsd:element> 26

Introduction to SpreadsheetML

 218

 <xsd:element minOccurs="0" nillable="true" 1

type="xsd:string" name="Last" form="unqualified"></xsd:element> 2

 <xsd:element minOccurs="0" nillable="true" 3

type="xsd:string" name="Title" form="unqualified"></xsd:element> 4

 <xsd:element minOccurs="0" nillable="true" 5

type="xsd:string" name="Phone" form="unqualified"></xsd:element> 6

 <xsd:element minOccurs="0" nillable="true" 7

type="xsd:string" name="Email" form="unqualified"></xsd:element> 8

 </xsd:sequence> 9

 </xsd:complexType></xsd:element> 10

 <xsd:element minOccurs="0" maxOccurs="unbounded" 11

nillable="true" name="expense-item" form="unqualified"> 12

 <xsd:complexType> 13

 <xsd:all> 14

 <xsd:element minOccurs="0" nillable="true" 15

type="xsd:date" name="Date" form="unqualified"></xsd:element> 16

 <xsd:element minOccurs="0" nillable="true" 17

type="xsd:double" name="expense" form="unqualified"></xsd:element> 18

 <xsd:element minOccurs="0" nillable="true" 19

type="xsd:string" name="description" form="unqualified"></xsd:element> 20

 <xsd:element minOccurs="0" nillable="true" 21

name="Misc" form="unqualified"> 22

 <xsd:complexType> 23

 <xsd:attribute name="misctype" 24

form="unqualified" type="xsd:string"></xsd:attribute> 25

 </xsd:complexType> 26

 </xsd:element> 27

 </xsd:all> 28

 <xsd:attribute name="type" form="unqualified" 29

type="xsd:string"></xsd:attribute> 30

 <xsd:attribute name="expto" form="unqualified" 31

type="xsd:string"></xsd:attribute> 32

 </xsd:complexType> 33

 </xsd:element> 34

 </xsd:sequence> 35

 <xsd:attribute name="currency" form="unqualified" 36

type="xsd:string"></xsd:attribute> 37

 <xsd:attribute name="detailed" form="unqualified" 38

type="xsd:boolean"></xsd:attribute> 39

 <xsd:attribute name="total-sum" form="unqualified" 40

type="xsd:double"></xsd:attribute> 41

 </xsd:complexType> 42

 </xsd:element> 43

Introduction to SpreadsheetML

 219

 </xsd:schema> 1

 </Schema> 2

 <Map ID="1" Name="expense-report_Map" RootElement="expense-report" 3

SchemaID="Schema1" ShowImportExportValidationErrors="false" AutoFit="true" 4

Append="false" PreserveSortAFLayout="true" PreserveFormat="true"> 5

 <DataBinding FileBinding="true" DataBindingLoadMode="1"/> 6

 </Map> 7

</MapInfo> 8

 /MapInfo@SelectionNamespaces ties the prefix to the actual namespace. This is used when 9

writing xpath expressions at runtime against the XML instance structures, because the xpath 10

expressions use namespace prefixes instead of the fully spelled out namespace. 11

 /MapInfo/Schema stores the schemas for a particular XML map object. There can be multiple 12

<Schema> elements in a workbook, one for each XML map. 13

 /MapInfo/Schema@ID identifies the schema collection used to define a particular XML map object. 14

 /MapInfo/Map/@ID identifies the map object. 15

 /MapInfo/Map@Name is the friendly name of the map object. 16

 /MapInfo/Map@RootElement is the name of the root element of the XML instance (schemas can 17

define more than one root node). 18

 /MapInfo/Map@SchemaID identifies which schema collection the map uses. 19

 /MapInfo/Map@ShowImportExportValidationErrors indicates that when an XML instance is 20

imported or exported, the schema should be used to validate the instance, and schema errors should 21

be shown to the user. 22

 /MapInfo/Map@AutoFit indicates that after refresh, all the cells should be ‘best fitted’. 23

 /MapInfo/Map@Append means that when refreshed, don’t discard existing data, but append new 24

data to it. 25

 /MapInfo/Map@PreserveSortAFLayout indicates whether to keep filters on (Tables). 26

 /MapInfo/Map@PreserveFormat indicates whether to keep the cell formatting applied or re-apply 27

based on schema data type. 28

3.15.4.3 The Table XML 29

The only difference with table definitions that are bound to XML is that @tableType="xml" and each column 30

has an additional set of xml-specific properties, contained in the <xmlColumnPr> collection, which appears 31

once for every column in the Table which has an XML data binding. 32

<table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/5/main" 33

id="7" name="Table7" displayName="Table7" ref="B8:G12" tableType="xml" 34

totalsRowShown="0" connectionId="1"> 35

 <autoFilter ref="B8:G12"/> 36

 <tableColumns count="6"> 37

 <tableColumn id="1" uniqueName="type" name="type"> 38

 <xmlColumnPr mapId="1" xpath="/expense-report/expense-item/@type" 39

xmlDataType="string"/> 40

Introduction to SpreadsheetML

 220

 </tableColumn> 1

 <tableColumn id="2" uniqueName="expto" name="expto"> 2

 <xmlColumnPr mapId="1" xpath="/expense-report/expense-item/@expto" 3

xmlDataType="string"/> 4

 </tableColumn> 5

 <tableColumn id="3" uniqueName="Date" name="Date"> 6

 <xmlColumnPr mapId="1" xpath="/expense-report/expense-item/Date" 7

xmlDataType="date"/> 8

 </tableColumn> 9

 <tableColumn id="4" uniqueName="expense" name="expense"> 10

 <xmlColumnPr mapId="1" xpath="/expense-report/expense-item/expense" 11

xmlDataType="double"/> 12

 </tableColumn> 13

 <tableColumn id="5" uniqueName="description" name="description"> 14

 <xmlColumnPr mapId="1" xpath="/expense-report/expense-15

item/description" xmlDataType="string"/> 16

 </tableColumn> 17

 <tableColumn id="6" uniqueName="misctype" name="misctype"> 18

 <xmlColumnPr mapId="1" xpath="/expense-report/expense-19

item/Misc/@misctype" xmlDataType="string"/> 20

 </tableColumn> 21

 </tableColumns> 22

 <tableStyleInfo name="TableStyleMedium7" showFirstColumn="0" 23

showLastColumn="0" showRowStripes="1" showColumnStripes="0"/> 24

</table> 25

The column in the Table titled "type" is bound to an XML mapping, whose map object Id @mapId is "1". The 26

@xpath value indicates an xpath expression to which this Table column is associated. In this example the Table 27

column "type" corresponds to @type, which is an attribute of the <expense-item> collection. The 28

corresponding custom schema definition for @type indicates a data type of string. This is stored as an xml 29

column property as well, in @xmlDataType. This is used for interpreting the data on import and export, and is 30

also used to format the cells for proper rendering in the range. 31

The remaining columns have similar properties set and can be understood from the discussion above. 32

3.15.4.4 Single Cell XML 33

Contents of tableSingleCells.xml 34

<singleXmlCells 35

xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/5/main"> 36

 <singleXmlCell id="1" name="Table1" displayName="Table1" r="B3" 37

connectionId="1"> 38

 <xmlCellPr id="1" uniqueName="currency"> 39

Introduction to SpreadsheetML

 221

 <xmlPr mapId="1" xpath="/expense-report/@currency" 1

xmlDataType="string"/> 2

 </xmlCellPr> 3

 </singleXmlCell> 4

 <singleXmlCell id="2" name="Table2" displayName="Table2" r="C3" 5

connectionId="1"> 6

 <xmlCellPr id="1" uniqueName="detailed"> 7

 <xmlPr mapId="1" xpath="/expense-report/@detailed" 8

xmlDataType="boolean"/> 9

 </xmlCellPr> 10

 </singleXmlCell> 11

 <singleXmlCell id="3" name="Table3" displayName="Table3" r="D3" 12

connectionId="1"> 13

 <xmlCellPr id="1" uniqueName="total-sum"> 14

 <xmlPr mapId="1" xpath="/expense-report/@total-sum" 15

xmlDataType="double"/> 16

 </xmlCellPr> 17

 </singleXmlCell> 18

 <singleXmlCell id="4" name="Table4" displayName="Table4" r="B6" 19

connectionId="1"> 20

 <xmlCellPr id="1" uniqueName="First"> 21

 <xmlPr mapId="1" xpath="/expense-report/Person/First" 22

xmlDataType="string"/> 23

 </xmlCellPr> 24

 </singleXmlCell> 25

 <singleXmlCell id="5" name="Table5" displayName="Table5" r="C6" 26

connectionId="1"> 27

 <xmlCellPr id="1" uniqueName="Last"> 28

 <xmlPr mapId="1" xpath="/expense-report/Person/Last" 29

xmlDataType="string"/> 30

 </xmlCellPr> 31

 </singleXmlCell> 32

 <singleXmlCell id="6" name="Table6" displayName="Table6" r="D6" 33

connectionId="1"> 34

 <xmlCellPr id="1" uniqueName="Email"> 35

 <xmlPr mapId="1" xpath="/expense-report/Person/Email" 36

xmlDataType="string"/> 37

 </xmlCellPr> 38

 </singleXmlCell> 39

</singleXmlCells> 40

A single cell which has been mapped to an XML node is expressed in much the same way that an entire table is 41

expressed. 42

Introduction to SpreadsheetML

 222

The <singleXmlCell> collection is the top level object, like the Table, which identifies the cell in question. 1

The <xmlCellPr> collection identifies the name for the only 'column' in this structure, the single cell. In this 2

way it is much like a table column definition and the table column-level properties. 3

The <xmlPr> collection expresses the xml properties for this cell. 4

3.16 Formulas 5

3.16.1 Introduction 6

A SpreadsheetML formula is an equation that performs a calculation that typically involves the values of one or 7

more cells in one or more worksheets. 8

A formula is an expression that can contain the following: constants (§3.16.2), operators (§3.16.3), cell 9

references (§3.16.4), calls to functions (§3.16.5), and names (§3.16.6). 10

Consider the formula PI()*(A2^2). In this case, 11

 PI() results in a call to the function PI, which returns the value of π. 12

 The cell reference A2 returns the value in that cell. 13

 2 is a numeric constant. 14

 The caret (^) operator raises its left operand to the power of its right operand. 15

 The parentheses, (and), are used for grouping. 16

 The asterisk (*) operator performs multiplication of its two operands. 17

3.16.2 Constants 18

A constant is a predefined value that is not calculated, and, therefore, does not change. A constant can be any 19

of the following: 20

 A real number 21

 The logical values TRUE and FALSE 22

 A string literal 23

 An array constant 24

 An error constant 25

3.16.3 Operators 26

An operator is a symbol that specifies the type of operation to perform on one or more operands. There are 27

arithmetic, comparison, text, and reference operators. 28

Operators

Family Operator Description Precedence

Introduction to SpreadsheetML

 223

Operators

Reference
operators

: Binary range operator, which takes two cell
reference (§3.16.3) operands, and results in
one reference to the cells inclusive of, and
between, those references. For example,
SUM(B5:C15), which references 11 cells.

highest

, Binary union operator, which takes two cell
reference (§3.16.3) operands, and results in
one reference to all those, possibly non-
contiguous, cells. For example,
SUM((B5:B15,D5:D15))), which
references 22 cells, 11 from column B, and 11
from column D. The grouping parentheses
are necessary to indicate that the comma is
an operator rather than a punctuator
separating two arguments.

space Binary intersection operator, which takes two
cell reference (§3.16.3) operands, and results
in one reference to those, possibly non-
contiguous, cells that are common. If the
intersection is empty, the result is #NULL!.
For example, COUNT((B1:C1) (C1:D1)),
which results in a reference to C1, while
COUNT((B1:D1) (B1,D1)) results in a
single reference to B1 and D1.

Arithmetic
operators

- Unary minus

% Percentage (unary postfix), which divides its
operand by 100. For example, 10.5%, which
results in 0.105.

^ Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

Text operator & Text concatenation (Each of the two
operands is converted to text, if necessary,
before concatenation.)

Comparison
operators

= Equal-to lowest

<> Not-equal-to

< Less-than

<= Less-than or equal-to

> Greater-than

Introduction to SpreadsheetML

 224

Operators

>= Greater-than-or-equal-to

 1

Given that cell E38 contains the value 4, and cell F38 contains the value 2, the formula 2

((-1+E38^2)*3-F38)/2 3

produces the result 21.5. 4

3.16.4 Cell References 5

Each set of horizontal cells in a worksheet is a row, and each set of vertical cells is a column. A cell's row and 6

column combination designates the location of that cell. 7

A cell reference designates one or more cells on the same worksheet. Using references, one can: 8

 Use data contained in different parts of the same worksheet in a single formula. 9

 Use the value from a single cell in several formulas. 10

 Refer to cells on other sheets in the same workbook, and even to other workbooks. (References to 11

cells in other workbooks are called links.) 12

There are two cell reference styles: A1 and R1C1. 13

 In the A1 reference style, each row has a numeric heading numbered sequentially from the top down, 14

starting at 1. Each column has an alphabetic heading named sequentially from left-to-right, A–Z, then 15

AA–AZ, BA–BZ, …, ZA–ZZ, AAA–AAZ, ABA–ABZ, and so on. Column letters are not case-sensitive. 16

 17

A relative reference to a single cell is written as its column letter immediately followed by its row 18

number. A relative reference to a whole row is written as its row number. A relative reference to a 19

whole column is written as its column letter. A reference to a range of two or more cells is written as 20

two single-cell references separated by the binary range operator (:). An absolute A1 reference is 21

made up of a cell's column letter followed by its row number, with each being preceded by a dollar 22

character ($). For example, A2, B34, and B5:D8 are relative A1 references. A2, B34, and 23

B5:D8 are absolute A1 references. $A2, B$34, and $B5:D$8 are mixed A1 references. 24

 In the R1C1 reference style, each row has a numeric heading numbered sequentially from the top 25

down, starting at 1. Each column has a numeric heading numbered sequentially from left-to-right, 26

starting at 1. 27

 28

A whole row is referenced by omitting the column, and a whole column is referenced by omitting the 29

row. An absolute row or column reference uses absolute row or column numbers, respectively. A 30

relative row or column reference uses, respectively, row or column offsets from the cell containing the 31

formula, with a negative offset indicating a row to the left or a column above, and a positive offset 32

indicateing a row to the right or a column below. Specifying an offset of zero is equivalent to omitting 33

Introduction to SpreadsheetML

 225

that offset and its delimiting brackets. For example, R[-2]C refers to the cell two rows up and in the 1

same column, R[2]C[2] refers to the cell two rows down and two columns to the right, R2C2 refers 2

to the cell in the second row and in the second column, R[-1] refers to the entire row above the 3

active cell, and R refers to the current row. 4

The R1C1 alternate reference style can only be used at runtime. 5

3.16.5 Functions 6

A function is a named formula that takes zero or more arguments, performs an operation, and, optionally, 7

returns a result. Some examples of function calls are: PI(), POWER(A1,B3), and SUM(C6:C10). 8

There are more than 300 predefined functions defined by this Office Open XML specification. User-defined 9

functions are also permitted. 10

3.16.6 Names 11

A name is an alias for a constant, a cell reference, or a formula. A name in a formula can make it easier to 12

understand the purpose of that formula. For example, the formula SUM(FirstQuarterSales) is easier to 13

identify than SUM(C20:C30). 14

3.16.7 Types and Values 15

Each expression has a type. SpreadsheetML formulas support the following types: array, error, logical, number, 16

and text. 17

An array value or constant represents a collection of one or more elements, whose values can have any type 18

(i.e., the elements of an array need not all have the same type). 19

3.16.8 Error values 20

The evaluation of an expression can result in an error having one of a number of error values. These error 21

values are: 22

Error Value Reason for Occurrence

#DIV/0! Intended to indicate when any number, including zero, is divided by zero.

#N/A Intended to indicate when a designated value is not available. For example, Some
functions, such as SUMX2MY2, perform a series of operations on corresponding
elements in two arrays. If those arrays do not have the same number of elements,
then for some elements in the longer array, there are no corresponding elements in
the shorter one; that is, one or more values in the shorter array are not available.
This error value can be produced by calling the function NA.

#NAME? Intended to indicate when what looks like a name is used, but no such name has been
defined. For example, XYZ/3, where XYZ is not a defined name. Total is & A10,
where neither Total nor is is a defined name. Presumably, "Total is " & A10
was intended. SUM(A1C10), where the range A1:C10 was intended.

Introduction to SpreadsheetML

 226

Error Value Reason for Occurrence

#NULL! Intended to indicate when two areas are required to intersect, but do not. For
example, In the case of SUM(B1 C1), the space between B1 and C1 is treated as the
binary intersection operator, when a comma was intended.

#NUM! Intended to indicate when an argument to a function has a compatible type, but has a
value that is outside the domain over which that function is defined. (This is known as
a domain error.) For example, Certain calls to ASIN, ATANH, FACT, and SQRT might
result in domain errors.
Intended to indicate that the result of a function cannot be represented in a value of
the specified type, typically due to extreme magnitude. (This is known as a range
error.) For example, FACT(1000) might result in a range error.

#REF! Intended to indicate when a cell reference is invalid. For example, If a formula
contains a reference to a cell, and then the row or column containing that cell is
deleted, a #REF! error results. If a worksheet does not support 20,001 columns,
OFFSET(A1,0,20000) will result in a #REF! error.

#VALUE! Intended to indicate when an incompatible type argument is passed to a function, or
an incompatible type operand is used with an operator. For example, In the case of a
function argument, a number was expected, but text was provided. In the case of
1+"ABC", the binary addition operator is not defined for text.

3.16.9 Dates and Times 1

Each unique instant in SpreadsheetML time is represented as a distinct non-negative numeric serial value, 2

which is made up of an integer date component and a fractional time component. As dates and times are 3

numeric values, they can take part in arithmetic operations. 4

Numerous functions take as arguments one or more serial values or strings representing dates and/or times. 5

Functions that care only about the date shall ignore any time information that is provided. Functions that care 6

only about the time shall ignore any date information that is provided. 7

3.16.9.1 Date Representation 8

Going forward in time, the date component of a serial value increases by 1 each day. 9

There are two different bases for serial values: 10

 In the 1900 date base system, the lower limit is January 1, 1900, which has serial value 1. The upper-11

limit is December 31, 9999, which has serial value 2,958,465. 12

 In the 1904 date base system, the lower limit is January 1, 1904, which has serial value 0. The upper-13

limit is December 31, 9999, which has serial value 2,957,003. 14

As to which date base system an implementation uses by default or whether it allows its users to switch 15

between date base systems, is unspecified. 16

For the 1900 date base system: 17

 18

javascript:AppendPopup(this,'IDH_xldefOperand_2')

Introduction to SpreadsheetML

 227

DATEVALUE("01-Jan-1900") results in the serial value 1.0000000… 1

DATEVALUE("03-Feb-1910") results in the serial value 3687.0000000… 2

DATEVALUE("01-Feb-2006") results in the serial value 38749.0000000… 3

DATEVALUE("31-Dec-9999") results in the serial value 2958465.0000000… 4

For the 1904 date base system: 5

 6

DATEVALUE("01-Jan-1904") results in the serial value 0.0000000… 7

DATEVALUE("03-Feb-1910") results in the serial value 2225.0000000… 8

DATEVALUE("01-Feb-2006") results in the serial value 37287.0000000… 9

DATEVALUE("31-Dec-9999") results in the serial value 2957003.0000000… 10

3.16.9.2 Time Representation 11

The time component of a serial value ranges in value from 0–0.99999999, and represents times from 0:00:00 12

(12:00:00 AM) to 23:59:59 (11:59:59 P.M.), respectively. 13

Going forward in time, the time component of a serial value increases by 1/86,400 each second. (As such, the 14

time 12:00 has a serial value time component of 0.5.) 15

TIMEVALUE("00:00:00") results in the serial value 0.0000000… 16

TIMEVALUE("00:00:01") results in the serial value 0.0000115… 17

TIMEVALUE("10:05:54") results in the serial value 0.4207639… 18

TIMEVALUE("12:00:00") results in the serial value 0.5000000… 19

TIMEVALUE("23:59:59") results in the serial value 0.9999884… 20

3.16.9.3 Combined Date and Time Representation 21

Any date component can be added to any time component to produce a serial value for that date/time 22

combination. 23

For the 1900 date base system: 24

 25

DATE(1910,2,3)+TIME(10,5,54) results in the serial value 3687.4207639… 26

DATE(1900,1,1)+TIME(12,0,0) results in the serial value 1.5000000… 27

DATE(9999,12,31)+TIME(23,59,59) results in the serial value 2958465.9999884… 28

For the 1904 date base system: 29

 30

DATE(1910,2,3)+TIME(10,5,54) results in the serial value 2225.4207639… 31

DATE(1904,1,1)+TIME(12,0,0) results in the serial value 0.5000000… 32

DATE(9999,12,31)+TIME(23,59,59) results in the serial value 2957003.9999884… 33

Introduction to SpreadsheetML

 228

3.16.10 XML Representation 1

A formula is represented in a worksheet's XML by an f element that contains the text of the formula, and a 2

v element that contains the text version of the last computed value for that formula. This pair of elements is 3

inside a c element, which is, in turn, is inside a row element. Consider the scalar formula SQRT(C2^2+D2^2), 4

where C2 refers to a cell containing the number 12.5, and D2 refers to a cell containing the number 9.6. The 5

corresponding XML might be as follows: 6

<row r="2" spans="2:4"> 7

 <c r="B2" s="40"> 8

 <f>SQRT(C2^2+D2^2)</f> 9

 <v>15.761027885261798</v> 10

 </c> 11

 <c r="C2" s="0"> 12

 <v>12.5</v> 13

 </c> 14

 <c r="D2" s="0"> 15

 <v>9.6</v> 16

 </c> 17

</row> 18

In the scalar formula CONCATENATE("The total is ",C7," units"), C7 refers to a cell containing the 19

number 23. The corresponding XML might be as follows: 20

<row r="7" spans="2:4" ht="285"> 21

 <c r="B7" s="4" t="str"> 22

 <f>CONCATENATE("The total is ",C7," units")</f> 23

 <v>The total is 23 units</v> 24

 </c> 25

 <c r="C7" s="0"> 26

 <v>23</v> 27

 </c> 28

</row> 29

As the function CONCATENATE returns a string, the value for the cell's t attribute is str. 30

Introduction to PresentationML

 229

4. Introduction to PresentationML 1

This clause is informative. 2

This clause contains a detailed introduction to the structure of a PresentationML document. 3

The PresentationML file format can be broken down into the following subjects: 4

 Presentation 5

 Slides 6

 Slide Content 7

 Animation 8

There are other schemas—most notably DrawingML—that make up a sizeable chunk of the PresentationML 9

file format. These schemas are addressed separately in §5. 10

4.1 Basics 11

4.1.1 Introduction 12

This subclause provides a high-level overview of the content described in the following schemas: pml-13

baseTypes.xsd, pml-presentation.xsd, pml-presentationProperties.xsd, and pml-viewProperties.xsd. 14

The PresentationML file format can be broken down into the following subjects: 15

 Presentation 16

 Slides 17

 Slide Content 18

 Animation 19

The best way to understand the content in each of these subjects is to cover them in that particular order. 20

The eight schemas that collectively represent the PresentationML file format can be grouped by subject as 21

follows: 22

Presentation Slide Slide content Animation

pml-baseTypes.xsd pml-slide.xsd pml-
embedding.xsd

pml-
animationInfo.xsd

pml-presentation.xsd pml-comments.xsd

pml-
presentationProperties.xsd

pml-viewProperties.xsd

Introduction to PresentationML

 230

 1

There are other schemas—most notably DrawingML—that make up a sizeable chunk of the PresentationML 2

file format. These schemas are addressed separately. 3

This subclause introduces the first subject, “Presentation”. Other subclauses build on this foundation. 4

4.1.2 Basic Utilities 5

The schema pml-baseTypes.xsd contains a set of complex types and simple types that are used by other 6

schemas. The types, or utilities, are used in a variety of cases. Their single implementation provides for rapid 7

and less error-prone changes throughout an implementation. 8

To provide some insight into the type of information that is being repurposed, here is a sample of these 9

utilities: 10

 Empty Element 11

 Name 12

 Direction 13

 Index and Index Range 14

 Slide Show ID 15

 Slide List Choice 16

 Slide Relationship 17

 Customer Data 18

 Future Extensibility 19

Each of these is discussed in the following subclauses. 20

4.1.2.1 Empty Element 21

Sometimes, the simple presence of an element is sufficient to convey meaning. That is, in some cases, you do 22

not necessarily need information to be a Boolean, an integer, or complex type. 23

A simple example is the Show Type element group. In this case, a slide show can be one of three types: 24

present, browse, or kiosk. The schema for this element group is as follows: 25

<xsd:group name="EG_ShowType"> 26

 <xsd:choice> 27

 <xsd:element name="present" type="CT_Empty"> 28

 </xsd:element> 29

 <xsd:element name="browse" type="CT_ShowInfoBrowse"> 30

 </xsd:element> 31

 <xsd:element name="kiosk" type="CT_Empty"> 32

 </xsd:element> 33

 </xsd:choice> 34

</xsd:group> 35

Introduction to PresentationML

 231

4.1.2.2 Name 1

Many constructs within a presentation have names associated with them. In some cases, the names are 2

machine-generated, such as shape names (e.g., rectangle1), while others are user-defined, such as slide shows 3

(e.g., customer-ready). 4

In one implementation the name simple type is simply an xsd:string. The intent is to restrict this to the 5

appropriate pattern allowed for named constructs. The tentative restriction pattern is: 6

[\t]*[^ \t].* 7

4.1.2.3 Direction 8

This multi-purpose simple type is used to convey horizontal versus vertical direction of a variety of types. Such 9

usage can be found in the definition of slide transitions and various shape effects. 10

4.1.2.4 Index and Index Range 11

These two utilities are generally used to denote a contiguous set of items within a list. The classic example of 12

usage would be the selection of a set of slides to print. 13

From a schema-perspective, there is no way to enforce that the start index be equal to or less than the end 14

index. 15

4.1.2.5 Slide Show ID 16

This defines the ID for a slide show (also called a custom show). Because slide shows can be named, and that 17

name can change, an implementation needs a method of referring to a slide show that can withstand name 18

changes made by the user. In many cases, for example, with a slide, we can leverage the fact that each slide 19

has a part within the package, in which case we can use the relationship ID. However, since there is no part for 20

each slide show, we are forced to generate an unsigned integer for each slide show and use that. 21

There is nothing in the schema that prevents two or more slide shows from having the same ID. 22

4.1.2.6 Slide List Choice 23

There are many cases in which a user needs to specify a set of slides for an operation. The canonical example 24

is what slides to include in your slide show. Because this operation is frequently required in the file format, 25

one implementation has provided a utility to facilitate this: 26

<xsd:group name="EG_SlideListChoice"> 27

 <xsd:choice> 28

 <xsd:element name="sldAll" type="CT_Empty" /> 29

 <xsd:element name="sldRg" type="CT_IndexRange" /> 30

 <xsd:element name="custShow" type="CT_CustomShowId" /> 31

 </xsd:choice> 32

</xsd:group> 33

Introduction to PresentationML

 232

As the schema above declares, when selecting a set of slides, the user can select all of the slides, a slide range 1

(by declaring a pair of start and end indices) or a particular custom show. 2

4.1.2.7 Slide Relationship 3

As described in the Slide Show ID paragraphs above, there are many situations where the format needs to 4

store an ordered list of slides, and does so by storing their slide IDs. This is implemented using two types: a list 5

entry complex type and a list complex type: 6

<xsd:complexType name="CT_SlideRelationshipListEntry"> 7

 <xsd:attribute ref="r:id" use="required"/> 8

</xsd:complexType> 9

<xsd:complexType name="CT_SlideRelationshipList"> 10

 <xsd:sequence> 11

 <xsd:element name="sld" type="CT_SlideRelationshipListEntry" 12

 minOccurs="0" maxOccurs="unbounded"/> 13

 </xsd:sequence> 14

</xsd:complexType> 15

4.1.2.8 Customer Data 16

There is a set of utilities that facilitate the storage of customer XML data within the file format. Although a 17

topic for a separate paper, essentially, this functionality comes down to the ability to store customer-defined 18

XML in the file format in a way that it can be easily queried, modified and/or surfaced in the presentation. 19

Suffice it to say, the data is stored in a separate part within the package, and hence the utility pairs the object 20

using it with the part within the package. 21

4.1.2.9 Future Extensibility 22

There is functionality that provides the ability to extend a subset of objects within the file format for inclusion 23

of additional data over the lifetime of the file format. The utilities provide both the ability to add an 24

alternative representation (e.g., provide a raster image in addition to the XML data for a diagram) as well as 25

additional properties to the objects. 26

4.1.3 The Presentation Object 27

The schema pml-presentation.xsd defines the content of the principal or start part for a PresentationML 28

document. This content includes both structural and presentation-level data for the presentation. 29

Astute readers will quickly identify an apparent duplication of presentation-level data, as there is also a 30

separate schema file, pml-presentationProperties.xsd, which contains presentation-level data. That being said, 31

there is actually no duplication. Rather, the differentiation of what presentation-level data goes into which 32

part is based on two user scenarios: document signatures and document sanitization. 33

In a document signature scenario, assume a user digitally signs a presentation. There exist two types of data 34

within the presentation package: data which changes the “content” of the presentation and data which is 35

intended to configure an editor or the behavior of an editor. In the first case, any modification to data which 36

Introduction to PresentationML

 233

changes the “content” of the presentation must invalidate the signature; in the second case, any modification 1

to that data should not invalidate the signature. 2

A classic example of this scenario deals with Kinsoku information and the publish path in the HTML settings. If 3

the user changes the Kinsoku information in a file, the file will look (and potentially mean) something different. 4

This is in contrast to a user setting a new HTML publish path for their particular computer. 5

In a document sanitization scenario, users want to remove all non-necessary information from the file. A 6

typical usage case would be posting a presentation to a company’s Internet site. In this case, you don’t want 7

certain configuration information publicly available. The ideal manner of removal would be to remove an 8

entire part from the presentation package as opposed to editing a part from a package. 9

Going back to our Kinsoku and HTML publish path example above, the Kinsoku information needs to remain 10

with the file. The HTML publish path could give away internal information about web servers that could be 11

used to facilitate an attack or, more likely, simply provide information about the author to the public (e.g., the 12

path c:\documents and settings\shawnv\webpages strongly implies that “shawnv” published this document). 13

Going back to the original question—what presentation-level data goes in which part—we see that data that 14

will not invalidate a digital signature or data that should be removed during a sanitization pass should be 15

stored in the part associated with the pml-presentationProperties.xsd schema and other presentation-level 16

data should be stored in the part associated with the pml-presentation.xsd schema. 17

In addition to structural and presentation-level data defined by this schema, there are also definitions for 18

handling customer data and future extensibility. Again, both of these will be addressed in additional papers. 19

4.1.3.1 Structural Information 20

From a structural information perspective, there are two sets of data defined in this schema: core lists and 21

sizes. 22

The schema first defines a number of lists that serve as the foundation for most objects in the presentation. 23

These lists are as follows: 24

 Slide IDs 25

 Slide Masters 26

 Notes Masters 27

 Handout Masters 28

 Custom Shows 29

It is essential that the reader fully understand the implementation of usage of these lists as they are the 30

foundation for almost all solutions that operate—open, interrogate, modify, write—against the 31

PresentationML file format. 32

As mentioned above, the lists are defined as a part of list entry and list complex types. The slide master list is 33

defined as follows: 34

Introduction to PresentationML

 234

<xsd:complexType name="CT_SlideMasterIdListEntry"> 1

 <xsd:attribute ref="r:id" use="required" /> 2

</xsd:complexType> 3

<xsd:complexType name="CT_SlideMasterIdList"> 4

 <xsd:sequence> 5

 <xsd:element name="sldMasterId" type="CT_SlideMasterIdListEntry" 6

 minOccurs="0" maxOccurs="unbounded" /> 7

 </xsd:sequence> 8

</xsd:complexType> 9

Although not complex or difficult to understand, the lists are called out because they are vital to any solution. 10

The next pieces of structural information are the sizes for the slides and the notes slides. By storing this 11

information at the presentation level, the implication is that all slides (or all notes slides) in a presentation 12

have the same size. This further implies that all slides in a presentation share the same orientation (i.e., they 13

are all landscape-oriented or all portrait-oriented). 14

4.1.3.2 Presentation-Level Properties 15

The presentation-level properties defined in this schema can be grouped into the following groupings: 16

 Text-Related 17

 Save-Related 18

 Editor-Related 19

 Content-Related 20

A description for each property within each group follows. 21

4.1.3.2.1 Text-Related Properties 22

The first property stores information related to the Kinsoku settings. Kinsoku settings define the list of 23

characters that are not allowed to start or end a line of text for a given East Asian language. 24

The schema definition of the Kinsoku settings is relatively straightforward: identify the language, the set of 25

invalid start characters, and the set of invalid end characters: 26

<xsd:complexType name="CT_Kinsoku"> 27

 <xsd:attribute name="lang" type="xsd:string" use="optional"> 28

 </xsd:attribute> 29

 <xsd:attribute name="invalStChars" type="xsd:string" use="required"> 30

 </xsd:attribute> 31

 <xsd:attribute name="invalEndChars" type="xsd:string" use="required"> 32

 </xsd:attribute> 33

</xsd:complexType> 34

The second property stores a flag to use strict characters for starting and ending a line of Japanese text. 35

Naturally, this is a simple Boolean attribute: 36

Introduction to PresentationML

 235

<xsd:attribute name="strictFirstAndLastChars" 1

 type="xsd:boolean" use="optional" default="true"/> 2

The final text-related property stores information related to any fonts that are embedded in the presentation. 3

To do this, we need to store a list of embedded fonts that reference each part that stores font data (generally, 4

there is a one-font-to-one-part mapping, although this is not a strict rule). This information is defined using 5

three complex types: 6

<xsd:complexType name="CT_EmbeddedFontList"> 7

 <xsd:sequence> 8

 <xsd:element name="embeddedFont" type="CT_EmbeddedFontListEntry" 9

 minOccurs="0" maxOccurs="unbounded" /> 10

 </xsd:sequence> 11

</xsd:complexType> 12

<xsd:complexType name="CT_EmbeddedFontListEntry"> 13

 <xsd:sequence> 14

 <xsd:element name="font" type="a:CT_TextFont" minOccurs="1" 15

 maxOccurs="1" /> 16

 <xsd:element name="regular" type="CT_EmbeddedFontDataId" 17

 minOccurs="0" maxOccurs="1"/> 18

 <xsd:element name="bold" type="CT_EmbeddedFontDataId" 19

 minOccurs="0" maxOccurs="1"/> 20

 <xsd:element name="italic" type="CT_EmbeddedFontDataId" 21

 minOccurs="0" maxOccurs="1"/> 22

 <xsd:element name="boldItalic" type="CT_EmbeddedFontDataId" 23

 minOccurs="0" maxOccurs="1" /> 24

 </xsd:sequence> 25

</xsd:complexType> 26

<xsd:complexType name="CT_EmbeddedFontDataId" > 27

 <xsd:attribute ref="r:id" use="required"/> 28

</xsd:complexType> 29

4.1.3.2.2 Save-Related Properties 30

There is a set of properties that indicate to the editor what should be saved as part of the presentation. 31

The first such property controls the inclusion of Personally Identifiable Information (“PII”). PII is any 32

information that can be used to identify the author or contributor to a presentation. And while there are cases 33

where this information is exposed visually to the user (e.g., author name in a comment shape), there are other 34

cases where the information is not immediately evident to the user (e.g., the document author name in the list 35

of document properties). 36

An implementation can provide a mechanism by which the author of a presentation can configure a file to 37

always remove any PII that might otherwise by normally included during a regular save operation. While not a 38

guarantee that no PII is stored in the file (e.g., consider a shape with my name in it—in some cases it describes 39

Introduction to PresentationML

 236

content in the file *my position in my group’s organization chart] whereas in others it is an editorial directive 1

*“check with ShawnV on this point”+. Given this ambiguity, we cannot solve all cases of this. As a result, this is 2

more a convenience feature than a privacy management feature. 3

The second set of save-related properties has two groupings of properties. The first controls whether or not 4

fonts will be embedded into the package representing the presentation. The second, enabled by setting the 5

first, allows an implementation to optimize such font embedding to keep the size minimal, at the cost of future 6

editing on other machines. 7

<xsd:attribute name="embedTrueTypeFonts" type="xsd:boolean" 8

 use="optional" default="false"/> 9

<xsd:attribute name="saveSubsetFonts" type="xsd:boolean" 10

 use="optional" default="false"/> 11

The user scenario behind these properties is as follows. Assume you are putting together a presentation to 12

distribute to external customers. You happen to use an East Asian font with an on-disk file size of around 13

5 megabytes. 14

Assuming that this font is not a standard font that is widely distributed, not including this font will cause font 15

substitution when the presentation is opened on machines that don’t have a copy of the font. In any case, this 16

can radically change the visual appearance of the presentation; in some cases, it can render the presentation 17

unreadable. 18

Because you cannot afford the presentation to be unreadable or to look unprofessional, you decide to embed 19

the font. By default, the implementation will set embedTrueTypeFonts to true and embed the entire 20

5 megabyte font file in the presentation package. This will clearly bloat the file, but will ensure that anyone 21

viewing or editing this file will have the same font experience as you originally had (subject to licensing 22

restrictions, of course). 23

Since you are distributing the presentation, and your primary purpose is for people to view the presentation, 24

you can reduce the amount of font data embedded in the presentation package. By setting the second 25

property (saveSubsetFonts) to true, only those characters in the font that were actually used to create the 26

presentation are saved. This yields less font data stored in the file at the cost of not being able to use unused 27

characters in future edits of the presentation on different machines. 28

The third property related to saving, controls whether or not an implementation can automatically compress 29

pictures contained in the presentation. This is particularly important given the proliferation of digital cameras 30

and scanners and the increasing importance of small files (e.g., to save network bandwidth, reduce storage 31

required for mail and file servers, etc.). 32

The final property in this set specifies a password that is required to enable editing of the file using the 33

implementation. Because this is a convenience feature intended to prevent accidental changes to information, 34

it is stored in clear text as an xsd:string. 35

Introduction to PresentationML

 237

By storing this information in the file, the implementation will prompt the user for this password in order to 1

open the file read/write; if the user does not provide the correct modify password, the implementation will 2

open the file read-only. 3

4.1.3.2.3 Editor-Related Properties 4

The presentation file itself contains data that provide configuration information for the implementation’s 5

editor. 6

For example, the presentation can define a set of smart tags for use while editing the particular presentation. 7

Because Smart Tags are stored in a separate part, the presentation object contains the relationship ID of the 8

Smart Tag part. 9

In a fully functioning OLE server, PresentationML objects can be embedded into OLE containers, during which 10

time a customer can set a zoom scale. This is stored in the file as a percentage called serverZoom. 11

An internationalized application might support configuring the editor to respect different screen orientations. 12

For example, in regions of the world where Complex Scripts are in use, it is customary to orient the screen 13

right-to-left. As such, a presentation can request the editor reconfigure itself for such usage scenarios. 14

Finally, due to changes in the file format and functionality (e.g., graphics and text engines), PresentationML 15

introduces some end-user complexity when working collaboratively with other customers using older versions. 16

To help remedy this, an implementation might support a Compatibility Mode, which restricts the functionality 17

exposed by the editor to optimize the output for the best cross-version collaboration story possible. As a 18

result, each presentation needs to opt-into this mode. 19

4.1.3.2.4 Content-Related Properties 20

This set of properties is related to the actual content in the presentation. 21

End-users can define the starting slide number for numbered slides in each presentation. While it typically 22

starts at one, the user can select any positive number to begin slide numbering. The primary user scenario is 23

when compiling a mega-presentation that is a collection of multiple presentations. A secondary user scenario 24

is when including a presentation in the middle of or at the end of a printed document where you want the 25

slide/page numbers to continue. 26

Another content-related property controls whether or not header/footer placeholders are to be shown on title 27

slides. In many cases users will use special shapes called header and footer placeholder that contain built-in 28

field codes that control the display of various sorts of information like the date/time and slide number. 29

In most cases, users like to keep their title slides as simple as possible (much like in the printed world where 30

you want your first page to be clean and streamlined) and hence do not want data like date/times and slide 31

numbers to show up on such slides. This attribute defines this presentation-wide. 32

The final property relates to creating photo albums. The implementation has a feature that allows the user to 33

generate automatically a presentation based on a set of pictures. During this process, the user can select from 34

a variety of settings, including, but not limited to, what pictures to include, the layout of the pictures on the 35

Introduction to PresentationML

 238

slides (e.g., one picture per slide, two pictures per slide, etc.), what type of frame shape to use, etc. All of this 1

information is stored in the presentation for future photo album creation. 2

4.1.4 Presentation Properties 3

Those properties that apply to the presentation as a whole, and that are likely to be removed during document 4

sanitization, or are not going to invalidate a digital signature, are defined in pml-presentationProperties.xsd. 5

These properties can be grouped into three primary groupings. 6

 HTML Publish Properties 7

 Print Properties 8

 Slide Show Properties 9

 View Properties 10

In addition to this grouping, there are properties that define a Most Recently Used (“MRU”) list of colors as 11

well as providing for future extensibility. (The MRU will be discussed in a DrawingML paper and the 12

extensibility will be discussed in a similar paper.) 13

4.1.4.1 HTML Publish Properties 14

An implementation must have the ability to save (and publish) a presentation to a web-friendly format like 15

HTML or MHTML. Various parameters are used to configure the application for saving such formats as well as 16

to control what content gets generated. The parameters that configure the application are the HTML Publish 17

properties whereas the content properties are the Web Properties. 18

The HTML Publish properties provide the author with the ability to control what content gets displayed in the 19

browser when the resulting file—either HTML or MHTML—is viewed using that type of an application. For 20

example, the speaker notes can either be displayed in the frameset or can be hidden from view. This is 21

particularly useful when a speaker’s notes are not necessarily in a customer-ready format. It’s useful but not 22

necessarily secure. 23

The author can also specify the title to be displayed in the browser. Although this defaults to the actual file 24

name, or if that is missing, to the content of the first slide’s title placeholder, it can be overridden by the 25

author. 26

Finally the author can specify a publish path to use when saving this file in this format. This is particularly 27

useful for two reasons. 28

First, because there is a transformation happening, it sometimes takes a few iterations of publishing to get the 29

browser-based experience to be exactly what you want. A classic example of this is the differing animation 30

capabilities between the implementation and certain browsers: it is important to verify that the change in 31

animation behavior continues to work after publishing; if you are not satisfied with the experience, sometimes 32

you need to change the animation in the implementation and republish. 33

The second reason storing the path is useful is that web server paths can be cumbersome and are often not on 34

the tip of each user’s tongue. This allows the user to specify the path once and then publish using the same 35

Introduction to PresentationML

 239

location without having to re-specify it. Naturally, being stored in the file format, this allows this data to 1

persist across session. 2

Indirectly, the HTML Publish properties can prime the Web Properties by defining a target web browser 3

generation (i.e., third, fourth or third and fourth). This is done by setting the appropriate 4

ST_HtmlPublishWebBrowserSupport attribute: 5

<xsd:complexType name="CT_HtmlPublishProperties"> 6

 <xsd:sequence> 7

 <xsd:group ref="EG_SlideListChoice" minOccurs="1" maxOccurs="1"> 8

 </xsd:group> 9

 </xsd:sequence> 10

 <xsd:attribute name="showSpeakerNotes" type="xsd:boolean" 11

 use="optional" default="true" /> 12

 <xsd:attribute name="pubBrowser" 13

 type="ST_HtmlPublishWebBrowserSupport" 14

 use="optional" default="v3v4" /> 15

 <xsd:attribute name="title" type="xsd:string" use="optional" 16

 default=""> 17

 </xsd:attribute> 18

 <xsd:attribute ref="r:id" use="required"> 19

 </xsd:attribute> 20

</xsd:complexType> 21

By providing a target generation, the Web Properties will be set to a predefined package defined for the 22

specified browser generation. Naturally, the user can override the individual Web Property settings. 23

4.1.4.1.1 Web Properties 24

As mentioned in the previous subclause, these properties configure the output of the presentation when saved 25

using the HTML or MHTML formats. In this case, a number of parameters can be controlled. 26

In all multi-slide cases where the presentation is saved using one of these formats, the implementation will 27

create a frameset to bring the various parts of a presentation—the slide content, the speaker notes and the 28

outline—together as well as provide for simple navigation. The color of the HTML frames, the background 29

used and the user interface controls can be controlled to leverage browser settings, use high contrast, etc. 30

The author can also control how much interactivity will be exposed in the resulting output. For example, the 31

user may elect to disable slide animations and transitions and opt for a more static presentation. Similarly, the 32

author may elect to disable certain scripting features like the ability to resize dynamically the output to match 33

the size of the browser window. 34

Somewhat related to this is the ability to specify the target screen size which is especially important when 35

targeting the earlier browser generations or user environments where features like JavaScript are disabled. 36

Introduction to PresentationML

 240

For an internationalized implementation, there is the ability to control the encoding of text used in the 1

generation of the HTML or MHTML output. 2

Finally there are a set of parameters that configure the on-disk storage of the resulting output. For example, if 3

the customer knows something about the machine configurations of her audience, she can opt to use better 4

raster graphic formats like PNG that support alpha transparency or elect to include Vector Markup Language 5

(“VML”) representations only for vector images. 6

The customer can also provide some indication as to how the output will be used. If the customer knows that 7

the output will be used like regular files (perhaps passed around on CDs or moved between file shares) the 8

user may elect to store the files in a folder to ensure that a straggling file is not lost; if, however, the target 9

scenario is to put the files on a web server, the user can skip the folder and save the individual files in a flat 10

directory. Similarly, if the customer knows that they are using a web server that only handles “8.3” file names, 11

they can configure the implementation to generate files using names that are “8.3” compliant, as opposed to 12

using long file names that may otherwise cause such web servers problems. 13

4.1.4.2 Print Options Properties 14

There is also a set of properties that control the default print behavior for a presentation. The inclusion of this 15

information in the file format simply primes the Print dialog when this presentation is used. It does not force 16

options nor does it represent the last-used set of print options for a presentation. 17

Using these properties, the author can control the type of output printed. For example, in some cases, authors 18

need to print their slides (one slide per printed page) while in other cases, they want to provide printed 19

handouts for the audience on which to take their own notes (handout pages that can contain anywhere from 20

three to nine slides per printed page, as well as option lines for note taking). In other cases, the author would 21

like to print out notes where each printed page has one slide (anchored at the top) and a text box (anchored at 22

the bottom) with the speaker notes included or simply print the textual outline of the presentation. 23

The author can also control whether or not hidden slides are included in the printed output, as well as whether 24

or not the output is sent to the printer in color, in grayscale, or in pure black and white. 25

There is also a set of properties that the author can set that determine if slides are framed on the printed 26

page, if the slides are scaled up to the printed page (e.g., consider non 4x3 aspect ratio slides), etc. 27

4.1.4.3 Slide Show Properties 28

This set of presentation-level properties controls the default slide show. 29

Among the parameters that can be controlled is one that defines the type of slide show. Generally, the classic 30

slide show is characterized by a presenter presenting the presentation to an audience. The presenter controls 31

the flow of the presentation, etc. This is referred to as a “present” slide show. In some cases, however, the 32

presentation is distributed and individuals walk themselves through the slide show. This is referred to as a 33

“browse” slide show. Finally, there are cases where a slide show is prepackaged and used as a kiosk; naturally, 34

it is referred to as a “kiosk” slide show. 35

Introduction to PresentationML

 241

Furthermore, the customer can control which slides are to be included in the slide show, what color the pen 1

should be, etc. 2

Finally, the customer can control various interactivity settings that are to be used for the slide show. This 3

provides the customer the ability to configure their slide show outside the typical settings for a particular slide 4

show type. For example, the user may create a slide show that has a pre-configured animation built with 5

timings (i.e., the time between particular builds or the time between slide transitions), even though she is 6

going to be presenting the content to an audience. 7

4.1.4.4 View Properties 8

The schema pml-viewProperties.xsd defines the properties on all of the views found in the implementation. 9

MS’s implementation currently supports the following views: 10

 Slide View 11

 Slide Master View 12

 Notes View 13

 Handout View 14

 Notes Master View 15

 Outline View 16

 Slide Sorter View 17

Additionally, the default view, Normal View, is a composite view that pulls from three multiple view property 18

sets. 19

In general, there is a significant amount of commonality among views. For example, each view contains four 20

common components: 21

Scale The zoom scale for the view

Origin The origin of the view

Variable Scaling A special zoom scale that configures the application to
fit the content of the view into whatever view size is
provided

Draft Mode Controls whether or not a view is in draft mode which
is a mode designed to provide the fastest
editing/redraw possible by dropping properties like
font face, certain colors, pictures, etc.

 22

For those views based on a slide (e.g., slide master view) there are additional common components: 23

Guide List Represents the list of drawing guides for this view

Guide Properties Represents guide properties like direction and position
of each guide in the view

Introduction to PresentationML

 242

Guide List Represents the list of drawing guides for this view

Guide Settings Determines if guides should be shown for this view

Snap Settings Determines if shapes should be snapped to the grid
and/or snapped to other shapes for this view

4.2 Slides, Masters, Layouts, and Placeholders 1

4.2.1 Introduction 2

This subclause provides a high-level overview of the content described in the pml-slide.xsd schema. 3

The important aspects of the PresentationML Slides file format are introduced in the following order. 4

 Masters 5

 Presentation Slide 6

 Slide Notes 7

 Slide Layouts 8

This subclause provides a structured introduction to the slides portion of the PresentationML file format. Other 9

subclauses build on this foundation and explain more about topics such as animation, comments, and the 10

presentation object. 11

4.2.2 Masters 12

For slides the notion of hierarchy and inheritance applies. A master represents a common layout for the page 13

type in question. For instance, if a slide master had a background set to a gradient fill then all slides referencing 14

to that slide master would have the same background. In addition to setting common attributes of the slides 15

such as background and styling information, the slide master also provides numerous layouts within itself in 16

order to make a presentation that both follows a layout theme and incorporates a high level of variety. The 17

variety is supported through slide layouts which will be discussed in a later section. 18

4.2.2.1 Slide Master 19

A slide master is a master that is tied specifically to presentation slides. The presentation slides are those that 20

are shown during a presentation. These will be discussed in more detail in a later section on the Presentation 21

Slide. Within a slide master are some common structural elements that should be understood, namely: 22

 Common Data - Common properties that will be inherited by the other slides as well as layout 23

information for presentation slides based on the master slide. 24

 Header and Footer - Header and footer properties for the presentation slides to inherit. 25

 Color Map - Color Mapping for the presentation slides to inherit. 26

 Text Styles - Text Styling information to be used within each placeholder on a presentation slide. 27

 Slide Layout List - A list of slide layouts that provide the variety needed within any presentation. These 28

are applied to a presentation slide which will inherit both the layout of the slide layout in addition to 29

the slide design of the slide master. 30

 Timing Information - Common timing properties used for animation, controls, etc. 31

Introduction to PresentationML

 243

 Transition Information - Slide transitioning information to be inherited by each presentation slide. 1

 2

Slides inheriting information from a slide master do have the ability to specify properties that override those 3

specified in the slide master. 4

4.2.2.2 Notes Master 5

A notes master is a master that specifies properties for slide notes pages. The notes page associated with a 6

presentation slide stores a thumbnail of the presentation slide as well as the presenter's notes about the slide. 7

These will be discussed in more detail in a later section. Within a notes master the important common 8

structural elements are: 9

 Common Data - Common properties that will be inherited by other notes pages as well as the layout 10

information for notes pages based on this master slide. The notes master serves as the pattern for all 11

notes pages. 12

 Color Map - Color Mapping for the notes pages to inherit. 13

Introduction to PresentationML

 244

 1

Notes pages inheriting information from a notes master do have the ability to specify properties that override 2

those specified in the notes master. 3

4.2.2.3 Handout Master 4

A handout master determines the layout for all handout pages. The handout pages consist of a place to store a 5

thumbnail of each slide with additional elements such as header, footer or graphical information. These will be 6

discussed in more detail in a later section. Within a handout master are some common structural elements 7

that should be understood, namely the following. 8

 Common Slide Data - Common properties and layout information that will be used by all handout 9

pages. The handout master represents how each handout page will look. 10

 Header and Footer - Header and footer properties for all handout pages. 11

 Color Map - Color Mapping for all handout pages. 12

Introduction to PresentationML

 245

 1

 2

4.2.3 Presentation Slide 3

A presentation slide is a slide that inherits slide properties from the corresponding slide master and layout 4

information from the corresponding slide layout. Each presentation slide has the ability to override any of this 5

information that it chooses by specifying local attribute values within the presentation slide. Much like the 6

master slide, the presentation slide contains some common structural elements, namely the following. 7

 Common Slide Data - Common properties and layout information for this presentation slide. Properties 8

listed here that conflict with existing elements specified in the slide master will override those 9

specified in the slide master. 10

 Color Map Override - Color Mapping that will override the inherited color mapping for this 11

presentation slide. 12

 Timing Information - Common timing properties used for animation, controls, etc. 13

 Transition Information - Slide transitioning information for this presentation slide. 14

The above list defines the areas that can be used to override inherited components from the master slide and 15

the layout slide. That is, these can be specifically defined on a per-slide basis via the above elements. 16

Introduction to PresentationML

 246

 1

4.2.4 Notes Page 2

A notes page inherits slide properties from the corresponding notes master. The initial layout for a notes page 3

is defined by the single notes master slide. Each notes page has the ability to override any of this information 4

that it chooses by specifying local attribute values within the notes slide. Much like the notes master, the notes 5

page contains some common structural elements, namely the following. 6

 Common Slide Data - Common properties and layout information for this notes page. 7

 Color Map Override - Color Mapping to override the inherited color mapping for this notes page. 8

The above list defines the areas that can be used to override inherited components from the notes master. 9

That is, these can be specifically defined on a per-slide basis via the above elements. 10

 11

Introduction to PresentationML

 247

4.2.5 Slide Layouts 1

A slide layout inherits slide properties from the corresponding slide master and sets layout information for all 2

presentation slides that utilize this layout. Each presentation slide has the ability to override any of this 3

information that it chooses by specifying local attribute values within the presentation slide. Much like the 4

slide master, the slide layout contains some common structural elements: 5

 Common Slide Data - Common properties and layout information that will override properties set 6

within the slide master but will be inherited by all presentation slides that utilize this layout. 7

 Color Map Override - Color Mapping that will override the inherited color mapping from the slide 8

master but will be inherited by all presentation slides that utilize this layout. 9

 Header and Footer - Header and footer properties that will override properties set within the slide 10

master but will be inherited by all presentation slides that utilize this layout. 11

 Timing Information - Common timing properties used for animation, controls, etc. These will override 12

properties set within the slide master but will be inherited by all presentation slides that utilize this 13

layout. 14

 Transition Information - Slide transitioning information to be inherited by each presentation slide. 15

These will override properties set within the master slide but will be inherited by all presentation slides 16

that utilize this layout 17

The above list defines the areas that can be used to override inherited components from the master slide. That 18

is, these can be specifically defined on a per-layout basis via the above elements. 19

 20

4.3 Comments 21

4.3.1 Introduction 22

This document describes the commenting feature for presentations as expressed in PresentationML. The 23

schema that defines this feature is pml-comments.xsd. 24

Introduction to PresentationML

 248

Note that it is important to keep in mind that comments are not shapes. The representation of them within the 1

document is left entirely up to the generating application and are thus implementation specific. 2

4.3.2 Functional Overview 3

Readers of a presentation can provide feedback to the presentation author in the form of comments. 4

Comments can only be applied to slides; they cannot be applied to masters of any type or to notes slides. 5

At first glance, comments appear to be shapes on the slide surface; however, they are not. Comments differ 6

from regular shapes in two ways: 7

 Comments cannot be formatted or resized 8

 The text contained within a comment cannot be formatted 9

4.3.3 Comment Author List 10

Presentations contain a list of all authors who have comments in the presentation. This list is commonly 11

referred to as the Comment Author List (CAL). The CAL contains one entry for each author. Each entry is made 12

up of five pieces of data: ID, Author Name, Author Initials, Last Index, and Color Index. 13

Each author that comments on a presentation is assigned an ID, which is a simple integer. This ID is unique 14

within the presentation, and is assigned by the application itself. 15

The Author Name and Author Initials are taken from the application itself. If no initials are known to the 16

application, the comment author is prompted upon the insertion of the initial comment. Both the Author 17

Name and Author Initials are simple strings; that is, there is no association of the values with an identity (from 18

a security or authentication perspective). 19

The Last Index (lastIdx) is an integer that documents how many comments the associated author has made in 20

this presentation. When the author makes another comment, that comment is numbered using the next 21

integer, and then this value is updated once again. 22

The Color Index (clrIdx) is an integer into a color table that is used to provide the solid background fill for the 23

comment shape. The utility that this provides is that all of the comments by a particular author share the 24

same color. 25

Here is an example of such a CAL: 26

<p:cmAuthorLst> 27

 <p:cmAuthor id="0" name="Shawn" initials="SV" lastIdx="3" clrIdx="0" /> 28

 <p:cmAuthor id="1" name="Brian" initials="BJ" lastIdx="7" clrIdx="1" /> 29

</p:cmAuthorLst> 30

To determine if an author is already in the CAL, one must consider only the Author Name and Author Initials 31

data. If they both match an entry in the CAL, the author is already considered to be in the CAL; otherwise, the 32

author is considered unique, and a separate entry is added for that author in the CAL. 33

Introduction to PresentationML

 249

When the presentation is saved using PresentationML, a separate Comment Authors part is created that 1

contains the CAL. 2

4.3.4 Comment List 3

Each slide within a presentation may contain zero or more comments. Each slide with at least one comment 4

starts a list of comments for that slide. Each entry in that list is made up of the following pieces of data: 5

 Author ID: This represents the ID of the author who created the comment. It matches an entry in the 6

CAL. 7

 Date/Time: This represents the date and time of the last modification of this particular comment. 8

Although expressed in UTC, its accuracy is dependent on the state of the machine making the edits. 9

 Index: This is the number assigned to this particular comment, and is one of the comments associated 10

with the specified author. This number should be equal to, or less than, the Last Index value for the 11

author in the CAL. There cannot be duplicate Indexes for the same author. 12

 Position: This defines the 2D coordinate for the location at which the comment shows up on the slide 13

surface. This is the position of the upper left point of the comment shape. 14

 The Text data includes all of the text that makes up the body of the comment. Note that this text is 15

expressed differently than other text as expressed in DrawingML. As this text contains no formatting, 16

and is strictly limited to text input, there is no additional data that needs to be stored. 17

Here is an example of a comment list for a slide: 18

<p:cmLst> 19

 <p:cm authorId="0" dt="2006-01-30T22:45:13.597" idx="3"> 20

 <p:pos x="10" y="10" /> 21

 <p:text>Need to check with Mary on exact data values</p:text> 22

 </p:cm> 23

 <p:cm authorId="1" dt="2006-01-30T22:46:22.082" idx="1"> 24

 <p:pos x="106" y="106" /> 25

 <p:text>This chart is hard to read from afar</p:text> 26

 </p:cm> 27

</p:cmLst> 28

When the presentation is saved using PresentationML, a separate Comments part is created for each comment 29

list. 30

4.4 Animation 31

4.4.1 Introduction 32

This subclause provides a high-level overview of the animation settings in PresentationML. This schema is 33

loosely based on the syntax and concepts from the Synchronized Multimedia Integration Language (SMIL), a 34

W3C Recommendation for describing multimedia presentations using XML. 35

http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/XML

Introduction to PresentationML

 250

The schema describes all the animations effects on that reside on a slide; it also describes the animation that 1

occurs when going from slide to slide (slide transition). 2

Animations on a slide are inherently time-based and consist of an animation effects on an object or text. 3

However, slide transitions do not follow this concept and always appear before any animation on a slide. 4

All elements described in this schema are contained within the slide XML file. Superficially, they are in the 5

transition and the timing element as shown below: 6

<p:sld> 7

 <p:cSld> … 8

 <p:clrMapOvr> … 9

 <p:transition> … 10

 <p:timing> … 11

</p:sld> 12

4.4.2 Slide Transitions 13

Slide transitions are the animation effects that displayed in between slides. They are specified in the transition 14

element in the slide XML file. For example, consider a slide with a "push" slide transition as shown below: 15

Introduction to PresentationML

 251

 1

 2

The push element should be used as follows: 3

<p:transition> 4

 <p:push dir="r"/> 5

</p:transition> 6

4.4.3 Timeline Overview 7

The timeline is an important aspect for animations on a slide. It moderates the amount of time that the 8

animations are run from beginning to end. For example, it allows animation to be started when the slide is 9

loaded or based on an event. 10

A timeline is composed of timing nodes that dictate at which point a certain animation is shown. A timeline 11

can contain unlimited number of timing nodes; it can also have time nodes nested within them. 12

Introduction to PresentationML

 252

There are three types of time nodes: 1

Element Name Description

par Parallel This is a parallel time node and can be activated along with other

parallel time node containers.

seq Sequence This is a sequence time node and it can only be activated when the

one before it finishes.

excl Exclusive This time node is used to pause all other timelines when it is

activated.

 2

A conceptual diagram of this is shown below: 3

 4

4.4.4 Timeline Construction 5

To illustrate what the timeline looks like in the slide XML file, suppose we have four rectangles named A, B1, 6

B2, and C that appear on a timeline three seconds long. Rectangle A appears at second 1, B1 and B2 appear 7

together at second 2, and C appears at second 3, as shown below: 8

Introduction to PresentationML

 253

 1

The timeline and time containers could look something like: 2

 3

A typical timeline consists of the following structure: 4

Introduction to PresentationML

 254

<p:timing> 1

 <p:tnLst> 2

 <p:seq concurrent="1" nextAc="seek"> 3

 <p:stCondLst> … 4

 <p:cTn id="2" dur="indefinite" nodeType="mainSeq"> 5

 <p:childTnLst> 6

 <p:seq> … // Square A 7

 <p:seq> 8

 <par>…. // Square B1 9

 <par>…. // Square B2 10

 </p:seq> 11

 <p:seq> … // Square C 12

 </p:childTnLst> 13

 </p:cTn> 14

 <p:prevCondLst> … 15

 <p:nextCondLst> … 16

 </seq> 17

 </p:tnLst> 18

 <p:bldLst> … 19

</p:timing> 20

As show, this timeline starts with a timing element that represents the timeline. Within this timeline, there is a 21

child element tnList, which contains a list of time nodes. 22

In this case, there is one main timing container, which is the seq element. Within this element there are a 23

three of conditional elements, namely stCondList, nextCondList, and prevCondList. These elements contain 24

condition properties that allow for the starting/stopping of the particular time node. This is explained in more 25

detail in §4.4.6. 26

Following the stCondList element is the cTn element, which describes the properties for this node. Within this 27

element is the childTnList, which contains the nested time nodes that describe the animation sequence 28

mentioned above. 29

Finally, we have the bldList element, which is used to specify how objects with sub-shapes should be 30

animated. More information can be found in §4.4.7. 31

4.4.5 Animation Behaviors 32

All animation consists of the following basic animation behaviors: 33

Element Name Description

anim Animate The animate behavior introduces a generic attribute
animation that requires no semantic understanding of
the attribute being animated. It can animate numbers.

animColor Animate Color This behavior animates the color of a particular element.

Introduction to PresentationML

 255

Element Name Description

animEffect Animate Effect This behavior provides the ability to do image
transform/filter effects on elements.

animMotion Animate Motion Animate motion provides an abstracted way to move
positioned elements. It provides the ability to specify
from/to/by type motion as well as to use more detailed
path descriptions for motion over polylines or bezier
curves.

animRotation Animate Rotation This behavior allows rotation of an element.

animScale Animate Scale Allows animation of the width and/or height of an
element over time.

 1

A time node can combine multiple animations for a range of effects. For example, the "flash bulb" animation 2

which scales a shape larger while at the same time having it fade uses two animation behavior elements. An 3

example is shown below: 4

 5

The representation for this animation effect in the time node element appears like: 6

Introduction to PresentationML

 256

<p:par> 1

 <p:cTn id="5"> 2

 <p:stCondLst>…. 3

 <p:childTnLst> 4

 <p:animEffect transition="out" filter="fade"> … 5

 <p:animScale> 6

 <p:cBhvr> 7

 <p:cTn id="7" dur="500" autoRev="1" fill="hold"/> 8

 <p:tgtEl> 9

 <p:spTgt spid="9"/> 10

 </p:tgtEl> 11

 </p:cBhvr> 12

 <p:by x="105000" y="105000"/> 13

 </p:animScale> 14

 </p:childTnLst> 15

 </p:cTn> 16

</p:par> 17

In this time node, we have two animation effects. One is creating a "fade" effect on the shape using the 18

animEffect element and the other is creating a "scale" effect using the animScale element. All animation 19

behaviors have a cBhvr and cTn element, which stores properties for the animation. For example, we can give 20

the animation behaviors an ID and attributes that set the duration of the animation. The spTgt specifies the 21

target shape to which this animation effect will be applied. 22

4.4.6 Conditional Properties 23

Another important aspect of time nodes is conditional properties. There are four such conditions: 24

Element Name Description

stCondLst Start Condition Conditions that must be met for a time node to start.

prevCondLst Previous Condition Conditions that must be met for a time node to go back

to the previous time node.

nextCondLst Next Conditions Conditions that must be met for a time node to advance

to the next time node.

endCondLst End Conditions Conditions that must be met for a time node to end.

 25

Conditional properties are useful for providing finer granularity as to exactly when a time node should be 26

activated. For example, suppose we have a shape with an entrance appearance after five seconds. The 27

stCondLst element should be used as follows: 28

Introduction to PresentationML

 257

<p:par> 1

 <p:cTn id="5"> 2

 <p:stCondLst> 3

 <p:cond delay="5000"/> 4

 </p:stCondLst> 5

 </p:cTn> 6

</p:par> 7

4.4.7 Build Animations 8

Another important aspect of animations is how they are built. This refers to how the different sub-shapes or 9

sub-components of an object are displayed. The different objects that can have build properties are text, 10

diagrams, and charts. 11

This is specified in the bldLst element. 12

For example, suppose we want to animate a pie chart, but based on category as shown below: 13

 14

The representation of this in the slide XML looks like: 15

Introduction to PresentationML

 258

<p:bldLst> 1

 <p:bldGraphic spid="4" grpId="0"> 2

 <p:bldSub> 3

 <a:bldChart bld="category"/> 4

 </p:bldSub> 5

 </p:bldGraphic> 6

</p:bldLst> 7

The bldLst element contains children elements that describe how the different objects should be built. In this 8

case, there is only one graphic to be build, that with id 4. The bldGraphic element contains the bldSub 9

element, which describes how the object should be built. This element then contains the bldChart element 10

with the attribute bld set to category. 11

End of informative text. 12

4.5 Slide Synchronization 13

This subclause provides an overview of the p:SldSyncPr element in pml-slideSynchronizationData.xsd. 14

4.5.1 Introduction 15

A Slide Library is a library type in SharePoint Server that exclusively contains single-slide presentations. Users 16

are able to publish and reuse slides to/from these libraries. Furthermore, when a user inserts a slide from the 17

library into a presentation, she is able to create an update relationship so that she is notified when the original 18

slide on the server changes. 19

It is worth noting that the SlideUpdateInfo part in itself does not define the complete slide update 20

functionality. That part requires a SharePoint Slide Library or compatible server (e.g., a webdav server that 21

emulates SharePoint SOAP methods). 22

4.5.2 Slide Update Info 23

For each slide in a presentation that has an update relationship with its counterpart in a Slide Library, a Slide 24

Update Info part is created. The diagram below provides an overview of this relationship. 25

Introduction to PresentationML

 259

 1

 2

Each Slide Update Info part is stored under its own folder. For example: 3

/ppt/slideUpdateInfo/slideUpdateInfo1.xml 4

/ppt/slideUpdateInfo/slideUpdateInfo3.xml 5

The part is indentified for each slide by a relationship with the following characteristics: 6

Type: http://…/slideUpdateInfo 7

TargetMode: Internal 8

Target= "<Uri of the slideupdateinfo part for the slide>" 9

The content type of the update info part is application/vnd.openxmlformats-10

officedocument.presentationml.slideUpdateInfo+xml. 11

It contains: 12

 Modified time of the slide on the server when it was inserted (stored in ISO 8061 format). 13

 Time the slide was inserted into the presentation. 14

 Regular ID of the slide on the server (saved as a string) 15

These Slide Update Info parts themselves have an external relationship to the Slide Library Url from which the 16

Slide was inserted. 17

Type: http://.../slidelibraryUrl 18

TargetMode: External 19

Target = ‚<Url of the Slide Library>‛ 20

Every Slide Update Info part should have exactly one occurrence of this relationship. 21

Samples: 22

http://.../slideUpdateInfo
http://.../slidelibraryUrl

Introduction to PresentationML

 260

slideupdateinfo1.xml 1

<p:sldUpdatePr … serverSldId="7991" serverSldModifiedTime="2006-03-08T18:48:33" 2

 clientInsertedTime="2006-03-10T06:02:33.975" /> 3

slideupdateinfo1.xml.rels 4

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?> 5

 <Relationships xmlns="http://.../relationships"> 6

 <Relationship Id="rId1" Type=http://.../slideUpdateUrl 7

 Target="http://content/slides" TargetMode="External" /> 8

</Relationships> 9

End of informative text. 10

http://.../slideUpdateUrl

Introduction to DrawingML

 261

5. Introduction to DrawingML 1

This clause is informative. 2

This clause contains a detailed introduction to the components of DrawingML. 3

5.1 Basics 4

5.1.1 Introduction 5

This subclause provides a high-level overview of the content described in the dml-baseTypes.xsd, dml-6

compatibility.xsd and dml-lockedCanvas.xsd schemas. The aggregation of the elements within these schemas 7

encompass what has been labeled the DrawingML – Basics sub-clause. That is, the elements contained here 8

are considered to be commonly shared elements among the DrawingML framework. 9

5.1.2 Overview 10

This sub-clause is made up of four distinct pieces: Basic Elements, Colors, Compatibility, and Locked Canvas. 11

Together these make up the common elements that are shared across the DrawingML framework. These 12

elements are described below. 13

5.1.3 Basic Elements 14

When the common elements of the DrawingML framework are aggregated it can be seen that the most widely 15

used elements are property elements. These reside within every object and allow for the setting of both visual 16

and non-visual object-specific properties. The visual properties are those that affect the appearance of the 17

object when it is rendered on the screen. The non-visual properties on the other hand, do not affect the 18

object's appearance. Instead, these properties are used to store information normally hidden such as 19

identification numbers, human readable names for the objects and specific behaviour that should be obeyed 20

within the UI when manipulating the corresponding object. 21

5.1.4 Colors 22

The notion of color plays a vital role in the presentation of DrawingML objects within a document. Virtually all 23

objects are specified to have a corresponding color or set of colors. The notion of color is a common one 24

among graphically-inclined applications. Because of this and the fact that there are many different types of 25

graphic objects available today, we introduce the notion of several different types of color models. The 26

following color models can be used to specify color within a DrawingML based document. 27

1. RGB – Red, Green, Blue Color Model 28

2. HSL – Hue, Saturation, Luminance Color Model 29

3. Scheme – Scheme Based Color Model 30

4. Preset – Color Presets Color Model 31

Introduction to DrawingML

 262

5. System – Operating System Color Model 1

These different models allow document authors the choice as to which color model would be appropriate for 2

their particular application. Each of these is detailed within the DrawingML Basics reference material. 3

5.1.5 Compatibility 4

Compatibility deals with the notion of legacy drawings. Legacy drawings are objects that were supported by 5

previous versions of a generating application, but are no longer provided as an option. In order to store these 6

drawing objects correctly, we introduce the notion of legacy drawing compatibility. This allows for the 7

specification of information used to identify this legacy object and thus allow for full rendering support within 8

current versions of the generating application. 9

5.1.6 Locked Canvas 10

Locked Canvas is a minor topic that is similar to compatibility in that it is used to render drawing objects that 11

would otherwise not be recognized due to a lack of information. Locked Canvas, however, goes in the opposite 12

direction from compatibility, and deals with objects that have been created and saved in the current version of 13

a generating application and are being opened in a previous version of the generating application. The locked 14

canvas element acts as a container for more advanced drawing objects. The notion of a locked canvas comes 15

from the fact that the generating application opening the file cannot create this object and thus cannot 16

perform edits either. Thus, the drawing object is locked from all UI adjustments that would normally take 17

place. 18

5.2 Audio and Video 19

5.2.1 Introduction 20

DrawingML contains support for basic audio and video capabilities. The definitions for these structures can be 21

found in dml-audioVideo.xsd. 22

5.2.2 Functional Overview 23

Presentation authors can specify that both audio and video can play while a slide is shown in slide show. 24

When such media is inserted into a presentation, a presentation author can specify that the media is to play 25

automatically (that is, in accordance with the slide’s animation timeline) or in response to a mouse-click. In 26

either case, media only plays for the duration of time specified, or until the slide changes, whichever is shorter. 27

Sources for audio content include CD-based files as well as the more traditional disc- or server-based files. 28

When inserting audio content stored on a CD, the author can specify a start and end track, as well as an index 29

into each track. This information identifies the content from the CD to be played for the specified slide during a 30

slide show. 31

In cases where the audio or video content is stored on a hard drive or server, the author can only specify the 32

file itself; it will be played in its entirety, or until the slide changes. 33

Introduction to DrawingML

 263

5.2.3 DrawingML Syntax 1

In all three cases, the media objects themselves are stored on the slides using a picture shape. The picture 2

shape uses a blipFill to show the media object on the slide’s surface. In both audio cases, the picture used is 3

the icon image, whereas in the video case, the picture used is the poster frame for the video file. 4

To express this information, the standard blipFill element is used to refer to the image file; and because this 5

refers to a file within the package, a relationship ID is used: 6

<p:pic> 7

 <p:nvPicPr> …</p:nvPicPr> 8

 <p:blipFill> 9

 <a:blip r:embed="rId4" r:link="" /> 10

 <a:stretch> 11

 <a:fillRect /> 12

 </a:stretch> 13

 </p:blipFill> 14

 <p:spPr> … </p:spPr> 15

</p:pic> 16

As the media objects are related to the slide’s timeline—in both the automatic and mouse-click cases—they 17

must have interactivity information stored in the form of a hyperlink. 18

To express this information, a hyperlink is added to the non-visual shape properties; and because it is a 19

hyperlink, it, too, uses a relationship ID: 20

<p:pic> 21

 <p:nvPicPr> 22

 <p:cNvPr id="15" name="Rectangle 15" descr=""> 23

 <a:hlinkClick r:id="rId3" tgtFrame="" tooltip="" /> 24

 </p:cNvPr> 25

 <p:cNvPicPr /> 26

 <p:nvPr> … </p:nvPr> 27

 </p:nvPicPr> 28

 <p:blipFill> … </p:blipFill> 29

 <p:spPr> … </p:spPr> 30

</p:pic> 31

The final piece of information required for each media type is the source bits. In both file-based media cases, 32

DrawingML needs to provide a mechanism to specify the location and file name for the media; this is in 33

contrast to the CD-based audio where only track information is required. Regardless of the type of source 34

information required, all of this is stored in application-specific non-visual properties. This is illustrated in the 35

following three XML islands representing each of the three media cases: 36

Introduction to DrawingML

 264

CD-Audio <p:pic>
 <p:nvPicPr> … <p:cNvPicPr />
 <p:nvPr>
 <a:audioCd>
 <a:st track="2" time="50" />
 <a:end track="3" time="22" />
 </a:audioCd>
 </p:nvPr>
 …
</p:pic>

File-Audio <p:pic>
 <p:nvPicPr> … <p:cNvPicPr />
 <p:nvPr>
 <a:audioFile r:embed="" r:link="rId1" />
 </p:nvPr>
 </p:nvPicPr>
 …
</p:pic>

File-Video <p:pic>
 <p:nvPicPr> … <p:cNvPicPr />
 <p:nvPr>
 <a:videoFile r:embed="" r:link="rId1" />
 </p:nvPr>
 </p:nvPicPr>
 …
</p:pic>

 1

In the CD-Audio case, there is no capability to choose the particular CD drive that will contain the source. This 2

is a functional limitation. 3

While the default case is that media is linked, file-based media can also have the source bits included in the 4

package as a separate part. In this case, the relationships point not to an external file but, rather, to a part 5

inside the package. 6

5.3 Styles 7

5.3.1 Introduction 8

This piece of DrawingML deals with the definition of the shared aspects contained within a document theme. 9

The shared-style sheet defines an application-independent set of styling that can be applied to objects within a 10

document and which affects the look of the document and the information and objects it contains. For 11

example, in a presentation, shapes can have a certain look, whereas in an e-mail, all of the text can have 12

certain properties, and headings are styled. 13

A second topic is the definition of a table style as used within DrawingML. A table style defines the look of a 14

table regardless of the data present in that table. 15

Introduction to DrawingML

 265

5.3.2 Shared Style Sheet 1

The shared-style sheet within DrawingML is responsible for containing different formatting options and style 2

options that can be used within a given document. 3

5.3.2.1 Theme 4

The theme is the root-level complex type associated with a shared-style sheet. This complex type holds all of 5

the different formatting options available to a theme, and defines the overall look and feel of a document 6

when themed objects are used within the document. In figure 1 below, we can see an example of two 7

different themes applied to the same slide in a presentation. 8

 9

Figure 1: A theme applied to the same slide in a presentation. Not only does the font and colors change, but 10

also the effects applied to the shapes and table. 11

A theme consists of four main parts, although the themeElements element is the piece that holds the main 12

formatting defined within the theme. The other parts provide overrides, defaults, and additions to the 13

information contained in themeElements. The complex type defining a theme, CT_OfficeStyleSheet, is 14

defined in the following manner: 15

<complexType name="CT_OfficeStyleSheet"> 16

 <sequence> 17

 <element name="themeElements" type="CT_BaseStyles" minOccurs="1" 18

 maxOccurs="1"/> 19

 <element name="objectDefaults" type="CT_ObjectStyleDefaults" 20

 minOccurs="0" maxOccurs="1"/> 21

 <element name="extraClrSchemeLst" type="CT_ColorSchemeList" 22

 minOccurs="0" maxOccurs="1"/> 23

 <element name="custClrLst" type="CT_CustomColorList" minOccurs="0" 24

 maxOccurs="1"/> 25

Introduction to DrawingML

 266

 <element name="extLst" type="CT_OfficeArtExtensionList" 1

 minOccurs="0" maxOccurs="1"/> 2

 </sequence> 3

 <attribute name="name" type="xsd:string" use="optional" default=""/> 4

</complexType> 5

This complex type also holds a CT_OfficeArtExtensionList, which is used for future extensibility of this 6

complex type. 7

5.3.2.2 Theme Elements 8

The complex type CT_BaseStyles defines the theme elements for a theme, and is the workhorse of the theme. 9

The bulk of the shared theme information that is used by a given document is defined here. Within this 10

complex type is defined a color scheme, a font scheme, and a style matrix (format scheme) that defines 11

different formatting options for different pieces of a document. The complex type CT_BaseStyles is defined in 12

the following manner: 13

<complexType name="CT_BaseStyles"> 14

 <sequence> 15

 <element name="clrScheme" type="CT_ColorScheme" minOccurs="1" 16

 maxOccurs="1"/> 17

 <element name="fontScheme" type="CT_FontScheme" minOccurs="1" 18

 maxOccurs="1"/> 19

 <element name="fmtScheme" type="CT_StyleMatrix" minOccurs="1" 20

 maxOccurs="1"/> 21

 <element name="extLst" type="CT_OfficeArtExtensionList" 22

 minOccurs="0" maxOccurs="1"/> 23

 </sequence> 24

</complexType> 25

5.3.2.3 Color Scheme 26

The complex type CT_ColorScheme defines a set of colors for the theme. The set of colors consists of twelve 27

color slots that can each hold a color of choice. The colors are organized in the following way: 28

 Dark 1 (dk1) – This represents a dark color, usually defined as a system text color 29

 Light 1 (lt1) – This represents a light color, usually defined as the system window color 30

 Dark 2 (dk2) – This represents a second dark color for use 31

 Light 2 (lt2) – This represents a second light color for use 32

 Accents 1 through 6 (accent1 through accent6) – These are six colors which can be used as accent 33

colors in the theme 34

 Hyperlink (hlink) – The color of hyperlinks 35

 Followed Hyperlink (folHlink) – The color of a followed hyperlink 36

These colors define the theme colors that objects can utilize within a document. When an object uses a theme 37

color, the color of the object can change when the theme is changed, but will always map to accent 1 if that 38

Introduction to DrawingML

 267

were the theme color used by the object. An example of theme colors defined and used can be seen in 1

figure 2. 2

 3

 4

Figure 2: Sample colors defined and used for dark1/2, light1/2, and the six accent colors. 5

The complex type CT_ColorScheme is defined in the following manner: 6

<complexType name="CT_ColorScheme"> 7

 <sequence> 8

 <element name="dk1" type="CT_Color" minOccurs="1" maxOccurs="1"/> 9

 <element name="lt1" type="CT_Color" minOccurs="1" maxOccurs="1"/> 10

 <element name="dk2" type="CT_Color" minOccurs="1" maxOccurs="1"/> 11

 <element name="lt2" type="CT_Color" minOccurs="1" maxOccurs="1"/> 12

 <element name="accent1" type="CT_Color" minOccurs="1" 13

 maxOccurs="1"/> 14

 <element name="accent2" type="CT_Color" minOccurs="1" 15

 maxOccurs="1"/> 16

 <element name="accent3" type="CT_Color" minOccurs="1" 17

 maxOccurs="1"/> 18

 <element name="accent4" type="CT_Color" minOccurs="1" 19

 maxOccurs="1"/> 20

 <element name="accent5" type="CT_Color" minOccurs="1" 21

 maxOccurs="1"/> 22

 <element name="accent6" type="CT_Color" minOccurs="1" 23

 maxOccurs="1"/> 24

 <element name="hlink" type="CT_Color" minOccurs="1" maxOccurs="1"/> 25

 <element name="folHlink" type="CT_Color" minOccurs="1" 26

 maxOccurs="1"/> 27

Introduction to DrawingML

 268

 <element name="extLst" type="CT_OfficeArtExtensionList" 1

 minOccurs="0" maxOccurs="1"/> 2

 </sequence> 3

 <attribute name="name" type="xsd:string" use="required"/> 4

</complexType> 5

5.3.2.4 Font Scheme 6

The complex type CT_FontScheme defines a font pair. The pair consists of a major font and a minor font. An 7

example of use would be the major font used in headings for a document and the minor font used for the 8

paragraph parts of a document. The major and minor fonts are defined through a collection of font faces 9

defined on a per-language basis. For example, one may define only a Latin-based font, or one can define many 10

different fonts for different locals for a major or minor font. The font used in the document depends on the 11

user’s language. 12

The complex type CT_FontScheme is defined in the following manner: 13

<complexType name="CT_FontScheme"> 14

 <sequence> 15

 <element name="majorFont" type="CT_FontCollection" minOccurs="1" 16

 maxOccurs="1"/> 17

 <element name="minorFont" type="CT_FontCollection" minOccurs="1" 18

 maxOccurs="1"/> 19

 <element name="extLst" type="CT_OfficeArtExtensionList" 20

 minOccurs="0" maxOccurs="1"/> 21

 </sequence> 22

 <attribute name="name" type="xsd:string" use="required"/> 23

</complexType> 24

5.3.2.5 Major and Minor Font (Font Collection) 25

The complex type CT_FontCollection defines a major and minor font which is used in the font scheme. A font 26

collection consists of a font definition for Latin, East Asian, and complex script. On top of these three 27

definitions, one may also define a font for use in a specific language or languages. 28

The complex type CT_FontCollection is defined in the following manner: 29

<complexType name="CT_FontCollection"> 30

 <sequence> 31

 <element name="latin" type="CT_TextFont" minOccurs="1" 32

 maxOccurs="1"/> 33

 <element name="ea" type="CT_TextFont" minOccurs="1" maxOccurs="1"/> 34

 <element name="cs" type="CT_TextFont" minOccurs="1" maxOccurs="1"/> 35

 <element name="font" type="CT_SupplementalFont" minOccurs="0" 36

 maxOccurs="unbounded"/> 37

Introduction to DrawingML

 269

 <element name="extLst" type="CT_OfficeArtExtensionList" 1

 minOccurs="0" maxOccurs="1"/> 2

 </sequence> 3

</complexType> 4

5.3.2.6 Supplemental Font 5

The complex type CT_SupplementalFont defines an additional font that is used for language specific fonts in 6

themes. For example, one can specify a font that gets used only within the Japanese language context. 7

The complex type CT_SupplementalFont is defined in the following manner: 8

<complexType name="CT_SupplementalFont"> 9

 <attribute name="script" type="xsd:string" use="required"/> 10

 <attribute name="typeface" type="ST_TextTypeface" use="required"/> 11

</complexType> 12

5.3.2.7 Format Scheme (Style Matrix) 13

The complex type CT_StyleMatrix defines a set of formatting options, which can be referenced by documents 14

that apply a certain style to a given part of an object. For example, in a given shape, say a rectangle, one can 15

reference a themed line style, themed effect, and themed fill that would be theme specific and change when 16

the theme is changed. All of these formatting options are defined within this style matrix. Background fills can 17

also be contained within the style matrix. This is most useful to presentations (but not unique to 18

presentations) which reference different background fills as slide backgrounds. Three sets of each type of 19

formatting are defined, corresponding to subtle, moderate, and intense versions of each style. Combinations 20

of styles are used to create, for example a shape style. An example of this would be a shape style utilizing a 21

subtle fill, moderate line, and intense effect to define the overall look of a shape. 22

The complex type CT_StyleMatrix is defined in the following manner: 23

<complexType name="CT_StyleMatrix"> 24

 <sequence> 25

 <element name="fillStyleLst" type="CT_FillStyleList" minOccurs="1" 26

 maxOccurs="1"/> 27

 <element name="lnStyleLst" type="CT_LineStyleList" minOccurs="1" 28

 maxOccurs="1"/> 29

 <element name="effectStyleLst" type="CT_EffectStyleList" 30

 minOccurs="1" maxOccurs="1"/> 31

 <element name="bgFillStyleLst" type="CT_BackgroundFillStyleList" 32

 minOccurs="1" maxOccurs="1"/> 33

 </sequence> 34

 <attribute name="name" type="xsd:string" use="optional" default=""/> 35

</complexType> 36

Introduction to DrawingML

 270

5.3.2.8 Fill Style List 1

The complex type CT_FillStyleList defines a set of three fill types. Currently, only three fill types are used, 2

corresponding to subtle, moderate, and intense fills, but the number of fills that can be defined is unbounded. 3

An example of three fills that could be present can be seen in figure 3. In this figure, we have a solid blue fill in 4

the subtle slot, a gradient fill in the moderate slot, and an image fill in the intense slot. 5

 6

Figure 3: Three different fills increasing in relative intensity. 7

The complex type CT_FillStyleList is defined in the following manner: 8

<complexType name="CT_FillStyleList"> 9

 <sequence> 10

 <group ref="EG_FillProperties" minOccurs="3" maxOccurs="unbounded"/> 11

 </sequence> 12

</complexType> 13

5.3.2.9 Line Style List 14

The complex type CT_LineStyleList defines a set of three line styles. As with the fill style list, currently only 15

three styles are utilized corresponding to a subtle line, moderate line, and intense line. 16

The complex type CT_LineStyleList is defined in the following manner: 17

<complexType name="CT_LineStyleList"> 18

 <sequence> 19

 <element name="ln" type="CT_LineProperties" minOccurs="3" 20

 maxOccurs="unbounded"/> 21

 </sequence> 22

</complexType> 23

5.3.2.10 Effect Style List 24

The complex type CT_EffectStyleList defines a set of three effect styles. As with the previously mentioned 25

style lists, three styles are currently utilized corresponding to subtle, moderate, and intense effect styles, but 26

the list remains unbounded. In figure 4 we see subtle, moderate, and intense effects applied to a given shape 27

with a blue fill. The subtle effect is, basically, no effect, whereas the moderate effect is a glow surrounding the 28

shape, and the intense effect is a 3-D bevel along with a shadow applied to the shape. 29

Introduction to DrawingML

 271

 1

Figure 4: Subtle, moderate, and intense effects applied to a shape that has a blue fill. 2

The complex type CT_EffectStyleList is defined in the following manner: 3

<complexType name="CT_EffectStyleList"> 4

 <sequence> 5

 <element name="effectStyle" type="CT_EffectStyleItem" minOccurs="3" 6

 maxOccurs="unbounded"/> 7

 </sequence> 8

</complexType> 9

5.3.2.11 Effect Style Item 10

The complex type CT_EffectStyleItem holds the properties for a given effect style. Within this complex type, 11

one can define a list of effects (blur, shadow, reflection, etc.) along with any 3-D properties that are to be 12

applied to an object. A basic example of how effects can be applied to a shape can be seen in figure 4. 13

The complex type CT_EffectStyleItem is defined in the following manner: 14

<complexType name="CT_EffectStyleItem"> 15

 <sequence> 16

 <group ref="EG_EffectProperties" minOccurs="1" maxOccurs="1"/> 17

 <element name="scene3d" type="CT_Scene3D" minOccurs="0" 18

 maxOccurs="1"/> 19

 <element name="sp3d" type="CT_Shape3D" minOccurs="0" maxOccurs="1"/> 20

 </sequence> 21

</complexType> 22

5.3.2.12 Background Fill Style List 23

The complex type CT_BackgroundFillStyleList defines a set of three fill types similar to the fill style list. 24

Again, they define three fill types corresponding to subtle, moderate, and intense background fills but the list 25

itself is unbounded. The background-fills are meant, for example, to be applied to a slide background, or as 26

the background fill in a shape or table. 27

The complex type CT_BackgroundFillStyleList is defined in the following manner: 28

Introduction to DrawingML

 272

<complexType name="CT_BackgroundFillStyleList"> 1

 <sequence> 2

 <group ref="EG_FillProperties" minOccurs="3" maxOccurs="unbounded"/> 3

 </sequence> 4

</complexType> 5

5.3.2.13 Table Styles 6

Table styles are responsible for the rapid formatting that can be applied to a table. This rapid formatting takes 7

different things into account, such as if the first row or last row should be emphasized, or if there is some type 8

of banding present on the table. All of these different types of formatting can be defined within a table style. 9

An example of different table styles in use on the same table can be seen in figure 1. 10

 11

Figure 5: Different table styles in use. 12

The application of a table style to a table formats the table in its entirety. There are numerous complex types 13

that make up a table style. The pieces of a table style will be discussed first, before defining the table style 14

itself. 15

5.3.2.14 Cell 3D 16

The complex type CT_Cell3D defines all of the 3-D properties that an individual cell can hold. In the case of a 17

table, these 3-D properties can be a bevel along with a material and a light rig for the cell. More explanation of 18

these three pieces of a CT_Cell3D can be found in the document on 3-D. These properties are applied on a 19

per-cell basis, rather than to the table as a whole. A CT_Cell3D is defined in the following manner: 20

<xsd:complexType name="CT_Cell3D"> 21

 <xsd:sequence> 22

 <xsd:element name="bevel" type="CT_Bevel" minOccurs="1" 23

 maxOccurs="1" /> 24

Introduction to DrawingML

 273

 <xsd:element name="lightRig" type="CT_LightRig" minOccurs="0" 1

 maxOccurs="1" /> 2

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 3

 maxOccurs="1" /> 4

 </xsd:sequence> 5

 <xsd:attribute name="prstMaterial" type="ST_PresetMaterialType" 6

 use="optional" default="plastic" /> 7

</xsd:complexType> 8

This complex type also holds a CT_OfficeArtExtension. This complex type is used for future extensibility and 9

will be seen elsewhere throughout the tables area. 10

5.3.2.15 Themeable Styles 11

There are three groups and a complex type that account for style pieces that can be themed. These themed-12

aspects either pull from the style matrix, or they define an actual fill or effect for example. If they pull their 13

style from the matrix, then an update to the document theme will also update the particular style dynamically. 14

The three groups consist of the following groups: 15

<xsd:group name="EG_ThemeableFillStyle"> 16

 <xsd:choice> 17

 <xsd:element name="fill" type="CT_FillProperties" minOccurs="1" 18

 maxOccurs="1" /> 19

 <xsd:element name="fillRef" type="CT_StyleMatrixReference" 20

 minOccurs="1" maxOccurs="1" /> 21

 /xsd:choice> 22

</xsd:group> 23

<xsd:group name="EG_ThemeableEffectStyle"> 24

 <xsd:choice> 25

 <xsd:element name="effect" type="CT_EffectProperties" minOccurs="1" 26

 maxOccurs="1" /> 27

 <xsd:element name="effectRef" type="CT_StyleMatrixReference" 28

 minOccurs="1" maxOccurs="1" /> 29

 </xsd:choice> 30

</xsd:group> 31

<xsd:group name="EG_ThemeableFontStyles"> 32

 <xsd:choice> 33

 <xsd:element name="font" type="CT_FontCollection" minOccurs="1" 34

 maxOccurs="1" /> 35

 <xsd:element name="fontRef" type="CT_FontReference" minOccurs="1" 36

 maxOccurs="1" /> 37

 </xsd:choice> 38

</xsd:group> 39

Introduction to DrawingML

 274

The three groups above all give a choice between using a themed style, or defining the style themselves. The 1

last type in this group is a complex type used to perform the same task as the above three, only it deals with 2

the lines in the table. The complex type CT_ThemeableLineStyle is defined as: 3

<xsd:complexType name="CT_ThemeableLineStyle"> 4

 <xsd:choice> 5

 <xsd:element name="ln" type="CT_LineProperties" minOccurs="1" 6

 maxOccurs="1" /> 7

 <xsd:element name="lnRef" type="CT_StyleMatrixReference" 8

 minOccurs="1" maxOccurs="1" /> 9

 </xsd:choice> 10

</xsd:complexType> 11

5.3.2.16 On/Off Property Definition 12

The simple type ST_OnOffStyleType defines a type with values of on, off, or default. The default value means 13

to follow the parent settings. This comes into play for a themed property, which means follow what the theme 14

says. For an unthemed property, this means to follow the parent setting in the property inheritance chain. 15

5.3.2.17 Text Properties 16

The compelex type CT_TableStyleTextStyle defines the table text properties that can be styled. The text 17

properties contain a reference to a themeable font style along with bold and italic being enabled or disabled. 18

The CT_TableStyleTextStyle is defined in the following manner: 19

<xsd:complexType name="CT_TableStyleTextStyle"> 20

 <xsd:sequence> 21

 <xsd:group ref="EG_ThemeableFontStyles" minOccurs="0" 22

 maxOccurs="1" /> 23

 <xsd:group ref="EG_ColorChoice" minOccurs="0" maxOccurs="1" /> 24

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 25

 maxOccurs="1" /> 26

 </xsd:sequence> 27

 <xsd:attribute name="b" type="ST_OnOffStyleType" use="optional" 28

 default="def" /> 29

 <xsd:attribute name="i" type="ST_OnOffStyleType" use="optional" 30

 default="def" /> 31

</xsd:complexType> 32

5.3.2.18 Cell Border Properties 33

The complex type CT_TableCellBorderStyle defines the properties of the borders that can be styled in a table. 34

The border styles can be applied to the following different types of borders in a table: 35

 left – left border 36

 right – right border 37

 top – top border 38

Introduction to DrawingML

 275

 bottom – bottom border 1

 insideH – inner horizontal borders 2

 insideV – inner vertical borders 3

 tl2br – diagonal border from top left corner to bottom right corner 4

 tr2bl – diagonal border from top right corner to bottom left corner 5

The complex type is defined in the following manner: 6

<xsd:complexType name="CT_TableCellBorderStyle"> 7

 <xsd:sequence> 8

 <xsd:element name="left" type="CT_ThemeableLineStyle" minOccurs="0" 9

 maxOccurs="1" /> 10

 <xsd:element name="right" type="CT_ThemeableLineStyle" minOccurs="0" 11

 maxOccurs="1" /> 12

 <xsd:element name="top" type="CT_ThemeableLineStyle" minOccurs="0" 13

 maxOccurs="1" /> 14

 <xsd:element name="bottom" type="CT_ThemeableLineStyle" 15

 minOccurs="0" maxOccurs="1" /> 16

 <xsd:element name="insideH" type="CT_ThemeableLineStyle" 17

 minOccurs="0" maxOccurs="1" /> 18

 <xsd:element name="insideV" type="CT_ThemeableLineStyle" 19

 minOccurs="0" maxOccurs="1" /> 20

 <xsd:element name="tl2br" type="CT_ThemeableLineStyle" minOccurs="0" 21

 maxOccurs="1" /> 22

 <xsd:element name="tr2bl" type="CT_ThemeableLineStyle" minOccurs="0" 23

 maxOccurs="1" /> 24

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 25

 maxOccurs="1" /> 26

 </xsd:sequence> 27

</xsd:complexType> 28

5.3.2.19 Cell Style Properties 29

The complex type CT_TableStyleCellStyle contains the definition for cell properties which can be styled. 30

Within this complex type are held the border style, cell fill style, and the cell 3-D. The complex type is defined 31

in the following manner: 32

<xsd:complexType name="CT_TableStyleCellStyle"> 33

 <xsd:sequence> 34

 <xsd:element name="tcBdr" type="CT_TableCellBorderStyle" 35

 minOccurs="0" maxOccurs="1" /> 36

Introduction to DrawingML

 276

 <xsd:group ref="EG_ThemeableFillStyle" minOccurs="0" 1

 maxOccurs="1" /> 2

 <xsd:element name="cell3D" type="CT_Cell3D" minOccurs="0" 3

 maxOccurs="1" /> 4

 </xsd:sequence> 5

</xsd:complexType> 6

5.3.2.20 Table Background Style 7

The complex type CT_TableBackgroundStyle defines the style elements associated with the background of 8

the table. The table background style can contain a fill and effect. The complex type is defined in the following 9

manner: 10

<xsd:complexType name="CT_TableBackgroundStyle"> 11

 <xsd:sequence> 12

 <xsd:group ref="EG_ThemeableFillStyle" minOccurs="0" 13

 maxOccurs="1" /> 14

 <xsd:group ref="EG_ThemeableEffectStyle" minOccurs="0" 15

 maxOccurs="1" /> 16

 </xsd:sequence> 17

</xsd:complexType> 18

5.3.2.21 Table Part Style 19

The complex type CT_TablePartStyle defines a structure for holding the style information for a single part of 20

the table. The table is broken up in 13 different parts, which are explained in the next subclause of this 21

document. A table part contains a text style and a cell style and is defined in the following manner: 22

<xsd:complexType name="CT_TablePartStyle"> 23

 <xsd:sequence> 24

 <xsd:element name="tcTxStyle" type="CT_TableStyleTextStyle" 25

 minOccurs="0" maxOccurs="1" /> 26

 <xsd:element name="tcStyle" type="CT_TableStyleCellStyle" 27

 minOccurs="0" maxOccurs="1" /> 28

 </xsd:sequence> 29

</xsd:complexType> 30

5.3.2.22 Table Style 31

The complex type CT_TableStyle defines the actual table style. Apart from the table background, 13 different 32

parts that can be defined in a table style. These parts work together to define the styling for a table, given the 33

6 combinations of on/off states for the first row, first column, last row, last column, row banding, and column 34

banding options. The different parts of a table that make up a table style are: 35

 tableBg – table background (this is not a CT_TablePartStyle) 36

 wholeTable – formatting for the entire table 37

Introduction to DrawingML

 277

 band1Horizontal – applied when row banding is enabled, this is the first row style, which alternates 1

with band2Horiztonal 2

 band2Horizontal – applied when row banding is enabled, this is the second row style, which alternates 3

with band1Horizontal 4

 band1Vertical – applied when column banding is enabled, this is the first column style, which 5

alternates with band2Vertial 6

 band2Vertical – applied when column banding is enabled, this is the second column style, which 7

alternates with band1Vertical 8

 lastCol – formatting applied to the last column when last column formatting is enabled 9

 firstCol – formatting applied to the first column when first column formatting is enabled 10

 lastRow – formatting applied to the last row when last row formatting is enabled 11

 firstRow – formatting applied to the first row when first row formatting is enabled 12

 seCell – formatting applied to the cell in the southeast corner of the table when last column and last 13

row are enabled 14

 swCell – formatting applied to the cell in the southwest corner of the table when first column and last 15

row are enabled 16

 neCell – formatting applied to the cell in the northeast corner of the table when the last column and 17

first row are enabled 18

 nwCell – formatting applied to the cell in the northwest corner of the table when the first column and 19

first row are enabled 20

The table style is defined in the following manner: 21

<xsd:complexType name="CT_TableStyle"> 22

 <xsd:sequence> 23

 <xsd:element name="tblBg" type="CT_TableBackgroundStyle" 24

 minOccurs="0" maxOccurs="1" /> 25

 <xsd:element name="wholeTbl" type="CT_TablePartStyle" minOccurs="0" 26

 maxOccurs="1" /> 27

 <xsd:element name="band1H" type="CT_TablePartStyle" minOccurs="0" 28

 maxOccurs="1" /> 29

 <xsd:element name="band2H" type="CT_TablePartStyle" minOccurs="0" 30

 maxOccurs="1" /> 31

 <xsd:element name="band1V" type="CT_TablePartStyle" minOccurs="0" 32

 maxOccurs="1" /> 33

 <xsd:element name="band2V" type="CT_TablePartStyle" minOccurs="0" 34

 maxOccurs="1" /> 35

 <xsd:element name="lastCol" type="CT_TablePartStyle" minOccurs="0" 36

 maxOccurs="1" /> 37

 <xsd:element name="firstCol" type="CT_TablePartStyle" minOccurs="0" 38

 maxOccurs="1" /> 39

 <xsd:element name="lastRow" type="CT_TablePartStyle" minOccurs="0" 40

 maxOccurs="1" /> 41

Introduction to DrawingML

 278

 <xsd:element name="seCell" type="CT_TablePartStyle" minOccurs="0" 1

 maxOccurs="1" /> 2

 <xsd:element name="swCell" type="CT_TablePartStyle" minOccurs="0" 3

 maxOccurs="1" /> 4

 <xsd:element name="firstRow" type="CT_TablePartStyle" minOccurs="0" 5

 maxOccurs="1" /> 6

 <xsd:element name="neCell" type="CT_TablePartStyle" minOccurs="0" 7

 maxOccurs="1" /> 8

 <xsd:element name="nwCell" type="CT_TablePartStyle" minOccurs="0" 9

 maxOccurs="1" /> 10

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 11

 maxOccurs="1" /> 12

 </xsd:sequence> 13

 <xsd:attribute name="styleId" type="ST_Guid" use="required" /> 14

 <xsd:attribute name="styleName" type="xsd:string" use="required" />" 15

</xsd:complexType> 16

Also contained within the table style are an ID and a name. The name shows up as the name for the table 17

style, and the ID is the unique id (GUID) that is associated with the table style. 18

5.3.2.23 Table Style List 19

The final complex type dealing with table styles is simply a list of table styles. Also contained in this list is the 20

default style which gets applied to the table when the a default is to be used. The complex type 21

CT_TableStyleList is defined in the following manner: 22

<xsd:complexType name="CT_TableStyleList"> 23

 <xsd:sequence> 24

 <xsd:element name="tblStyle" type="CT_TableStyle" minOccurs="0" 25

 maxOccurs="unbounded" /> 26

 </xsd:sequence> 27

 <xsd:attribute name="def" type="ST_Guid" use="required" /> 28

</xsd:complexType> 29

5.4 Text 30

5.4.1 Introduction 31

This subclause provides a high-level overview of the content described in the following schemas: dml-text.xsd, 32

dml-textParagraph.xsd, dml-textRun.xsd, dml-textCharacter.xsd and dml-textBullet.xsd. 33

The best way to understand these schemas as they relate to one another is to learn about the DrawingML Text 34

file format in the following order. 35

 Text Overview 36

 Body Level Properties 37

Introduction to DrawingML

 279

 Paragraph Level Properties 1

 Run and Character Level Properties 2

Companion schemas build on the ones discussed in this document. As these are encountered below, pointers 3

to them are provided. 4

This subclause provides a structured breakdown of the text portion of the DrawingML file format. Other 5

subclauses build on this foundation and explain more about topics such as text frame, text styles, text fields, 6

and embedded fonts. 7

Note that DrawingML Text described within this document is distinct from WordprocessingML Text in that 8

the file framework surrounding it has been optimized for use in a graphics-centric, presentation-like manner. 9

As a contrast, WordprocessingML Text allows for text to be stored in a format that is optimized for layout of 10

printed documents but not for art-based text as is found within the <a:> namespace. 11

Note that the use of the "p" namespace within this document references to the PresentationML-specific 12

schemas while the use of the "a" namespace within this document references to the DrawingML-specific 13

schemas. 14

5.4.2 Overview 15

Consider an XML tree that has the following basic structure: 16

<p:sld> 17

 <p:cSld> 18

 <p:spTree> 19

 <p:sp> 20

 <p:txBody> 21

 Your text here! 22

 (not really, there are other elements needed within here) 23

 </p:txBody> 24

 </p:sp> 25

 <p:sp> 26

 </p:sp> 27

 … 28

 </p:spTree> 29

 </p:cSld> 30

</p:sld> 31

In the structure above, we are interested in the content contained within the matching p:txBody tags. The 32

understanding of this tag in relation to the basic slide structure above encompasses the schema background 33

needed to digest effectively the remainder of this description. 34

Note that shapes are the standard container within which all text resides. Usually, the shape does not have any 35

visual properties attached to it and thus no visible shape is rendered; nonetheless, a shape is still present and 36

does house any content text. 37

Introduction to DrawingML

 280

Each shape contains an inset rectangle that houses any text attached to that shape. The shape has margins or 1

insets that buffer this rectangle on all four sides (top, bottom, left, and right) just like margins on a page. When 2

thinking about text within a shape, it is useful to keep these inset properties in mind. 3

 An illustration of this is provided below. 4

 5

Let's look at the different element tags contained within p:txBody. Listed below are only those tags discussed 6

here. (Note that this sample framework is a skeleton and does not fully show all elements and attributes 7

needed.) 8

<p:txBody> 9

 <a:bodyPr /> required, only listed once. 10

 <a:lstStyle /> optional, if present only listed once. 11

 <a:p> required, no limit on the number of instances. 12

 <a:pPr /> optional, if present only listed once. 13

 <a:r> required, no limit on the number of instances. 14

 <a:rPr /> optional, if present only listed once. 15

 <a:t>Your text here!</a:t> 16

 Actual text for this run is contained here. 17

 </a:r> 18

 <a:endParaRPr /> optional, if present only listed once. 19

 </a:p> 20

</p:txBody> 21

Element Purpose Description

a:bodyPr Body Properties Describes text anchor points, shape autofit, number of

columns, text warping, and 3D scenes and lighting effects.

See §5.4.3.

a:lstStyle List Style Used to define style properties for the paragraph and its nine

list levels.

Introduction to DrawingML

 281

a:p Single Paragraph Houses a single paragraph and its corresponding paragraph-

level properties. Contained within here are also all the text

runs that comprise this paragraph. See §5.4.3.4.

a:pPr Paragraph

Properties

Describes the format and style with which the corresponding

paragraph is presented. Some possible settings that can be

utilized within this space include, but are not limited to, the

following: spacing, margins, and alignment. See §5.4.3.4.

a:r Single Run Specifies the existence of a run of text within a paragraph. A

run represents the most granular form of text that can be

represented in the file format. See §5.4.3.8.

a:rPr Run Properties Allows the attachment of properties to the run of text

specified by its parent a:r element. These properties include,

but are not limited to, the following: underline, strikethrough,

and text caps. See §5.4.3.8.

a:t Actual text Allows for the storage of the specific text that all these body,

paragraph and run level properties are describing. This tag is

the most important as it gives context to all the other

elements and attributes that have come before it.

a:endParaRPr Persistent Run

Properties

Specifies the properties that are to persist should the user

begin to type additional text after this paragraph. This

property should only be set when the style that should follow

this paragraph is different from the paragraph itself.

5.4.3 Body Level Properties 1

Schemas represented here: dml-text.xsd 2

In this subclause, we'll explore the sorts of properties that can be attached to the body as a whole. As shown in 3

the sample XML above, there are three essential property levels available. The body-level properties are to the 4

broadest of these. Note that some of these body-level properties are applied as attributes to the body 5

property tag while others are expressed as child elements. The specific method by which each property is 6

applied can be found in the schemas listed above. 7

Introduction to DrawingML

 282

<p:txBody> 1

 <a:bodyPr /> Main element covered in this subclause 2

 <a:lstStyle /> 3

 <a:p> 4

 <a:pPr /> 5

 <a:r> 6

 <a:rPr /> 7

 <a:t>Your text here!</a:t> 8

 </a:r> 9

 </a:p> 10

</p:txBody> 11

5.4.3.1 Setting Up the Text Area 12

Let's start with how a text area might be initially described. This area is the container within which all the child 13

text for this body resides. First, it is useful to understand the inset properties; specifically, the top, bottom, left 14

and right inset properties that are also known as internal margins for the text body. The anchor attribute 15

allows us to specify where the text area should be anchored within its bounding rectangle. 16

An illustration of this bounding rectangle is highlighted below by the inner green box. Notice here that the 17

bounding rectangle is anchored to the right. 18

 19

Here's how the text will appear inside. Attribute AutoFit allows for three basic scenarios: 20

 No AutoFit: The text is allowed to flow outside the container. 21

 Normal AutoFit: The text is resized using defined constraints to fit inside the container area. (This is 22

used when the text is too large or long to fit in the text container.) 23

 Shape AutoFit: The actual text container is resized to contain all the text. (This is the only option that 24

can cause the container to have its dimensions changed.) 25

The term flow is used to describe the way in which text moves around inside this text area, and to describe 26

how each of the body properties affects the text within the text area. 27

One way that text can flow is from one line to the next. This can be done automatically by using the text-28

wrapping attribute. Another way is to use columns. The XML framework allows for the specification of a 29

Introduction to DrawingML

 283

number of columns into which the text is to be automatically broken. This feature also allows for the specifying 1

of the spacing of columns and a right-to-left layout instead of the default left-to-right. Another way that text 2

can flow is vertical instead of horizontal. For this, there are many different types of vertical text that can be 3

described: from text that appears rotated to text where the characters are truly stacked. The text can even be 4

made to flow differently when an East Asian font is specified. 5

When looking at the flow it is useful to discuss the potential for overflow. That is, the text must flow outside 6

the text area because it is too large to fit inside. For this, there are two common types: vertical and horizontal. 7

The vertical overflow can be handled in three ways: 8

 overflow: This allows the text to flow outside the text area. 9

 10

 ellipsis: This crops the text that overflows and adds "…" to denote that there is hidden text. 11

 12

 clip: This crops the text just as ellipsis but does not insert "…", so the user has no indication that there 13

is hidden text. 14

 Horizontal overflow works exactly like vertical, but with only two options: overflow and 15

clip, which both operate as described above. 16

5.4.3.2 Manipulating the Text 17

Let's look at the ways in which the text can be further enhanced at the text body level. Note that the 18

properties that follow apply only to the text body as a whole and thus cannot be applied to a specific 19

paragraph or run within the text body. Theses properties are as follows: 20

Text Warping: Text within the text area is made to distort itself according to a predefined shape. This 21

shape resides within the bounding box described earlier. This effect is known as text warping and has its 22

preset shapes defined further within dml-shapeGeometry.xsd 23

Introduction to DrawingML

 284

 3D Text: Text can be described with respect to a 3D scene. Using this tag provides three basic options: 1

 The text resides within a 3D scene, but as planar text. 2

 The text is allowed to reside within the 3D scene and has 3D effects (such as bevel or extrusion) 3

applied to it. 4

 The text resides on top of a 3D scene. The 3D scene properties are defined dml-shape3DStyles.xsd 5

and dml-shape3DScene.xsd schemas. 6

 Rotated and Upright Text: A particular rotation can be specified that is applied to the text within the 7

text area. Note that this is different from the rotation that is applied to the shape within which the text 8

area resides. If this attribute is not specifically set then the rotation of the container shape is used. 9

5.4.3.3 Backwards and Forwards Compatibility 10

The following areas are of interest when considering support for both past design and future innovation. 11

 From WordArt: This is specific to dealing with previous WordArt text. Now that text is described as 12

simply a shape, there is no need for a WordArt-specific description. There is, however, the need to 13

identify which pieces of text were from the old WordArt styles in case there is the need to write them 14

back out in their old format. 15

 Future Extensions: The ability for future extensions has been provided to the body property tag via the 16

ext tag. This can be used the widest way possible as it is a complex type and can thus describe the 17

most complex future properties. Note that each of the schema subclauses below have their own ext 18

tag. 19

5.4.3.4 Paragraph-Level Properties 20

Schemas represented here: dml-textParagraph.xsd, dml-textBullet.xsd. 21

In this subclause, we will explore what sorts of properties can be attached to a paragraph as a whole. 22

Paragraph-level properties allow for a more granular description of the text than the properties of the body 23

tag described earlier. Keep in mind that the properties that can be applied at this level are not duplicates of 24

the body or run levels, but unique only to the paragraph element. Once again, it should be noted that some of 25

these paragraph-level properties are applied as attributes to the paragraph property tag while others are 26

expressed as child elements. The specific method by which each property is applied can be found in the 27

schemas listed above. 28

<p:txBody> 29

Introduction to DrawingML

 285

 <a:bodyPr /> 1

 <a:lstStyle /> 2

 <a:p> 3

 <a:pPr /> Main element covered in this subclause 4

 <a:r> 5

 <a:rPr /> 6

 <a:t>Your text here!</a:t> 7

 </a:r> 8

 </a:p> 9

</p:txBody> 10

5.4.3.5 Spacing, Alignment, and Direction 11

The XML file format allows for the specifying of spacing both between lines in the form of line spacing, and also 12

outside the paragraph via margins and special before/after spacing. In addition to this, there is also the ability 13

to specify indent spacing for the beginning of the paragraph. 14

The standard alignment options include left-aligned, right-aligned, centered, justified, and distributed. Justified 15

alignment causes each line of text to be stretched out to a certain point. To ensure that short lines remain 16

readable, they are not stretched. Distributed alignment is quite similar, but stretches every line, regardless of 17

that line's length. 18

Text direction is specified as either left-to-right (the default) or right-to-left using the specific rtl tag. 19

5.4.3.6 Tabs and Line Breaks 20

When the default tabs are not sufficient for the paragraph in question there is the option of including custom 21

tab stops in the XML file format. The information required for this is both a default tab size attribute and a full 22

tab stop list showing all tab stop positions that apply to this paragraph. Keep in mind that if tab stops are not 23

explicitly stated in the file format that the business logic of the application must use its own default positions if 24

tabs are needed. 25

Line break is a tag that informs the application as to whether it should break up a string of text onto multiple 26

lines based on Latin grammar rules or East Asian grammar rules. The East Asian option uses the Kinsoku 27

settings to determine whether a word is allowed to begin or end a line of text. 28

5.4.3.7 Adding Bullets 29

Bullets are specified per paragraph, so bullets can be mixed and matched within a single text body to appear as 30

a coherent text group. The types of bullets available are: 31

 Character Bullets: Uses a font character to denote a bullet and can be set to appear in any size 32

(percentage of text), color (all available including theme colors), and font. The properties are Bullet 33

Color, Bullet Size, Bullet Font Typeface, Bullet Character (represents the actual bullet) 34

Introduction to DrawingML

 286

 1

 Auto-Numbered Bullets: Uses the application logic to assign a series of numbers/characters to a 2

specific bulleted item using just a bullet scheme and a starting number. (When a starting number is 3

used, all bulleted paragraphs listed after the start number are automatically numbered based on this 4

last known start number. The scope of this auto-numbering is only within its current text body, no 5

start at number would ever carry over to a different text body.) The properties are Start At number, 6

Bullet Scheme (letters, roman numerals, etc.), Bullet Color, Bullet Size, and Bullet Font Typeface. 7

 8

 Blip Bullets: Uses a picture to denote a bulleted item. The only additional property available with this 9

type of applied bullet is the size (percentage of text). If the graphic is not in the applications standard 10

set of graphics then the attached graphic is converted to a PNG format, placed in the document 11

container and is given a relationship id that is used later to reference the image. The properties are 12

Embed id (corresponds to a bullet graphic) and Bullet Size. 13

 14

5.4.3.8 Run- and Character-Level Properties 15

Schemas represented here: dml-textRun.xsd, dml-textCharacter.xsd 16

In this subclause, we'll explore the most granular text properties available in this XML framework, namely 17

those described at the text run and character level. This level is usually the level in which text is broken up into 18

differently formatted parts, because the most commonly used text properties almost all reside at this level. 19

This allows for some very detailed formatting to be represented. Again, it should be noted that for consistency 20

that some of these run and character level properties are applied as attributes to the run property tag while 21

others are expressed as child elements. The specific method by which each property is applied can be found in 22

the schemas listed above. 23

Introduction to DrawingML

 287

<p:txBody> 1

 <a:bodyPr /> 2

 <a:lstStyle /> 3

 <a:p> 4

 <a:pPr /> 5

 <a:r> 6

 <a:rPr /> Main element covered in this subclause 7

 <a:t>Your text here!</a:t> 8

 </a:r> 9

 </a:p> 10

</p:txBody> 11

5.4.3.9 Visual Properties 12

When looking to format a run of text the first property that one might need to specify would be the font 13

typeface. The XML file format allows for the specification of not only Latin Fonts but also East Asian, Complex 14

Script, and Symbol fonts as well. These four font buckets give the application additional information that is 15

used to layout text in a manner fitting for the specific font. Along with the actual font being used, comes the 16

size of the font. To specify this simply use the sz attribute and along with a value that is 1/100th of the size in 17

points. 18

Other common formatting properties allowed in the XML framework are bold, italic, underline and 19

strikethrough. The use of both the bold and italic properties is simply via a Boolean value of 0 or 1. The usage 20

of the underline and strikethrough, however, allow a more specific selection to be made. There are 17 values 21

for underline, which range from a single line to wavy double lines. In addition to specifying the style of 22

underline that is to be used, the framework can also specify fill properties for the underline. These are solid 23

color, multi-color gradient, and texture fill. For strikethrough, there are two options: single and double strike 24

through. 25

When standard formatting isn't adequate, more complex effects can be defined for a specific run of text. The 26

basic breakdown for these is line properties, fill properties and effect properties. Encapsulated within each of 27

these areas is a wide range of customizable effects. A quick look at line properties, for example, reveals the 28

ability to specify a color, gradient, or pattern fill, along with a width and style applied. Along these lines fill 29

properties allows for transparent fill, solid fill, gradient fill, texture fill and even picture fill. While these 30

features alone give the XML file format plenty of robustness in describing text, other features are also 31

available. Because text is treated the same as a shape, a run of text can have virtually all shape effects applied 32

to it just as if it were a shape. These effects include shadow, glow, and reflection, and are placed in an effect 33

list under the run properties tag. An example of what these lines, fills and effects may look like is provided 34

below. More information on these effects can be found in either dml-shapeLineProperties.xsd or dml-35

shapeEffects.xsd. 36

Introduction to DrawingML

 288

<a:rPr> 1

 <a:ln> 2

 <a:solidFill … /> Line properties here 3

 </a:ln> 4

 <a:gradFill> 5

 <a:gsLst … /> Fill properties here 6

 </a:gradFill> 7

 <a:effectLst> 8

 <a:reflection … /> Effect properties here 9

 </a:effectLst> 10

</a:rPr> 11

A few additional properties are worth noting: 12

 Minimum kerning size: This specifies the smallest font size at which kerning still occurs. When no tag is 13

present for this the default value is 0, allowing kerning at any text size. 14

 Spacing between characters: The units here are the same as are used for font size. Along the lines of 15

specifying horizontal spacing, vertical spacing can be specified via the baseline tag. This is typically 16

used for subscript and superscript text and is specified in the same units as font size. 17

 Capitalization and Normalize: Capitalization sets the case of the character to either all small caps or all 18

large caps. For this property there are only these two settings aside from the "none" setting at which 19

point this property is ignored. Normalize height takes all shorter characters and adjusts their height up 20

so that they are the same as taller characters. This property is set via a Boolean value. 21

5.4.3.10 Properties for Interactivity 22

Hyperlinks: The XML file format allows for the inputting of hyperlinks that are activated by either click or 23

mouse over. These two tags are HyperlinkClick and HyperlinkMouseOver, respectfully. They both allow for 24

the specifying of a link to another resource very much like those found on a common website. 25

Spelling and Smart Tags: Although spelling is very much an application-specific part of text editing and is most 26

likely to be done within the application itself there are a few ways that spelling settings and preferences can be 27

persisted within the file format. One way is through the spelling error bit, which simply saves whether there is 28

a known spelling mistake. The next is the spelling dirty bit. This gets set whenever the user has entered new 29

text and the application has not had a chance to check for spelling errors on this piece of text. Lastly, in this 30

realm we actually have a user preference of no proofing that is persisted for the next time a document is 31

opened. This allows the user to specify a word that they do not want to have checked for spelling. Along with 32

spell-checking comes the notion of smart tags which must be checked for just like spelling mistakes. For this 33

there are two related tags. The first is the smart tag clean, which allows for a boolean value to be set 34

determining if this portion of text has been checked for the presence of new smart tags. The next is the actual 35

smart tag id. Once a piece of text has been determined to be a smart tag then a smart tag id is assigned which 36

points to the actual smart tag information. 37

Introduction to DrawingML

 289

5.4.3.11 International Language Support 1

There exists the notion of the language id, which is simply a value that assists the application in laying out the 2

text. The tags that help with this are the language id tag and the alternate language id tag. Together, these 3

allow the file format to be robust and handle multiple languages for a single run of text. In addition, there is 4

also the kumimoji tag, which aids with the layout of East Asian text by specifying whether numbers appear 5

vertically with text (default) or horizontally. An illustration of a run of text with kumimoji applied is provided 6

below. 7

 8

5.5 Tables 9

5.5.1 Introduction 10

This document provides a high-level overview of the content described in the schemas dml-table.xsd and dml-11

tableStyle.xsd. 12

This aspect of DrawingML deals with the definition of a table and the associated styling information. The first 13

part describes the table styles aspect, while the second part describes the definition of a table within 14

DrawingML. The above-mentioned schemas fall into the following groupings: 15

Table Styles Table Definition

dml-tableStyle.xsd dml-table.xsd

5.5.2 Table Styles 16

Table styles are responsible for the rapid formatting that can be applied to a table. This rapid formatting takes 17

different things into account, such as if the first row or last row should be emphasized, or if there is some type 18

of banding present on the table. All of these different types of formatting can be defined within a table style. 19

An example of different table styles in use on the same table can be seen in figure 1. 20

Introduction to DrawingML

 290

 1

Figure 6: Different table styles in use. 2

The application of a table style to a table formats the table in its entirety. A number of complex types make up 3

a table style. The pieces of a table style are discussed first, before the table style itself is defined. 4

5.5.2.1 Cell 3-D 5

The complex type, CT_Cell3D, defines all of the 3-D properties that an individual cell can hold. In the case of a 6

table, these 3-D properties can be a bevel along with a material and a light rig for the cell. (More explanation 7

of these three pieces of a CT_Cell3D can be found in §5.6.) These properties are applied on a per-cell basis, 8

rather than to the table as a whole. A CT_Cell3D is defined in the following manner: 9

<xsd:complexType name="CT_Cell3D"> 10

 <xsd:sequence> 11

 <xsd:element name="bevel" type="CT_Bevel" minOccurs="1" 12

 maxOccurs="1" /> 13

 <xsd:element name="lightRig" type="CT_LightRig" minOccurs="0" 14

 maxOccurs="1" /> 15

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 16

 minOccurs="0" maxOccurs="1" /> 17

 </xsd:sequence> 18

 <xsd:attribute name="prstMaterial" type="ST_PresetMaterialType" 19

 use="optional" default="plastic" /> 20

</xsd:complexType> 21

This complex type also holds a CT_OfficeArtExtensionList. This complex type is used for future extensibility 22

and will be seen elsewhere throughout the tables area. 23

Introduction to DrawingML

 291

5.5.2.2 Themeable Styles 1

Three groups and a complex type account for style pieces that can be themed. These themed aspects either 2

pull from the style matrix, or they define an actual fill or effect for example. If they pull their style from the 3

matrix, then an update to the document theme will also update the particular style dynamically. The three 4

groups consist of the following groups: 5

<xsd:group name="EG_ThemeableFillStyle"> 6

 <xsd:choice> 7

 <xsd:element name="fill" type="CT_FillProperties" minOccurs="1" 8

 maxOccurs="1" /> 9

 <xsd:element name="fillRef" type="CT_StyleMatrixReference" 10

 minOccurs="1" maxOccurs="1" /> 11

 </xsd:choice> 12

</xsd:group> 13

<xsd:group name="EG_ThemeableEffectStyle"> 14

 <xsd:choice> 15

 <xsd:element name="effect" type="CT_EffectProperties" 16

 minOccurs="1" maxOccurs="1" /> 17

 <xsd:element name="effectRef" type="CT_StyleMatrixReference" 18

 minOccurs="1" maxOccurs="1" /> 19

 </xsd:choice> 20

</xsd:group> 21

<xsd:group name="EG_ThemeableFontStyles"> 22

 <xsd:choice> 23

 <xsd:element name="font" type="CT_FontCollection" minOccurs="1" 24

 maxOccurs="1" /> 25

 <xsd:element name="fontRef" type="CT_FontReference" minOccurs="1" 26

 maxOccurs="1" /> 27

 </xsd:choice> 28

</xsd:group> 29

The three groups above all give a choice between using a themed style or defining the style themselves. The 30

last type in this group is a complex type used to perform the same task as the above three, only it deals with 31

the lines in the table. The complex type, CT_ThemeableLineStyle, is defined as: 32

<xsd:complexType name="CT_ThemeableLineStyle"> 33

 <xsd:choice> 34

 <xsd:element name="ln" type="CT_LineProperties" minOccurs="1" 35

 maxOccurs="1" /> 36

 <xsd:element name="lnRef" type="CT_StyleMatrixReference" 37

 minOccurs="1" maxOccurs="1" /> 38

 </xsd:choice> 39

</xsd:complexType> 40

Introduction to DrawingML

 292

5.5.2.3 On/Off Property Definition 1

The simple type, ST_OnOffStyleType, defines a type with values of on, off, or default. A value of default 2

indicates that parent settings should be used. Thus, for a themed property, default indicates that the theme 3

properties should be followed. For an unthemed property, default means that the parent setting in the 4

property inheritance chain should be followed. 5

5.5.2.4 Text Properties 6

The complex type, CT_TableStyleTextStyle, defines the table text properties that can be styled. The text 7

properties contains a reference to a themeable font style along with bold and italic being enabled or disabled. 8

The CT_TableStyleTextStyle is defined in the following manner: 9

<xsd:complexType name="CT_TableStyleTextStyle"> 10

 <xsd:sequence> 11

 <xsd:group ref="EG_ThemeableFontStyles" minOccurs="0" 12

 maxOccurs="1" /> 13

 <xsd:group ref="EG_ColorChoice" minOccurs="0" maxOccurs="1" /> 14

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 15

 minOccurs="0" maxOccurs="1" /> 16

 </xsd:sequence> 17

 <xsd:attribute name="b" type="ST_OnOffStyleType" use="optional" 18

 default="def" /> 19

 <xsd:attribute name="i" type="ST_OnOffStyleType" use="optional" 20

 default="def" /> 21

</xsd:complexType> 22

5.5.2.5 Cell Border Properties 23

The complex type, CT_TableCellBorderStyle, defines the properties of the borders that can be styled in a table. 24

The border styles can be applied to the following different types of borders in a table: 25

 left – left border 26

 right – right border 27

 top – top border 28

 bottom – bottom border 29

 insideH – inner horizontal borders 30

 insideV – inner vertical borders 31

 tl2br – diagonal border from top left corner to bottom right corner 32

 tr2bl – diagonal border from top right corner to bottom left corner 33

The complex type is defined in the following manner: 34

Introduction to DrawingML

 293

<xsd:complexType name="CT_TableCellBorderStyle"> 1

 <xsd:sequence> 2

 <xsd:element name="left" type="CT_ThemeableLineStyle" 3

 minOccurs="0" maxOccurs="1" /> 4

 <xsd:element name="right" type="CT_ThemeableLineStyle" 5

 minOccurs="0" maxOccurs="1" /> 6

 <xsd:element name="top" type="CT_ThemeableLineStyle" 7

 minOccurs="0" maxOccurs="1" /> 8

 <xsd:element name="bottom" type="CT_ThemeableLineStyle" 9

 minOccurs="0" maxOccurs="1" /> 10

 <xsd:element name="insideH" type="CT_ThemeableLineStyle" 11

 minOccurs="0" maxOccurs="1" /> 12

 <xsd:element name="insideV" type="CT_ThemeableLineStyle" 13

 minOccurs="0" maxOccurs="1" /> 14

 <xsd:element name="tl2br" type="CT_ThemeableLineStyle" 15

 minOccurs="0" maxOccurs="1" /> 16

 <xsd:element name="tr2bl" type="CT_ThemeableLineStyle" 17

 minOccurs="0" maxOccurs="1" /> 18

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 19

 minOccurs="0" maxOccurs="1" /> 20

 </xsd:sequence> 21

</xsd:complexType> 22

5.5.2.6 Cell Style Properties 23

The complex type, CT_TableStyleCellStyle, contains the definition for cell properties that can be styled. Within 24

this complex type are held the border style, cell fill style, and the cell 3-D. The complex type is defined in the 25

following manner: 26

<xsd:complexType name="CT_TableStyleCellStyle"> 27

 <xsd:sequence> 28

 <xsd:element name="tcBdr" type="CT_TableCellBorderStyle" 29

 minOccurs="0" maxOccurs="1" /> 30

 <xsd:group ref="EG_ThemeableFillStyle" minOccurs="0" 31

 maxOccurs="1" /> 32

 <xsd:element name="cell3D" type="CT_Cell3D" minOccurs="0" 33

 maxOccurs="1" /> 34

 </xsd:sequence> 35

</xsd:complexType> 36

5.5.2.7 Table Background Style 37

The complex type, CT_TableBackgroundStyle, defines the style elements associated with the background of 38

the table. The table background style can contain a fill and effect. The complex type is defined in the following 39

manner: 40

Introduction to DrawingML

 294

<xsd:complexType name="CT_TableBackgroundStyle"> 1

 <xsd:sequence> 2

 <xsd:group ref="EG_ThemeableFillStyle" minOccurs="0" 3

 maxOccurs="1" /> 4

 <xsd:group ref="EG_ThemeableEffectStyle" minOccurs="0" 5

 maxOccurs="1" /> 6

 </xsd:sequence> 7

</xsd:complexType> 8

5.5.2.8 Table Part Style 9

The complex type, CT_TablePartStyle, defines a structure for holding the style information for a single part of 10

the table. The table is broken up in 13 different parts which will be explained in the next subclause of this 11

document. A table part contains a text style and a cell style and is defined in the following manner: 12

<xsd:complexType name="CT_TablePartStyle"> 13

 <xsd:sequence> 14

 <xsd:element name="tcTxStyle" type="CT_TableStyleTextStyle" 15

 minOccurs="0" maxOccurs="1" /> 16

 <xsd:element name="tcStyle" type="CT_TableStyleCellStyle" 17

 minOccurs="0" maxOccurs="1" /> 18

 </xsd:sequence> 19

</xsd:complexType> 20

5.5.2.9 Table Style 21

The complex type, CT_TableStyle, defines the actual table style. There are thirteen different parts (outside of 22

the table background) that can be defined in a table style. These parts work together to define the styling for a 23

table, given the six combinations of on/off states for the first row, first column, last row, last column, row 24

banding, and column banding options. The different parts of a table that make up a table style are: 25

 tableBg – table background (this is not a CT_TablePartStyle) 26

 wholeTable – formatting for the entire table 27

 band1Horizontal – applied when row banding is enabled, this is the first row style, which alternates 28

with band2Horiztonal 29

 band2Horizontal – applied when row banding is enabled, this is the second row style, which alternates 30

with band1Horizontal 31

 band1Vertical – applied when column banding is enabled, this is the first column style, which 32

alternates with band2Vertial 33

 band2Vertical – applied when column banding is enabled, this is the second column style, which 34

alternates with band1Vertical 35

 lastCol – formatting applied to the last column when last column formatting is enabled 36

 firstCol – formatting applied to the first column when first column formatting is enabled 37

 lastRow – formatting applied to the last row when last row formatting is enabled 38

 firstRow – formatting applied to the first row when first row formatting is enabled 39

Introduction to DrawingML

 295

 seCell – formatting applied to the cell in the southeast corner of the table when last column and last 1

row are enabled 2

 swCell – formatting applied to the cell in the southwest corner of the table when first column and last 3

row are enabled 4

 neCell – formatting applied to the cell in the northeast corner of the table when the last column and 5

first row are enabled 6

 nwCell – formatting applied to the cell in the northwest corner of the table when the first column and 7

first row are enabled 8

The table style is defined in the following manner: 9

<xsd:complexType name="CT_TableStyle"> 10

 <xsd:sequence> 11

 <xsd:element name="tblBg" type="CT_TableBackgroundStyle" 12

 minOccurs="0" maxOccurs="1" /> 13

 <xsd:element name="wholeTbl" type="CT_TablePartStyle" 14

 minOccurs="0" maxOccurs="1" /> 15

 <xsd:element name="band1H" type="CT_TablePartStyle" minOccurs="0" 16

 maxOccurs="1" /> 17

 <xsd:element name="band2H" type="CT_TablePartStyle" minOccurs="0" 18

 maxOccurs="1" /> 19

 <xsd:element name="band1V" type="CT_TablePartStyle" minOccurs="0" 20

 maxOccurs="1" /> 21

 <xsd:element name="band2V" type="CT_TablePartStyle" minOccurs="0" 22

 maxOccurs="1" /> 23

 <xsd:element name="lastCol" type="CT_TablePartStyle" 24

 minOccurs="0" maxOccurs="1" /> 25

 <xsd:element name="firstCol" type="CT_TablePartStyle" 26

 minOccurs="0" maxOccurs="1" /> 27

 <xsd:element name="lastRow" type="CT_TablePartStyle" 28

 minOccurs="0" maxOccurs="1" /> 29

 <xsd:element name="seCell" type="CT_TablePartStyle" minOccurs="0" 30

 maxOccurs="1" /> 31

 <xsd:element name="swCell" type="CT_TablePartStyle" minOccurs="0" 32

 maxOccurs="1" /> 33

 <xsd:element name="firstRow" type="CT_TablePartStyle" 34

 minOccurs="0" maxOccurs="1" /> 35

 <xsd:element name="neCell" type="CT_TablePartStyle" minOccurs="0" 36

 maxOccurs="1" /> 37

 <xsd:element name="nwCell" type="CT_TablePartStyle" minOccurs="0" 38

 maxOccurs="1" /> 39

Introduction to DrawingML

 296

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 1

 minOccurs="0" maxOccurs="1" /> 2

 </xsd:sequence> 3

 <xsd:attribute name="styleId" type="ST_Guid" use="required" /> 4

 <xsd:attribute name="styleName" type="xsd:string" use="required" /> 5

</xsd:complexType> 6

Also contained within the table style is an ID and a name. The name shows up as the name for the table style 7

and the ID is the unique id (GUID) that is associated with the table style. 8

5.5.2.10 Table Style List 9

The final complex type dealing with table styles is simply a list of table styles. Also contained in this list is the 10

default style which is applied to the table when the a default is to be used. The complex type, 11

CT_TableStyleList, is defined in the following manner: 12

<xsd:complexType name="CT_TableStyleList"> 13

 <xsd:sequence> 14

 <xsd:element name="tblStyle" type="CT_TableStyle" minOccurs="0" 15

 maxOccurs="unbounded" /> 16

 </xsd:sequence> 17

 <xsd:attribute name="def" type="ST_Guid" use="required" /> 18

</xsd:complexType> 19

5.5.3 Table Definition 20

In this subclause, the focus is on the actual definition of a table and the data contained within the table. There 21

are not as many complex types in this subclause as with the table style subclause, but they are organized in the 22

same way as the table style section. 23

5.5.3.1 Cell Properties 24

The complex type, CT_TableCellProperties, holds all the information that deals with the properties of a given 25

cell. The cell properties contain a section for the different line properties (ln*), the cell fill properties, the 3-D 26

properties, cell margin information (mar*), anchoring information (anchor and anchorCtr), a vertical text type, 27

and finally an attribute which defines the behavior of horizontal text overflow (horzOverflow). As with many 28

other types defined in this document, CT_TableCellProperties contains an element reserved for future 29

extensibility. The complex type is defined in the following manner: 30

<xsd:complexType name="CT_TableCellProperties"> 31

 <xsd:sequence> 32

 <xsd:element name="lnL" type="CT_LineProperties" minOccurs="0" 33

 maxOccurs="1" /> 34

 <xsd:element name="lnR" type="CT_LineProperties" minOccurs="0" 35

 maxOccurs="1" /> 36

 <xsd:element name="lnT" type="CT_LineProperties" minOccurs="0" 37

 maxOccurs="1" /> 38

Introduction to DrawingML

 297

 <xsd:element name="lnB" type="CT_LineProperties" minOccurs="0" 1

 maxOccurs="1" /> 2

 <xsd:element name="lnTlToBr" type="CT_LineProperties" 3

 minOccurs="0" maxOccurs="1" /> 4

 <xsd:element name="lnBlToTr" type="CT_LineProperties" 5

 minOccurs="0" maxOccurs="1" /> 6

 <xsd:element name="cell3D" type="CT_Cell3D" minOccurs="0" 7

 maxOccurs="1" /> 8

 <xsd:group ref="EG_FillProperties" minOccurs="0" maxOccurs="1" /> 9

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 10

 minOccurs="0" maxOccurs="1" /> 11

 </xsd:sequence> 12

 <xsd:attribute name="marL" type="ST_Coordinate32" use="optional" 13

 default="91440" /> 14

 <xsd:attribute name="marR" type="ST_Coordinate32" use="optional" 15

 default="91440" /> 16

 <xsd:attribute name="marT" type="ST_Coordinate32" use="optional" 17

 default="45720" /> 18

 <xsd:attribute name="marB" type="ST_Coordinate32" use="optional" 19

 default="45720" /> 20

 <xsd:attribute name="vert" type="ST_TextVerticalType" use="optional" 21

 default="horz" /> 22

 <xsd:attribute name="anchor" type="ST_TextAnchoringType" 23

 use="optional" default="t" /> 24

 <xsd:attribute name="anchorCtr" type="xsd:boolean" use="optional" 25

 default="false" /> 26

 <xsd:attribute name="horzOverflow" type="ST_TextHorzOverflowType" 27

 use="optional" default="clip" /> 28

</xsd:complexType> 29

5.5.3.2 Column 30

The complex type, CT_TableCol, defines a table column element. The table column element simply holds the 31

width for a given column in a table along with an element reserved for future extensibility. The complex type 32

is defined as: 33

<xsd:complexType name="CT_TableCol"> 34

 <xsd:sequence> 35

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 36

 minOccurs="0" maxOccurs="1" /> 37

 </xsd:sequence> 38

 <xsd:attribute name="w" type="ST_Coordinate" use="required" /> 39

</xsd:complexType> 40

Introduction to DrawingML

 298

5.5.3.3 Table Grid 1

The complex type, CT_TableGrid, defines a list of table column elements, or rather CT_TableCol complex types. 2

The CT_TableGrid should contain a CT_TableCol for each column in the table and it is defined in the following 3

manner: 4

<xsd:complexType name="CT_TableGrid"> 5

 <xsd:sequence> 6

 <xsd:element name="gridCol" type="CT_TableCol" minOccurs="0" 7

 maxOccurs="unbounded" /> 8

 </xsd:sequence> 9

</xsd:complexType> 10

5.5.3.4 Cell 11

The complex type, CT_TableCell, defines a cell in a table. Within this complex type lies a text body which holds 12

the data of the cell along with any formatting applied to the text. This complex type also holds a table cell 13

property complex type which has already been defined. The rowSpan and gridSpan attributes are available 14

along with hMerge and vMerge attributes. The hMerge and vMerge attributes define if the current cell is 15

supposed to be merged with the previous cell horizontally or vertically. This is how the table is parsed and 16

created. The complex type, CT_TableCell, is defined as: 17

<xsd:complexType name="CT_TableCell"> 18

 <xsd:sequence> 19

 <xsd:element name="txBody" type="CT_TextBody" minOccurs="0" 20

 maxOccurs="1" /> 21

 <xsd:element name="tcPr" type="CT_TableCellProperties" 22

 minOccurs="0" maxOccurs="1" /> 23

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 24

 minOccurs="0" maxOccurs="1" /> 25

 </xsd:sequence> 26

 <xsd:attribute name="rowSpan" type="xsd:int" use="optional" 27

 default="1" /> 28

 <xsd:attribute name="gridSpan" type="xsd:int" use="optional" 29

 default="1" /> 30

 <xsd:attribute name="hMerge" type="xsd:boolean" use="optional" 31

 default="false" /> 32

 <xsd:attribute name="vMerge" type="xsd:boolean" use="optional" 33

 default="false" /> 34

</xsd:complexType> 35

5.5.3.5 Row 36

The complex type, CT_TableRow, defines a table row. This complex type is somewhat more complex than the 37

similar table column complex type in that it holds a sequence of CT_TableCell structures along with a height for 38

the row. The complex type is defined in the following way: 39

Introduction to DrawingML

 299

<xsd:complexType name="CT_TableRow"> 1

 <xsd:sequence> 2

 <xsd:element name="tc" type="CT_TableCell" minOccurs="0" 3

 maxOccurs="unbounded" /> 4

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 5

 minOccurs="0" maxOccurs="1" /> 6

 </xsd:sequence> 7

 <xsd:attribute name="h" type="ST_Coordinate" use="required" /> 8

</xsd:complexType> 9

5.5.3.6 Table Properties 10

The complex type, CT_TableProperties, defines the properties for a table as a whole. Within this complex type 11

is a definition for a table style that is currently applied to the table, or the GUID for the built in table style that 12

is applied to the table. Also in this complex type are right-to-left settings, the effects applied to the table 13

(shadow, reflection, etc), background fill information, and the states for the different on/off table style 14

options. The complex type is defined as: 15

<xsd:complexType name="CT_TableProperties" > 16

 <xsd:sequence> 17

 <xsd:group ref="EG_FillProperties" minOccurs="0" maxOccurs="1" /> 18

 <xsd:group ref="EG_EffectProperties" minOccurs="0" 19

 maxOccurs="1" /> 20

 <xsd:choice oxsd:cname="TableStyleOrLink" minOccurs="0" 21

 maxOccurs="1" > 22

 <xsd:element name="tableStyle" type="CT_TableStyle" /> 23

 <xsd:element name="tableStyleId" type="ST_Guid" /> 24

 </xsd:choice> 25

 <xsd:element name="extLst" type="CT_OfficeArtExtensionList" 26

 minOccurs="0" maxOccurs="1" /> 27

 </xsd:sequence> 28

 <xsd:attribute name="rtl" type="xsd:boolean" use="optional" 29

 default="false" /> 30

 <xsd:attribute name="firstRow" type="xsd:boolean" use="optional" 31

 default="false" /> 32

 <xsd:attribute name="firstCol" type="xsd:boolean" use="optional" 33

 default="false" /> 34

 <xsd:attribute name="lastRow" type="xsd:boolean" use="optional" 35

 default="false" /> 36

 <xsd:attribute name="lastCol" type="xsd:boolean" use="optional" 37

 default="false" /> 38

 <xsd:attribute name="bandRow" type="xsd:boolean" use="optional" 39

 default="false" /> 40

Introduction to DrawingML

 300

 <xsd:attribute name="bandCol" oxsdtype="xsd:boolean" use="optional" 1

 default="false" /> 2

</xsd:complexType> 3

5.5.3.7 Table 4

The final complex type, CT_Table, is the root element for a table. This complex type holds all the information 5

that is needed to create a table within DrawingML. Within CT_Table are the table properties, a table grid, and 6

a table row. A CT_Table is defined in the following manner: 7

<xsd:complexType name="CT_Table"> 8

 <xsd:sequence> 9

 <xsd:element name="tblPr" type="CT_TableProperties" minOccurs="0" 10

 maxOccurs="1" /> 11

 <xsd:element name="tblGrid" type="CT_TableGrid" minOccurs="1" 12

 maxOccurs="1" /> 13

 <xsd:element name="tr" type="CT_TableRow" minOccurs="0" 14

 maxOccurs="unbounded" /> 15

 </xsd:sequence> 16

</xsd:complexType> 17

5.6 3D Aspects 18

5.6.1 Introduction 19

This subclause provides a high-level overview of the content described in the following schemas: dml-20

shape3DStyles.xsd, dml-shape3DScene.xsd, dml-shape3DScenePlane.xsd, dml-shape3DLighting.xsd, and dml-21

shape3DCamera.xsd. 22

This aspect of DrawingML deals mainly with the 3-D aspects, and can be broken down into two topics: 3-23

D properties associated with an object, and the styling information associated with an object. The above-24

mentioned schemas fall into the grouping in the following way: 25

3-D Styles

dml-shape3DScene.xsd
dml-shape3DScenePlane.xsd
dml-shape3DLighting.xsd
dml-shape3DCamera.xsd

dml-shape3DStyles.xsd

5.6.2 3-D 26

Here we'll explain the 3-D definitions contained in DrawingML. The goal here is to define a 3-D scene so that 27

lighting calculations can be made on the geometry within the scene. 28

Introduction to DrawingML

 301

5.6.2.1 3-D Scene 1

Every 3-D scene consists of a camera, a light, and a backdrop, that define the associated properties of the 2

scene. The complex type, CT_Scene3D, defines the scene as follows: 3

<xsd:complexType name="CT_Scene3D" oxsd:cname="Scene3D"> 4

 <xsd:sequence> 5

 <xsd:element name="camera" type="CT_Camera" minOccurs="1" 6

 maxOccurs="1" /> 7

 <xsd:element name="lightRig" type="CT_LightRig" minOccurs="1" 8

 maxOccurs="1/> 9

 <xsd:element name="backdrop" type="CT_Backdrop" minOccurs="0" 10

 maxOccurs="1" /> 11

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 12

 maxOccurs="1" /> 13

 </xsd:sequence> 14

</xsd:complexType> 15

As was stated above, the complex type, CT_Scene3D, contains a camera, a set of lights (the light rig), and a 16

backdrop. Those familiar with 3-D rendering techniques understand the usage of a camera and set of lights, or 17

light rig. The backdrop, however, is a special structure (which will be defined below) that allows for a special 18

plane to render certain effects that need to be rendered together in a single plane. The final element of a 19

CT_Scene3D is the ext element. This is a DrawingML structure used for future extensibility. This element will 20

be seen in other complex types dealing with the 3-D scene as well. 21

5.6.2.2 Camera 22

The complex type, CT_Camera, defines a camera within the 3-D scene. A camera is based on a preset, with an 23

optional rotation, field-of-view, and zoom, which all act as overrides for the preset values. A camera is defined 24

in the following way: 25

<xsd:complexType name="CT_Camera"> 26

 <xsd:sequence> 27

 <xsd:element name="rot" type="CT_SphereCoords" minOccurs="0" 28

 maxOccurs="1" oxsd:dataStructure="optional" /> 29

 </xsd:sequence> 30

 <xsd:attribute name="prst" type="ST_PresetCameraType" use="required" 31

 /> 32

 <xsd:attribute name="fov" type="ST_FOVAngle" use="optional" /> 33

 <xsd:attribute name="zoom" type="ST_PositivePercentage" 34

 use="optional" default="100000" /> 35

</xsd:complexType> 36

The only complex type contained in the camera, CT_SphereCoords, is a type defined elsewhere within the 37

DrawingML. There are three simple types associated with a camera: 38

Introduction to DrawingML

 302

 ST_FOVAngle (field of view angle), which is a positive angle between 0 and 180 in 60,000th of a 1

degree. 2

 ST_PositivePercentage (zoom), which is defined as a percentage in 1,000th of a percent. 3

 ST_PresentCameraType (preset camera) 4

Figure 1 below shows some different presets applied to a shape. 5

 6

Figure 7: Different default cameras applied to a shape 7

The available options for ST_PresetCameraType are as follows: 8

legacyObliqueTopLeft 9

legacyObliqueTop 10

legacyObliqueLeft 11

legacyObliqueFront 12

legacyObliqueRight 13

legacyObliqueBottomLeft 14

legacyObliqueBottom 15

legacyObliqueBottomRight 16

legacyPerspectiveTopLeft 17

legacyPerspectiveTop 18

legacyPerspectiveTopRight 19

legacyPerspectiveLeft 20

legacyPerspectiveFront 21

legacyPerspectiveRight 22

legacyPerspectiveBottomLeft 23

legacyPerspectiveBottom 24

legacyPerspectiveBottomRight 25

Introduction to DrawingML

 303

orthographicFront 1

isomentricTopUp 2

isometricTopDown 3

isomentricBottomDown 4

isometricLeftUp 5

isometricLeftDown 6

isometricRightUp 7

isometricRightDown 8

isometricOffAxis1Left 9

isometricOffAxis1Right 10

isometricOffAxis1Top 11

isometricOffAxis2Left 12

isometricOffAxis2Right 13

isometricOffAxis2Top 14

isometricOffAxis3Left 15

isometricOffAxis3Right 16

isometricOffAxis3Bottom 17

isometricOffAxis4Left 18

isometricOffAxis4Right 19

isometricOffAxis4Bottom 20

obliqueTopLeft 21

obliqueTopRight 22

obliqueLeft 23

obliqueRight 24

obliqueBottomLeft 25

obliqueBottom 26

obliqueBottomRight 27

perspectiveFront 28

perspectiveLeft 29

perspectiveRight 30

perspectiveAbove 31

perspectiveBelow 32

perspectiveAboveLeftFacing 33

perspectiveAboveRightFacing 34

perspectiveContrastingRightFacing 35

perspectiveContrastingLeftFacing 36

perspectiveHeroicLeftFacing 37

perspectiveHeroicRightFacing 38

Introduction to DrawingML

 304

perspectiveHeroicExtremeLeftFacing 1

perspectiveHeroicExtremeRightFacing 2

perspectiveRelaxed 3

perspectiveRelaxedModerately 4

5.6.2.3 Light 5

The complex type, CT_LightRig, defines the lighting of the scene. A light rig consists of a preset direction, 6

preset rig type, and a rotation that serves as an override for the direction. The complex type is defined as: 7

<xsd:complexType name="CT_LightRig"> 8

 <xsd:sequence> 9

 <xsd:element name="rot" type="CT_SphereCoords" minOccurs="0" 10

 maxOccurs="1" /> 11

 </xsd:sequence> 12

 <xsd:attribute name="rig" type="ST_LightRigType" use="required" /> 13

 <xsd:attribute name="dir" type="ST_LightRigDirection" use="required"} 14

 /> 15

</xsd:complexType> 16

Just as with the camera, the complex type, CT_SphereCoords, is defined elsewhere in the DrawingML. This 17

element, however, serves as an override for the default light right direction. Figure 2 below shows some of the 18

different preset lights applied to a shape. 19

 20

Figure 8: Some preset lights applied to a shape. 21

The types of available light rigs are: 22

legacyFlat1 23

legacyFlat2 24

legacyFlat3 25

Introduction to DrawingML

 305

legacyFlat4 1

legacyNormal1 2

legacyNormal2 3

legacyNormal3 4

legacyNormal4 5

legacyHarsh1 6

legacyHarsh2 7

legacyHarsh3 8

legacyHarsh4 9

threePoint 10

balanced 11

soft 12

harsh 13

flood 14

contrasting 15

morning 16

sunrise 17

sunset 18

chilly 19

freezing 20

flat 21

twoPoint 22

glow 23

brightRoom 24

The types of available present directions are: 25

tl – top left 26

t – top 27

tr – top right 28

l – left 29

r – right 30

bl – bottom left 31

b – bottom 32

br – bottom right 33

5.6.2.4 Backdrop 34

The complex type, CT_Backdrop, defines a unique place in the 3-D scene. The backdrop is a flat 2-D plane that 35

can hold effects, such as shadows, oriented in 3-D space. The points and vectors contained within the 36

backdrop are relative to world space. The complex type is defined as: 37

Introduction to DrawingML

 306

<xsd:complexType name="CT_Backdrop"> 1

 <xsd:sequence> 2

 <xsd:element name="anchor" type="CT_Point3D" minOccurs="1" 3

 maxOccurs="1" /> 4

 <xsd:element name="norm" type="CT_Vector3D" minOccurs="1" 5

 maxOccurs="1" /> 6

 <xsd:element name="up" type="CT_Vector3D" minOccurs="1" 7

 maxOccurs="1"/> 8

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 9

 maxOccurs="1" /> 10

 </xsd:sequence> 11

</xsd:complexType> 12

All of the complex types defined within this backdrop are defined elsewhere in DrawingML. As with other 13

complex types, the backdrop also contains an element reserved for future extensibility. 14

5.6.3 Styles 15

The 3-D styles section encompasses the properties for 3-D shapes. These properties are those that get applied 16

to the 3-D shape, such as a bevel or a contour, and they define the look of the shape in 3-D. A number of 17

simple types used within the complex types of this group are defined below. 18

5.6.3.1 Simple Types 19

The simple types defined here outline the different presets available to the user. These presets are applied to 20

the shapes through the complex type definitions that are outlined later. 21

5.6.3.1.1 Bevel Type 22

The simple type, ST_BevelPresetType, defines a preset bevel for a shape and some examples can be seen in 23

figure 3. 24

 25

Introduction to DrawingML

 307

Figure 9: Different bevel types applied to a shape 1

The different types of bevels available are: 2

relaxedInset 3

circle 4

slope 5

cross 6

angle 7

softRound 8

convex 9

coolSlant 10

divot 11

riblet 12

hardedge 13

artDeco 14

5.6.3.1.2 Preset Material Type 15

The simple type, ST_PresetMaterialType, defines a material for the shape. The material properties describe 16

the surface appearance of the shape, and are used in lighting calculations to define exactly how the light 17

interacts with the shape. Some example material types can be seen in figure 4. 18

 19

Figure 10: Different material types on a shape. 20

The different preset material types are: 21

Introduction to DrawingML

 308

legacyMatte 1

legacyPlastic 2

legacyMetal 3

legacyWireframe 4

matte 5

plastic 6

metal 7

warmMatte 8

translucentPowder 9

powder 10

dkEdge 11

softEdge 12

clear 13

flat 14

softMetal 15

5.6.3.2 Complex Types 16

The complex types in this area define the actual 3-D properties that get applied to a shape. These properties 17

work together in order to define the geometry of a shape along with the scene related properties that define 18

the look of the geometry of the shape. 19

5.6.3.2.1 Bevel 20

The complex type, CT_Bevel, defines a bevel for a shape. The bevel consists of a width and a height value, 21

along with a preset bevel. The complex type is defined in the following manner: 22

<xsd:complexType name="CT_Bevel"> 23

 <xsd:attribute name="w" type="ST_PositiveCoordinate" use="optional" 24

 default="76200" /> 25

 <xsd:attribute name="h" type="ST_PositiveCoordinate" use="optional" 26

 default="76200" /> 27

 <xsd:attribute name="prst" type="ST_BevelPresetType" use="optional" 28

 default="circle" /> 29

</xsd:complexType> 30

5.6.3.2.2 Shape 3-D 31

The complex type, CT_Shape3D, defines all of the 3-D properties associated with an individual shape. A shape 32

can have two bevels, one on the top and one on the bottom. An extrusion color also defined, which, when 33

applied, applies a color to the surface of the extrusion. There is also an extrusion width, which defines the 34

width of the extrusion. A contour color and width can be defined for the shape. A z-axis anchor is defined 35

within the complex type and is the anchor relative to the shape’s top face. The shape 3-D complex type also 36

holds a present material. Finally the shape 3-D contains another element just as in previous complex types, 37

which is used for future extensibility. The CT_Shape3D complex type is defined in the following manner: 38

Introduction to DrawingML

 309

<xsd:complexType name="CT_Shape3D"> 1

 <xsd:sequence> 2

 <xsd:element name="bevelT" type="CT_Bevel" minOccurs="0" 3

 maxOccurs="1" /> 4

 <xsd:element name="bevelB" type="CT_Bevel" minOccurs="0" 5

 maxOccurs="1" /> 6

 <xsd:element name="extrusionClr" type="CT_Color" minOccurs="0" 7

 maxOccurs="1" /> 8

 <xsd:element name="contourClr" type="CT_Color" minOccurs="0" 9

 maxOccurs="1" /> 10

 <xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0" 11

 maxOccurs="1" /> 12

 </xsd:sequence> 13

 <xsd:attribute name="z" type="ST_Coordinate" use="optional" 14

 default="0" /> 15

 <xsd:attribute name="extrusionH" type="ST_PositiveCoordinate" 16

 use="optional" default="0" /> 17

 <xsd:attribute name="contourW" type="ST_PositiveCoordinate" 18

 use="optional" default="0" /> 19

 <xsd:attribute name="prstMaterial" type="ST_PresetMaterialType" 20

 use="optional" default="warmMatte" /> 21

</xsd:complexType> 22

5.6.3.2.3 Flat Text 23

The complex type, CT_FlatText, defines a text object in a 3-D scene that should be rendered as a normal, flat, 24

text overlay outside of the 3-D scene. The complex type is defined in the following manner: 25

<xsd:complexType name="CT_FlatText"> 26

 <xsd:attribute name="z" type="ST_Coordinate" use="optional" 27

 default="0" /> 28

</xsd:complexType> 29

5.6.3.2.4 Group, Text 3-D 30

The final structure to be defined is a group, EG_Text3D, which describes how text should be applied in the 3-31

D scene. If the text object is a member of the 3-D scene, then there are three different ways it can be 32

displayed: 33

 If no EG_Text3D choice is provided, the text will be rendered in a scene coherent manner and will be 34

rendered in perspective inside of the 3D scene as a planar shape inside the 3-D. 35

 If CT_Shape3D is provided then the text will be scene coherent and fully 3-D. 36

 If CT_FlatText is provided then the text will be drawn as normal 2-D text rendered on top of the 3-37

D scene. 38

An EG_Text3D is defined in the following manner: 39

Introduction to DrawingML

 310

<xsd:group name="EG_Text3D"> 1

 <xsd:choice oxsd:cname="Text3DChoice" 2

 oxsd:cnameMember="text3DChoice"> 3

 <xsd:element name="sp3dtype="CT_Shape3D" minOccurs="1" 4

 maxOccurs="1/> 5

 <xsd:element name="flatTx" type="CT_FlatText" minOccurs="1" 6

 maxOccurs="1" /> 7

 </xsd:choice> 8

</xsd:group> 9

5.7 Coordinate Systems and Transformations 10

5.7.1 Introduction 11

This document provides an overview of the transformation elements for shapes and groups, represented by 12

<a:xfrm>in dml-baseTypes.xsd. These schemas are for the representation of scaling and rotation on individual 13

shapes and groups. 14

§5.7.2, §5.7.3, and §5.7.4 provide a qualitative overview of the transformation pipeline. §5.7.6 provides 15

mathematical details. 16

5.7.2 Coordinate System 17

All DrawingML shapes are located on a 2-D Cartesian coordinate space with the origin (0,0) in the upper left-18

hand corner of the canvas. The x-axis coordinates grow positively as one moves from left to right, and the y-19

axis coordinates grow positively as one moves from top to bottom. 20

Coordinates are measured in EMUs (914400 EMUs per inch), and can be positive or negative. 21

5.7.3 Shape Transformations 22

In this subclause, we describe the transformation pipeline for a shape. To summarize, the shape 23

transformation for a shape is defined as the following sequence of operations: 24

1. The translation and scaling required to transform its original bounding box to a rectangle specified by 25

the offset and extents. 26

2. A flip across the center of the bounding box according to flipH and flipV. 27

3. A rotation about the center of the bounding box according to the rot attribute. 28

To render a shape that is not inside a group (§5.7.4), the renderer simply applies the shape transformation to 29

the original shape. 30

5.7.3.1 Scaling and Translating a Shape 31

The shape is scaled horizontally, scaled vertically, and translated in both dimensions, to fill a given bounding 32

box. The bounding box is represented by specifying an offset in x and y (attributes x and y of a:off) and extents 33

in x and y (attributes cx and cy of a:ext, both of which must be greater than or equal to zero). The upper left 34

Introduction to DrawingML

 311

corner of the bounding box is located at the offset, and the lower right corner of the bounding box is located at 1

the offset plus extent. 2

If the starting shape has zero width (e.g., it is a vertical line), then the cx attribute of a:ext is ignored and the 3

horizontal scaling is skipped. Similarly, if the starting shape has zero height, then the cy attribute of a:ext is 4

ignored and the vertical scaling is skipped. 5

 6

The following XML fragment represents the offset and extents for the star shape above: 7

<a:xfrm> 8

 <a:off x="1866680" y="990600"/> 9

 <a:ext cx="1371600" cy="1371600"/> 10

</a:xfrm> 11

Notice that as demonstrated with the example above, any effects attached to the shape are disregarded when 12

scaling and translating the shape to fill the given bounding box. 13

This example illustrates that no additional parameters are needed to represent the scaling of a shape. The 14

bounding-box parameters are sufficient to represent scaling. The following XML Fragments represent the 15

offset and extents for a star shape, before and after scaling. In this particular example, the bounding boxes 16

have been chosen to have the same upper-left corner, i.e., the same offset. 17

Introduction to DrawingML

 312

 1

Before scaling (small star): 2

<a:xfrm> 3

 <a:off x="1066800" y="990600"/> 4

 <a:ext cx="1371600" cy="1371600"/> 5

</a:xfrm> 6

After scaling (large star): 7

<a:xfrm> 8

 <a:off x="1066800" y="990600"/> 9

 <a:ext cx="2438400" cy="2133600"/> 10

</a:xfrm> 11

5.7.3.2 Rotating a Shape 12

Rotation is represented with the rot attribute. The shape is rotated clockwise about the bounding-box center, 13

by the amount specified in the rot attribute. Each unit of rotation is 1/1,000 of an arc minute (1/60,000 of a 14

degree). 15

This example represents the small star from above, with a subsequent 45-degree rotation clockwise. Since the 16

y axis points down, a clockwise rotation is positive. 17

 18

Introduction to DrawingML

 313

<a:xfrm rot="2700000"> 1

 <a:off x="1066800" y="990600"/> 2

 <a:ext cx="1371600" cy="1371600"/> 3

</a:xfrm> 4

5.7.3.3 Flipping a Shape 5

A flip is a reflection across a vertical or horizontal line that intersects the center of the bounding box. The 6

optional flipH and flipV attributes control horizontal and vertical flipping, respectively. Each is absent or equal 7

to 0 if no flipping is to be performed, and equal to 1 if flipping is to be performed. 8

 9

The following XML fragment illustrates a shape that has been flipped both horizontally and vertically. 10

<a:xfrm flipH="1" flipV="1"> 11

 <a:off x="3964937" y="2652643"/> 12

 <a:ext cx="168838" cy="1219199"/> 13

</a:xfrm> 14

5.7.4 Group Transformations 15

A group is composed of zero to many shapes. Because a group is a shape, this composition relationship can 16

nest recursively. (A group with zero shapes is degenerate; it produces no user-visible output. A group with one 17

shape is also degenerate; it has no representational power beyond that of the one shape.) 18

The definition of a group transformation is identical to that of a shape transformation, except that in place of 19

the pre-transform bounding box of a shape, we use the union of all of its children prior to their individual 20

rotations. To summarize, a group transformation is the following sequence of operations: 21

1. The translation and scaling required to transform the union of the children's bounding boxes to a 22

rectangle defined by the group's offset and extent attributes. 23

2. A flipped about that bounding box according to the flipH and flipV attributes. 24

3. A rotation about the center of that bounding box according to the rot attribute. 25

To render a simple shape that is inside a group hierarchy, the renderer does not simply apply the shape 26

transformation and all parent group transformations to the original shape. Instead (see §5.7.5), it applies the 27

transformation equal to the following sequence of operations: 28

Introduction to DrawingML

 314

1. Horizontal scaling and flipping by a factor equal to the product of the horizontal scalings and flips in its 1

own transformation and those of its parents. 2

2. Vertical scaling and flipping by a factor equal to the product of the vertical scalings and flips in its own 3

transformation and those of its parents. 4

3. Rotation by an amount equal to the sum of the rotations in its own transformation and those of its 5

parents. 6

4. Translation such that its center coincides with the point obtained by applying the shape 7

transformation and all parent group transformations to the shape's original center. 8

Because of the similarity with the transformation pipeline for a shape, the forthcoming subsections primarily 9

cover illustrative examples. 10

5.7.4.1 Scaling and Translating a Group 11

The group is scaled horizontally, scaled vertically, and translated in both dimensions. The parameters are 12

chosen to transform the child bounding box (specified by a:chOff and a:chExt) to the group bounding box 13

(specified by a:off and a:ext). The child bounding box is defined as the bounding box around the group's 14

children as they would have been had their rot attributes been absent. 15

It is possible for the child bounding box to have a zero value for cx or cy in a:chExt, e.g., because the starting 16

shape is a horizontal or vertical line, or because the starting shape was scaled to have zero width or height. 17

Such a case is handled in the same way as previously described for simple shapes. 18

This example demonstrates the definition of the child bounding box. The two shapes on the left, rotated 19

squares, are grouped. The two shapes on the right, non-rotated squares, are also grouped. 20

 21

The red bands are not part of the drawing; each represents the child bounding box of a group. In the XML 22

fragments, the child bounding boxes have identical y values, illustrating that they are computed based on the 23

bounding boxes of the squares prior to their rotation. 24

For the left-hand group: 25

Introduction to DrawingML

 315

<a:xfrm> 1

 <a:off x="762000" y="1828800" /> 2

 <a:ext cx="3327400" cy="1219200" /> 3

 <a:chOff x="762000" y="1828800" /> 4

 <a:chExt cx="3327400" cy="1219200" /> 5

</a:xfrm> 6

For the right-hand group: 7

<a:xfrm> 8

 <a:off x="4978400" y="1828800" /> 9

 <a:ext cx="3327400" cy="1219200" /> 10

 <a:chOff x="4978400" y="1828800" /> 11

 <a:chExt cx="3327400" cy="1219200" /> 12

</a:xfrm> 13

The remainder of the examples in this subsection illustrate translation and scaling of a group. 14

In this situation, two shapes are grouped: an arrow and a triangle. No further translation, scaling, rotation, or 15

flipping is applied. 16

To represent this situation, the child bounding box is the bounding box around both of these shapes; and 17

because no further transformation is applied, the group bounding box is equal to the child bounding box. 18

 19

The following is an XML snippet representing the transform variables of the group. 20

Introduction to DrawingML

 316

<p:grpSpPr> 1

 <a:xfrm> 2

 <a:off x="2209800" y="2514600"/> 3

 <a:ext cx="4038600" cy="2286000"/> 4

 <a:chOff x="2209800" y="2514600"/> 5

 <a:chExt cx="4038600" cy="2286000"/> 6

 </a:xfrm> 7

</p:grpSpPr> 8

This example illustrates that no additional parameters are needed to represent the translation of a group. A 9

group is moved to the right. The following diagram shows the starting state, prior to the translation. Note that 10

offset==ChOffset and extent==ChExtent. 11

 12

 13

Increasing the x component of the offset moves the group to the right. 14

 15

Similarly, scaling can be performed by adjusting the group bounding box. 16

5.7.4.2 Rotating a Group 17

Group rotation is identical to shape rotation. The group is rotated clockwise about the bounding-box center, by 18

the amount specified in the rot attribute. 19

Introduction to DrawingML

 317

In this example, group is rotated 90 degrees clockwise. The following diagram shows the starting state, prior to 1

the rotation. 2

 3

Setting the rotation attribute to 5,400,000 rotates the group clockwise 90 degrees. 4

 5

5.7.5 Nesting Transformations 6

The following example illustrates the rendering procedure described at the end of the introduction to §5.7.4, 7

which differs from a conventional transformation pipeline in any case where a scaled group contains a rotated 8

child. 9

[Example: In this example, the diagram on the left side is a group that comprises a rotated red square centered 10

inside a non-rotated blue square. The diagram on the right side is the same group, scaled horizontally. The red 11

square scales along an axis parallel to its own edges instead of an axis parallel to the edges of the blue square. 12

 13

Introduction to DrawingML

 318

5.7.6 Transformation Matrices 1

The preceding sections fully define the transformation pipeline and its parameters. This section assists 2

developers in implementing the pipeline by describing it mathematically. It is generalized to describe either 3

the shape transformation pipeline or the group transformation pipeline. 4

5.7.6.1 Symbol Definitions 5

Let the following symbols represent parameters described in the preceding sections. 6

(Bx , By) For a shape: upper left corner of untransformed shape.

For a group: upper left corner of child bounding box (a:chOff).

(Dx , Dy) For a shape: (width,height) of untransformed shape.

For a group: (width,height) of child bounding box (a:chExt).

(Bx
′ , By

′) Upper left corner of bounding box (a:off), prior to rotation and flip.

(Dx
′ , Dy

′) (width,height) of bounding box (a:ext), prior to rotation and flip.

θ Clockwise rotation (from the attribute rot, which uses thousandths of an arc

minute).

Fx −1 if flipH is true; +1 otherwise.

Fy −1 if flipV is true; +1 otherwise.

We use homogeneous coordinates, in which a point p is represented in the form 7

 p =
x
y
1
 . 8

We use the convention in which transformations are applied by left-hand multiplication. Thus, to obtain the 9

point p' by applying transformation T to point p we write: 10

 p′ = T p 11

5.7.6.2 Transformation Pipeline 12

The entire transformation pipeline that defines either a shape transformation or a group transformation is 13

represented by the matrix T, defined at the end of this subsection. 14

Scaling and translation are produced by the following matrix: 15

 Tst =

Dx
′

Dx
0 Bx

′ −
Dx

′

Dx
 Bx

0
Dy

′

Dy

By
′ −

Dy
′

Dy
 By

0 0 1

 . 16

Introduction to DrawingML

 319

The following matrix translates the bounding box to the origin in preparation for rotation and flipping: 1

 U =

1 0 − B′x +
D′ x

2

0 1 − B′y +
D′ y

2

0 0 1

 . 2

Rotation and flipping are produced by the following matrix: 3

 Trf = U−1
cos θ −sinθ 0
sinθ cos θ 0

0 0 1

Fx 0 0
0 Fy 0

0 0 1

 U . 4

The entire transformation pipeline for one step in the group hierarchy is represented by the matrix 5

 T = Trf Tst 6

5.8 Shape Properties and Effects 7

5.8.1 Introduction 8

This subclause provides a high-level overview of the Fill Properties, Line Properties, and Effect Properties 9

described in the following schemas: dml-shapeLineProperties.xsd, dml-shapeEffects.xsd, dml-baseTypes.xsd. 10

Color Models are also covered, as Fills, Lines, and Effects all reference color model schemas to represent color. 11

5.8.2 Color Models 12

There are several methods of expressing color: scrgbClr, srgbClr, hslClr, sysClr, schemeClr, and prstClr. 13

Although srgbClr is the most commonly used model, the rationale for having various equivalent color models 14

stems from a desire to have different ways of naturally expressing a color choice. 15

5.8.2.1 scrgbClr 16

scrgbClr is a legacy form of expressing Red, Green, Blue color. Values are expressed in Percentages. r, g, and b 17

are all required and correspond to red, green, and blue, respectively. 18

<a:scrgbClr r="10000" g="20000" b="30000"> 19

5.8.2.2 srgbClr 20

srgbClr is similar to scrgbClr with the exception that instead of expressing the values as percentages, they are 21

specified using two hex digits per color, in the order RGB. 22

<a:srgbClr val="FFFF00"> 23

5.8.2.3 hslClr 24

hslClr represents a color using the Hue, Saturation, and Luminescence color model. Values are expressed in 25

Percentages. h, s, and l are all required, and correspond to hue, saturation, and luminescence respectively. A 26

perceptual gamma of 2.2 is assumed. 27

Introduction to DrawingML

 320

<a:hslClr h="10000" s="20000" l="30000"> 1

5.8.2.4 sysClr 2

sysClr represents a system color, and introduces a level of indirection. For example, specifying: 3

<a:sysClr val="windowText"> 4

binds the color to be the color chosen in the system for "Window Text". The possible values are: 5

scrollBar 6

background 7

activeCaption 8

inactiveCaption 9

menu 10

window 11

windowFrame 12

menuText 13

windowText 14

captionText 15

activeBorder 16

inactiveBorder 17

appWorkspace 18

highlight 19

highlightText 20

btnFace 21

btnShadow 22

grayText 23

btnText 24

inactiveCaptionText 25

btnHighlight 26

3dDkShadow 27

3dLight 28

infoText 29

infoBk 30

hotLight 31

gradientActiveCaption 32

gradientInactiveCaption 33

menuHighlight 34

menuBar 35

5.8.2.5 schemeClr 36

schemeClr represents a color from a theme. The color changes if theme bindings change. For example, 37

specifying: 38

Introduction to DrawingML

 321

<a:schemeClr val="lt1"> 1

binds the color to be Light 1 color of the current theme. The possible values are: 2

bg1 semantic background color

bg1 semantic background color

tx1 semantic text color

bg2 semantic additional background color

tx2 semantic additional text color

accent1 extra scheme color 1

accent2 extra scheme color 2

accent3 extra scheme color 3

accent4 extra scheme color 4

accent5 extra scheme color 5

accent6 extra scheme color 6

hlink hyperlink color

folHlink followed hyperlink color

dk1 main dark color 1

lt1 Main light color 1

phClr a color used in theme definitions which means "use the color

of the style"

dk2 main dark color 2

lt2 main light color 2

5.8.2.6 prstClr 3

prstClr represents a preset color. This is a legacy definition of colors which is no longer currently used. A preset 4

color is a choice from among several presets provided in older versions of Office. 5

<a:prstClr val="black"> 6

The selected color is "black". Valid values for this setting are: 7

Introduction to DrawingML

 322

aliceBlue 1

antiqueWhite 2

aqua 3

aquamarine 4

azure 5

beige 6

bisque 7

black 8

blanchedAlmond 9

blue 10

blueViolet 11

brown 12

burlyWood 13

cadetBlue 14

chartreuse 15

chocolate 16

coral 17

cornflowerBlue 18

cornsilk 19

crimson 20

cyan 21

dkBlue 22

dkCyan 23

dkGoldenrod 24

dkGray 25

dkGreen 26

dkKhaki 27

dkMagenta 28

dkOliveGreen 29

dkOrange 30

dkOrchid 31

dkRed 32

dkSalmon 33

dkSeaGreen 34

dkSlateBlue 35

dkSlateGray 36

dkTurquoise 37

dkViolet 38

deepPink 39

deepSkyBlue 40

Introduction to DrawingML

 323

dimGray 1

dodgerBlue 2

firebrick 3

floralWhite 4

forestGreen 5

fuchsia 6

gainsboro 7

ghostWhite 8

gold 9

goldenrod 10

gray 11

green 12

greenYellow 13

honeydew 14

hotPink 15

indianRed 16

indigo 17

ivory 18

khaki 19

lavender 20

lavenderBlush 21

lawnGreen 22

lemonChiffon 23

ltBlue 24

ltCoral 25

ltCyan 26

ltGoldenrodYellow 27

ltGray 28

ltGreen 29

ltPink 30

ltSalmon 31

ltSeaGreen 32

ltSkyBlue 33

ltSlateGray 34

ltSteelBlue 35

ltYellow 36

lime 37

limeGreen 38

linen 39

magenta 40

Introduction to DrawingML

 324

maroon 1

medAquamarine 2

medBlue 3

medOrchid 4

medPurple 5

medSeaGreen 6

medSlateBlue 7

medSpringGreen 8

medTurquoise 9

medVioletRed 10

midnightBlue 11

mintCream 12

mistyRose 13

moccasin 14

navajoWhite 15

navy 16

oldLace 17

olive 18

oliveDrab 19

orange 20

orangeRed 21

orchid 22

paleGoldenrod 23

paleGreen 24

paleTurquoise 25

paleVioletRed 26

papayaWhip 27

peachPuff 28

peru 29

pink 30

plum 31

powderBlue 32

purple 33

red 34

rosyBrown 35

royalBlue 36

saddleBrown 37

salmon 38

sandyBrown 39

seaGreen 40

Introduction to DrawingML

 325

seaShell 1

sienna 2

silver 3

skyBlue 4

slateBlue 5

slateGray 6

snow 7

springGreen 8

steelBlue 9

tan 10

teal 11

thistle 12

tomato 13

transparent 14

turquoise 15

violet 16

wheat 17

white 18

whiteSmoke 19

yellow 20

yellowGreen 21

5.8.3 Color Transforms 22

A color transform is a modification to related properties of an underlying color. For example, transparency is a 23

property that is related to color. Color transforms are specified as child tags off any color model's tag. 24

 25

The following are the allowed color transforms and descriptions of the transformations they apply: 26

 tint: Yields a lighter version of its input color. A 10% tint is 10% of the input color combined with 27

90% white. 28

 shade: Yields a darker version of its input color. A 10% shade is 10% of the input color combined with 29

90% black. 30

 comp: Yields the complement of its input color. For example, the complement of red is green. 31

 inv: Yields the inverse of its input color. For example, the inverse of red (1,0,0) is cyan (0,1,1). 32

 gray: Yields a grayscale of its input color, taking into relative intensities of the red, green, and blue 33

primaries. 34

 alpha: Yields its input color with the specified opacity, but with its color unchanged. 35

Introduction to DrawingML

 326

 alphaOff: Yields a more or less opaque version of its input color. An alpha offset never increases the 1

alpha beyond 100% or decreases below 0%; i.e., the result of the transform pins the alpha to the range 2

of [0%,100%]. A 10% alpha offset increases a 50% opacity to 60%. A -10% alpha offset decreases a 3

50% opacity to 40%. 4

 alphaMod: Yields a more or less opaque version of its input color. An alpha modulate never increases 5

the alpha beyond 100%. A 200% alpha modulate makes a input color twice as opaque as before. A 6

50% alpha modulate makes a input color half as opaque as before. 7

 hue: Yields the input color with the specified hue, but with its saturation and luminance unchanged. 8

 hueOff: Yields the input color with its hue shifted, but with its saturation and luminance unchanged. 9

 hueMod: Yields the input color with its hue modulated by the given percentage. 10

 sat: Yields the input color with the specified saturation, but with its hue and luminance unchanged. 11

Typically saturation values fall in the range [0%, 100%]. 12

 satOff: Yields the input color with its saturation shifted, but with its hue and luminance unchanged. 13

 satMod: Yields the input color with its saturation modulated by the given percentage. A 50% 14

saturation modulate will reduce the saturation by half. A 200% saturation modulate will double the 15

saturation. 16

 lum: Yields the input color with the specified luminance, but with its hue and saturation unchanged. 17

Typically, luminance values fall in the range [0%,100%]. 18

 lumOff: Yields the input color with its luminance shifted, but with its hue and saturation unchanged. 19

 lumMod: Yields the input color with its luminance modulated by the given percentage. A 20

50% luminance modulate will reduce the luminance by half. A 200% luminance modulate will double 21

the luminance. 22

 red: Yields the input color with the specified red component, but with its green and blue components 23

unchanged. 24

 redOff: Yields the input color with its red component shifted, but with its green and blue components 25

unchanged. 26

 redMod: Yields the input color with its red component modulated by the given percentage. A 50% red 27

modulate will reduce the red component by half. A 200% red modulate will double the red 28

component. 29

 green: Yields the input color with the specified green component, but with its red and blue 30

components unchanged. 31

 greenOff: Yields the input color with its green component shifted, but with its red and blue 32

components unchanged. 33

 greenMod: Yields the input color with its green component modulated by the given percentage. A 34

50% green modulate will reduce the green component by half. A 200% green modulate will double the 35

green component. 36

 blue: Yields the input color with the specified blue component, but with its red and green components 37

unchanged. 38

 blueOff: Yields the input color with its blue component shifted, but with its red and green components 39

unchanged. 40

Introduction to DrawingML

 327

 blueMod: Yields the input color with its blue component modulated by the given percentage. A 1

50% blue modulate will reduce the blue component by half. A 200% blue modulate will double the 2

blue component. 3

 gamma: Yields the sRGB gamma shift of its input color. 4

 invGamma: Yields the inverse sRGB gamma shift of its input color. 5

5.8.4 Fills 6

There are six types of fills: 7

 No Fill 8

 Solid Fill 9

 Gradient Fill 10

 Blip Fill 11

 Pattern Fill 12

 Group Fill 13

The se types describe the general structure of all fills; however, not all fills are permitted in all locations. For 14

example, Blip Fills and Group Fills are not permitted on lines. 15

5.8.4.1 Solid Fills 16

 17

A solid fill specifies a single color, using any valid color model 18

Introduction to DrawingML

 328

5.8.4.2 Gradient Fills 1

 2

Gradient Fills consist of three elements: a list of gradient stops, a shading specification, as well as some 3

attributes. 4

Two attributes are available on gradient fills. 5

 flip specifies how to flip a tile region when using it to fill a larger fill region. 6

 rotWithShape specifies whether the fill rotates along with a shape when the shape is rotated. 7

A gradient stop list is a list of locations and colors that make up the gradient fill. Positions are specified as 8

percentages. 9

The shading specification specifies the two possible kinds of gradient fills: linear, or path based. A linear fill 10

follows a straight-line direction as specified by the angle of the line. A path-based fill follows the contours of a 11

well-defined path (such as a shape, circle, or rectangle). 12

 13

Introduction to DrawingML

 329

5.8.4.3 Blip Fills 1

 2

BLIPs refer to Binary Large Image or Pictures. Blip Fills are made up of several components: a Blip Reference, a 3

Source Rectangle, and a Fill Mode. 4

The Blip reference, a:blip, is the main reference to the blip content itself. A reference ID serves as the main link 5

with an attribute allowed to specify compression level of the blip (one of: email, screen, print, hqprint, none). 6

A Blip Effect may optionally be specified to indicate a modification of the raw blip content. Valid Blip Effects 7

are: 8

alphaBiLevel 9

alphaCeiling 10

alphaFloor 11

alphaInv 12

alphaMod 13

alphaModFix 14

alphaRepl 15

biLevel 16

blur 17

clrChange 18

clrRepl 19

duotone 20

fillOverlay 21

grayscl 22

hsl 23

lum 24

tint 25

The blip effects mirror the color transformations (see the descriptions in the color transformations subclause 26

for descriptions of Blip Effects). 27

Introduction to DrawingML

 330

A Source Rectangle, a:srcRect, is used to implement image cropping, and indicates the rectangular window of 1

content which is of interest. 2

Finally, two fill modes are possible, tiling, and stretching. This indicates the behavior to be performed when the 3

user resizes an image to an area larger than the source rectangle. Tiling 'tiles' an image so that image content 4

is simply duplicated while stretching scales the source rectangle content to fill the bounds of the fillRect 5

(bounding box of blip filled shape). 6

5.8.4.4 Pattern Fills 7

 8

Pattern Fills are legacy Office 11 fills which consist of a Foreground Color, a Background Color and a preset 9

pattern value. Possible pattern values are: 10

pct5 11

pct10 12

pct20 13

pct25 14

pct30 15

pct40 16

pct50 17

pct60 18

pct70 19

pct75 20

pct80 21

pct90 22

horz 23

vert 24

ltHorz 25

Introduction to DrawingML

 331

ltVert 1

dkHorz 2

dkVert 3

narHorz 4

narVert 5

dashHorz 6

dashVert 7

cross 8

dnDiag 9

upDiag 10

ltDnDiag 11

ltUpDiag 12

dkDnDiag 13

dkUpDiag 14

wdDnDiag 15

wdUpDiag 16

dashDnDiag 17

dashUpDiag 18

diagCross 19

smCheck 20

lgCheck 21

smGrid 22

lgGrid 23

dotGrid 24

smConfetti 25

lgConfetti 26

horzBrick 27

diagBrick 28

solidDmnd 29

openDmnd 30

dotDmnd 31

plaid 32

sphere 33

weave 34

divot 35

shingle 36

wave 37

trellis 38

zigZag 39

5.8.4.5 Group Fills 40

When objects are grouped together, a group fill is a convenient structure for indicating that the fill properties 41

of any individual element inherits from the fill properties of parent group. 42

Introduction to DrawingML

 332

 1

5.8.5 Line Properties 2

While it is obvious that line properties, a:ln are used to represent properties for lines, what may be less 3

obvious is where this structure can appear. Lines aren't just for lines-- just about any object can have a line 4

property-- usually referring to the outlines that are possible on shapes, pictures, or text. Lines used in this 5

context also yield additional characteristics we wish to persist-- like what happens when line segments meet 6

(i.e., line joins). So when understanding this section on line properties, it's important to visualize two possible 7

cases-- a single line segment and the properties of that segment, and the case of multiple line segments (e.g., 8

an outline of an autoshape). By considering both cases, the meaning of most properties becomes intuitively 9

clear. 10

Line properties consist of several sections: line fill properties, line dash properties, line join properties, 11

head/tail properties, as well as a few attributes. 12

5.8.5.1 Line Fill Properties 13

Line fill properties are a proper subset of general fill properties. One of the following can be used: noFill, 14

solidFill, gradFill, or pattFill. Blip fills and group fills are not permitted for line fill properties. 15

5.8.5.2 Line Dash Properties 16

Line Dash properties may we either one of the presets, a:prstDash, or a custom dashing scheme, a:custDash. 17

For the presets, the following options are available: 18

Introduction to DrawingML

 333

 solid: Solid (continuous) pen. 1

 dot: Dot style. [- - - - - - - - - - -] 2

 dash: Short dash style. [---- ---- ---- ---- ---- ----] 3

 lgDash: Long dash style. [-------- -------- -------- --------] 4

 dashDot" Short dash followed by dot. [---- - ---- - ---- - ---- -] 5

 lgDashDot: Long dash followed by dot. [-------- - -------- - -------- -] 6

 lgDashDotDot: Long dash followed by two dots. [-------- - - -------- - -] 7

 sysDash: System short dash style (PS_DASH). [--- --- --- --- --- --- --- --- --- --- ---] 8

 sysDot: System dot style (PS_DOT). [-] 9

 sysDashDot: System short dash and one dot (PS_DASHDOT) [--- - --- - --- - --- - --- - --- - --- - --- -] 10

 sysDashDotDot: System short dash and two dots (PS_DASHDOTDOT) [--- - - --- - - --- - - --- - - --- - - --- - - 11

] 12

5.8.5.2.1 Custom Dashes 13

Custom dashes allow full flexibility in expressing any dashing scheme. Custom dashes are also known as dash 14

stop lists, a:ds, due to the way the custom dashes are expressed. An element of the list specifies two 15

attributes: d for the length of the dash relative to line width, and sp for length of the space relative to line 16

width. Any number of elements may be combined into a dash stop list for full generality in expressing dashing 17

schemes. 18

5.8.5.3 Line Join Properties 19

 20

Line join properties are for expressing the visual appearance of what happens when line segments meet. They 21

can be round, beveled, or mitered. Notice the corners of the following rectangles, which illustrate the effect 22

line join properties have. 23

 24

The only attribute of line join properties is lim. This attribute limits the amount by which lines can be extended 25

to form a join. Normally, this is a relatively infrequent occurrence, but in the case of nearly parallel lines, this 26

attribute comes into play. 27

Introduction to DrawingML

 334

5.8.5.4 Head/Tail End Properties 1

Head/Tail End properties specify whether there are any special attachments to the head or the tail of a line. All 2

parameters are specified in attributes: a type, a w (width of line end to width of line), and a len (length of the 3

end relative to the line width). By default, no head/tail end properties are applied. The type can be one of: 4

none, triangle, stealth, diamond, oval, arrow. w and len can be one of sm, med and lg corresponding to small, 5

medium, and large respectively. 6

 7

5.8.5.5 Line Attributes 8

Line Properties, a:ln, takes several attributes: w specifies the line width. cap specifies whether the line ends 9

are round (value rnd), square (sq), or flat (flat). 10

 11

cmpd specifies a compound line type. Its permitted values are shown below: 12

 13

5.8.6 Effects 14

Effects are most naturally applied to shapes, but like fill properties and line properties, they can apply to 15

shapes, pictures, and text. Effects are represented two ways: via an Effect List, a:effectLst, or an effects 16

container, a:effectDag. 17

Introduction to DrawingML

 335

5.8.6.1 Effects Lists 1

 2

An effect list is made up of one or more primitive effects that can be applied one after another. The primitives 3

are: 4

Blur 5

fillOverlay 6

glow 7

innerShdw 8

outerShdw 9

prstShdw 10

reflection 11

softEdge 12

5.8.6.2 Blur 13

Blur blurs all color channels, including alpha. Two attributes, rad (radius of blur) and grow (boolean), apply 14

here. grow specifies if the bounds should grow as a result of the blurring. 15

Introduction to DrawingML

 336

5.8.6.3 Inner Shadow 1

 2

Inner Shadows contain a color choice, as well as three attributes: 3

 blurRad: blur radius 4

 dist: how far to offset the shadow 5

 dir: direction to offset the shadow 6

5.8.6.4 Outer Shadow 7

 8

 9

Outer shadows contain a color choice as well as several attributes: 10

 blurRad: blur radius 11

 dist: how far to offset the shadow 12

 dir: direction to offset the shadow 13

 sx, sy: horizontal/vertical scale factors 14

 kx, ky: horizontal/vertical skew angles 15

Introduction to DrawingML

 337

 algn: shadow alignment. Alignment happens first and effectively sets the origin for scale, skew, and 1

offset 2

 rotWithShape: (boolean) Rotate shadow with shape 3

5.8.6.5 Preset Shadows 4

Preset shadows consist of a color choice, and a preset shadow: 5

shdw1 6

shdw2 7

shdw3 8

shdw4 9

shdw5 10

shdw6 11

shdw7 12

shdw8 13

shdw9 14

shdw10 15

shdw11 16

shdw12 17

shdw13 18

shdw14 19

shdw15 20

shdw16 21

shdw17 22

shdw18 23

shdw19 24

shdw20 25

The attributes for Preset Shadows are: 26

 dist: how far to offset the shadow 27

 dir: direction to offset the shadow 28

5.8.6.6 Reflection Effects 29

 30

Reflections are represented entirely through attributes: 31

Introduction to DrawingML

 338

 blurRad: Blur Radius 1

 stA: (Start Alpha) starting reflection opacity 2

 stPos: start position along gradient ramp of start alpha value 3

 endA: (End Alpha) ending reflection opacity 4

 endPos: end position along gradient, ramp of end alpha value 5

 dist: how far to offset reflection 6

 dir: Direction to offset reflection 7

 fadeDir: direction of alpha gradient, ramp relative to shape itself 8

 sx, sy: horizontal/vertical scale factors 9

 kx, ky: horizontal/vertical skew angles 10

 algn: reflection alignment 11

 rotWithShape: (boolean) 12

 rotate: reflection with shape 13

5.8.6.7 Soft Edge Effects 14

 15

Soft Edge blurs the edges of the applied object subject to the specified blur radius rad. 16

5.8.6.8 Glow Effects 17

 18

A glow effect is very similar to a soft edge effect, but differs in that it permits a color specification in addition 19

to rad. Basically, a glow is a soft edge effect, except with the color specified used instead of the object's color. 20

5.9 Shape Definitions and Attributes 21

5.9.1 Introduction 22

This document provides a high-level overview of the content described in the dml-shapeGeometry.xsd schema. 23

This aspect of DrawingML deals mainly with the shapes and their attributes, and is broken down into two 24

topics: 25

 Working with preset shapes 26

Introduction to DrawingML

 339

 Defining custom shapes and their properties 1

5.9.2 The Coordinate Systems 2

To specify a shape there are a few high level systems that must first be understood, namely the coordinate 3

systems that will be used. These are the document, shape and path coordinate systems, described in the 4

following sub clauses. 5

5.9.2.1 The Document Coordinate System 6

To first specify a shape within a document the document coordinate system must be understood. This system 7

has both an x and y component and starts with a value of (0,0) in the upper left corner of the document. As the 8

x-coordinate increases, the point will move to the right. As the y-coordinate increases, the point will move 9

downwards. The units of measurement within the document coordinate system are EMUs (91440 EMUs/U.S. 10

inch, 36000 EMUs/cm). In addition to specifying a position for the shape, you must also specify the width and 11

height of the shape, which is called the extent of the shape. This value is again measured in EMUs. To specify 12

these two values, the following transform would be used. 13

<p:sp> 14

 <p:spPr> 15

 <a:xfrm> 16

 <a:off x="3200400" y="1600200"/> 17

 <a:ext cx="1200000" cy="1000000"/> 18

 </a:xfrm> 19

 </p:spPr> 20

</p:sp> 21

Here we can see that this new shape will be placed at x = 3200400 and y = 1600200 within the document 22

coordinate system. In addition, we see that this shape will have a width of 1200000 EMUs and a height of 23

1000000 EMUs. 24

The width and height set the bounding box within which the entire shape will be contained. 25

5.9.2.2 The Shape Coordinate System 26

Now that we have a width and height specified, we can now move into the explanation of the shape 27

coordinate system. The shape coordinate system has both an x and y component and starts with a value of 28

(0,0) in the upper left corner of the shape. The width and height of this coordinate system are specified by the 29

extent of the shape, which was recently specified above, and the units are once again EMUs. This coordinate 30

system is used to define the locations of many of the shape attributes. 31

5.9.2.3 The Path Coordinate System 32

The final coordinate system is the path coordinate system which also has both an x and y component and 33

starts with a value of (0,0) in the upper left corner of the shape. Now it must be known that this coordinate 34

system is a unique one in that its units are relative to the specified width and height of the coordinate space. 35

The path coordinate system has exactly the same EMU dimensions as the shape coordinate system but 36

Introduction to DrawingML

 340

different units. While the shape coordinate system uses EMUs, the path coordinate system uses (1/width) as 1

the x units and (1/height) as the y units. That is if the path was specified to have a width of 2 and a height of 1, 2

then the path coordinate (1,1) would be equivalent to (600000,1000000) in the shape coordinate system. The 3

path coordinate system will be better understood later, once the path element is described. 4

Note that all dimensions and coordinates must be specified using whole numbers. 5

5.9.3 Specifying a Preset Shape 6

Within the Shape Definitions and Attributes section of DrawingML there are many pre-defined shapes that can 7

be used, 187 to be exact. Of course, if the user does not wish to use a preset shape there is always the option 8

of specifying a custom shape that will be described further in §5.9.4. 9

5.9.3.1 Defining a Preset Shape 10

It is quite easy to specify a preset shape as that is the whole notion around presets. They are meant to solve 11

the most common cases of shape definition. 12

To specify a heart shape for instance the following DrawingML code can be used. 13

<p:sp> 14

 <p:spPr> 15

 <a:xfrm> 16

 <a:off x="1981200" y="533400"/> 17

 <a:ext cx="1143000" cy="1066800"/> 18

 </a:xfrm> 19

 <a:prstGeom prst="heart"> 20

 </a:prstGeom> 21

 </p:spPr> 22

</p:sp> 23

 24

This heart is rendered by the generating application using the custom shape code for this shape, which is fully 25

documented within ST_ShapeTypes located in the reference documentation. Thus, we see that the user need 26

on specify the preset name to place a shape within their document. 27

5.9.3.2 Adjusting a Preset Shape 28

While specifying a preset shape is convenient and looks good most of the time. There may also be the need for 29

the user to adjust this preset to more closely suit the needs of their document. For this we introduce the 30

notion of adjust values. The preset shape is built using lines, curves and calculations, just as a custom shape 31

Introduction to DrawingML

 341

would be defined. To allow for the adjusting of these preset shapes we have based certain properties of 1

shapes on adjust values rather than concrete dimensions. This means that they can be modified which will in 2

turn modify the geometry of the shape. 3

A simple arrow would be specified using the following DrawingML code. 4

<p:sp> 5

 <p:spPr> 6

 <a:xfrm> 7

 <a:off x="3276600" y="990600"/> 8

 <a:ext cx="978408" cy="484632"/> 9

 </a:xfrm> 10

 <a:prstGeom prst="rightArrow"> 11

 <a:avLst> 12

 <a:gd name="adj1" fmla="val 50000"/> 13

 <a:gd name="adj2" fmla="val 50000"/> 14

 </a:avLst> 15

 </a:prstGeom> 16

 </p:spPr> 17

</p:sp> 18

 19

This will specify the basic arrow shown above which might be sufficient for the document needs of the user 20

but it also may not. If this standard arrow is not sufficient then the two adjust values for this shape may be 21

adjusted. For instance, if the body of the arrow is too large then the value for adj1 can be decreased. The 22

following DrawingML code would specify such a case. 23

<a:gd name="adj1" fmla="val 18553"/> 24

 25

Similarly, if the arrow head itself was too short then the value of adj2 can be increased. The following 26

DrawingML code would specify such a case. 27

Introduction to DrawingML

 342

<a:gd name="adj2" fmla="val 81447"/> 1

 2

Thus, it can be seen that while each preset is indeed a preset with a pre-defined geometry, it can be modified. 3

Through the use of adjust values, the user is able to custom fit a preset shape to their document needs without 4

having to specify an entirely custom shape. 5

Note that the values used here for adjust values have no real units as they are simply input parameters into 6

the equations that make up the shape geometry. More on these equations and their parameters will be 7

discussed in §5.9.4.2. 8

5.9.4 Specifying a Custom Shape 9

In addition to the specifying of a preset shape there is also the possibility of a specifying a custom shape. This is 10

accomplished by defining a geometry from a set of construction methods and applying various shape 11

properties to this geometry. This compliments preset shapes, giving the user the opportunity to specify a 12

complete shape with any custom properties that are deemed necessary. 13

5.9.4.1 Defining the Geometry 14

Just like a preset shape, a custom shape has a position and a shape bounding box that is specified by the offset 15

and extent transform values. The shape coordinate system is defined by these values as was described in 16

section 1.2 above. The path coordinate system is also partially defined by these in that it has it’s width and 17

height set by these values. The units of the path system however are determined by the specified width and 18

height of the path. 19

A custom shape with a single path can be specified using the following DrawingML code. 20

<p:sp> 21

 <p:spPr> 22

 <a:xfrm> 23

 <a:off x="3200400" y="1600200"/> 24

 <a:ext cx="1200000" cy="1000000"/> 25

 </a:xfrm> 26

 <a:custGeom> 27

 <a:pathLst> 28

 <a:path w="2" h="2"> 29

 <a:moveTo> 30

 <a:pt x="0" y="2"/> 31

 </a:moveTo> 32

Introduction to DrawingML

 343

 <a:lnTo> 1

 <a:pt x="2" y="2"/> 2

 </a:lnTo> 3

 <a:lnTo> 4

 <a:pt x="1" y="0"/> 5

 </a:lnTo> 6

 <a:close/> 7

 </a:path> 8

 </a:pathLst> 9

 </a:custGeom> 10

 </p:spPr> 11

</p:sp> 12

 13

As can be seen in the above code, the path has a width and height of 2. This means that the path coordinate 14

space will have units of (1/2 * shape width) for x-coordinate and (1/2 * shape height) for the y-coordinate. 15

Thus we see that a coordinate of (2,2) in the path coordinate system will be the same as (1200000,1000000) 16

within the shape coordinate system. 17

To define the shape path above we can see that there are a few different parts to defining this custom shape. 18

The first is to define the first path in what is called the path list. It should be noted that the path list can have 19

multiple paths in it, some filled, some not, some outlined, some not. To define the path we must specify the 20

width, height and thus units for this path via the following DrawingML. 21

<a:path w="2" h="2"> 22

This sets up the path coordinate system for this path as was previously described. Next we need to move the 23

drawing cursor to the point in this path coordinate system that we wish to start drawing our shape from. The 24

following DrawingML does just that. 25

<a:moveTo> 26

 <a:pt x="0" y="2"/> 27

</a:moveTo> 28

This will move the drawing cursor to the bottom left position (0,2) which is equivalent to (0,1000000) in the 29

shape coordinate system. Following this we can now start by drawing the first line in the shape via the 30

following line. 31

Introduction to DrawingML

 344

<a:lnTo> 1

 <a:pt x="2" y="2"/> 2

</a:lnTo> 3

This will draw a line from the current drawing cursor position of (0,2) to (2,2) which is the bottom right corner 4

of the path coordinate system. This is equivalent to drawing a line from (0,1000000) to (1200000,1000000) in 5

the shape coordinate system. Now that we have the bottom edge of the triangle drawn we can continue to the 6

final edge in the shape via the following. 7

<a:lnTo> 8

 <a:pt x="1" y="0"/> 9

</a:lnTo> 10

This will draw the final line that will be drawn from the current drawing cursor position of (2,2) to (1,0) which is 11

in the top middle of the path coordinate system. This is equivalent to drawing a line from (1200000,1000000) 12

to (600000,1000000) in the shape coordinate system. Now that most of the triangle has been drawn. It should 13

be noted that since the <close/> element is specified at the end of the path that a line will be drawn from the 14

last point in the path back to the first point in the path. This explains a bit of the existence of the following final 15

element. 16

<a:close/> 17

This finalizes the edges of the shape path being specified. Since the fill of this path is set to normal, this path 18

will have a fill no matter if this close tag is specified or not. However, the fact that it is specified determines 19

that there will be a final edge drawn between the final drawing cursor point and the path starting point. Now 20

that the path has been fully specified, this shape can be filled and thus be considered finished. 21

5.9.4.2 Adjusting the Geometry 22

Now that we have shown how a custom shape can be specified we can look at how it might be adjusted. This 23

adjusting is different from the typical resizing that can happen by using the shape transform elements. Using 24

these shape adjusting methods, a shape can be made to have many different resize/adjustment 25

characteristics. 26

5.9.4.3 Geometry Guides 27

A guide within a shape is essentially an equation with a set number of inputs and a single output. A guide is 28

used to calculate construction values for a shape and thus can be manipulated to govern the shape's overall 29

geometry. 30

An example of this can be seen in the following DrawingML. 31

<gdLst> 32

 <gd name=‛y1‛ fmla=‛*/ h adj1 100‛/> 33

</gdLst> 34

Introduction to DrawingML

 345

This guide will calculate it’s output based on 3 input parameters and assign this output to a guide named y1. 1

The formula that will be used in the calculation here is the multiply divide formula. The result for this guide will 2

be calculated in the following manner: y1 = ((h * adj1) / 100). After the result here is calculated, the guide y1 3

can be used later within the <gdlst> or <path> to calculate further values. That is it can be used as an input for 4

calculating another guide value. These guides then allow for a path to be based off of series of equations 5

rather than static path coordinate values. To use a guide in the defining of a path we would simply specify the 6

following within the path list. 7

<a:lnTo> 8

 <a:pt x="2" y="y1"/> 9

</a:lnTo> 10

This would draw a line to the point (2,y1) where y1 is the calculated result of the guide equation shown above. 11

The drawing of this line will then change based on the input parameters of h and adj1 which are previously 12

calculated guides as well. 13

Note that while h is a previously calculated guide. It is not calculated for each shape, rather it is a built-in guide 14

that the generating application makes available to the shape. 15

5.9.4.3.1 Adjust Handles 16

To allow for the adjusting UI of a shape we introduce the notion of an adjust handle. This adjust handle will be 17

linked to adjust values that will then be used as input to the guide equations defined previously. The numerical 18

chain described here will thus directly change the geometry of the related shape. There are two types of adjust 19

handles that can be specified. An XY adjust handle acts in the horizontal/vertical direction and has two related 20

guides, both a horizontal and a vertical respectively. A polar adjust handle acts in a polar manner and has two 21

related guides as well. One guide for the radial width and the other for the radial angle. An adjust handle is 22

specified to have an x and y coordinate as well as these adjust handles. This adjust handle can then be moved 23

around in a generating application’s UI to adjust a pair of guides which will in turn adjust the shape being 24

rendered. 25

An adjust handle can be specified by the following DrawingML. 26

<ahXY gdRefX="adj1" minX="-2147483647" maxX="2147483647" gdRefY="adj2" 27

 minY="-2147483647" maxY="2147483647"> 28

 <pos x=‛x1‛ y=‛y1‛/> 29

</ahXY> 30

Above is an XY adjust handle that has two guide references, a min and max allowed position for both the x and 31

y coordinates as well as a position within the shape coordinate system where this adjust handle should be 32

placed. 33

Introduction to DrawingML

 346

5.9.4.4 Additional Properties 1

In addition to specifying the geometry for a shape and all the associated adjustments for it there are also a few 2

other properties that are of special significance. These properties do not act on the geometry of the shape but 3

instead enhance a shape so that it may be used for a more specialized task. 4

5.9.4.4.1 Connection Sites 5

As one may have experienced when trying to draw a diagram with shapes and connections between those 6

shapes, it is quite difficult to move a part of your diagram without entirely redrawing the connections between 7

shapes. For this, there is the notion of connection sites that allow for the specification of specific points within 8

a shape to attach connection shapes to. This allows a user to build a diagram from a set of shapes and connect 9

them together using connection shapes. A connection site is specified within the connection list and consists of 10

an x-coordinate, y-coordinate and an attachment angle. 11

The following DrawingML code defines two connection sites, one at each edge of this triangle. 12

<a:cxnLst> 13

 <a:cxn ang="10800000"> 14

 <a:pos x="0" y="679622"/> 15

 </a:cxn> 16

 <a:cxn ang="0"> 17

 <a:pos x="1705233" y="679622"/> 18

 </a:cxn> 19

</a:cxnLst> 20

 21

The attachment angle works by specifying an angle in 60,000ths of a degree that a connector should attach to. 22

The diagram below shows an actual connection point and the attachment angles that correspond to the sides 23

of this point. This information along with the geometry of the shape is used by the generating applications 24

connector routing algorithm to correctly route connectors around connected shapes. 25

 26

5.9.4.4.2 Text Rectangle 27

Within each shape is a text box that allows for the attaching of text to any given shape. The text rectangle 28

defines where text will reside within the shape. Depending on Auto-fit options that are selected for the body 29

Introduction to DrawingML

 347

of text attached to this shape the text may intentionally flow outside this text rectangle. It must also be 1

pointed out that this text rectangle will also be the bounding box that is used to compute the geometry of a 2

<prstTxWarp>. The EMU dimensions of this text rectangle will be used to compute this geometry just like the 3

transform extent element is used to compute the actual shape. 4

The following DrawingML specifies a text rectangle within a shape. 5

<a:rect l="0" t="0" r="1200000" b="1000000"/> 6

The text rectangle shown above will have a left edge of 0 x-coordinate, top edge of 0 y-coordinate, right edge 7

of 1200000 x-coordinate and a bottom edge of 1000000 y-coordinate. This will effectively specify a space that 8

is 1200000 EMUs in width and 1000000 EMUs in height. 9

Note that the edges of this text rectangle can be set so as to allow text to be placed outside the actual 10

geometry of the shape. 11

5.10 Pictures 12

5.10.1 Introduction 13

This subclause provides a high-level overview of the content described in the dml-picture.xsd schema. 14

The DrawingML Picture file format is broken down into the following subjects: 15

 Specifying a basic picture 16

 Attaching properties to this picture 17

 Transforming this picture 18

The best way to understand the above subjects will be to cover them in the ordering above. 19

5.10.2 Specifying a Basic Picture 20

A picture can be inserted into a presentation slide by use of the picture element, pic, which is similar to the 21

shape element but contains some key differences that enable more complete storage of picture information. 22

This basic picture element should contain a blipfill and some basic non-visual picture properties. 23

Introduction to DrawingML

 348

 1

<p:pic> 2

 <p:nvPicPr> 3

 <p:cNvPr id="4" name="St_Patrick's_Day.jpg"/> 4

 <p:cNvPicPr> 5

 <a:picLocks noChangeAspect="1"/> 6

 </p:cNvPicPr> 7

 <p:nvPr/> 8

 </p:nvPicPr> 9

 <p:blipFill> 10

 <a:blip r:embed="rId2"/> 11

 <a:stretch> 12

 <a:fillRect/> 13

 </a:stretch> 14

 </p:blipFill> 15

 <p:spPr> 16

 <a:xfrm> 17

 <a:off x="1346200" y="914400"/> 18

 <a:ext cx="3657600" cy="2743200"/> 19

 </a:xfrm> 20

 <a:prstGeom prst="rect"> 21

 <a:avLst/> 22

 </a:prstGeom> 23

 <a:noFill/> 24

 <a:ln> 25

 <a:noFill/> 26

 </a:ln> 27

 </p:spPr> 28

</p:pic> 29

Introduction to DrawingML

 349

5.10.3 Attaching Properties to this Picture 1

Now that the base picture has been specified, we can move on to more complicated properties, such as 2

recolor options and picture descriptions. In the picture below, notice that the picture that was once green has 3

been re-colored in a purple hue. This can be done by utilizing the duotone element, which allows for the 4

setting of two base colors to use for re-coloring the entire picture. The first is used to act upon the darker 5

regions of the picture and the second is used to act upon the lighter regions. This we can see below that black 6

(#000000) is indeed used below for the darker regions while accent4 (purple in this case) is used for the lighter 7

areas. 8

 9

<p:pic> 10

 <p:nvPicPr> 11

 <p:cNvPr id="4" name="St_Patrick's_Day.jpg" 12

 descr="This is a Saint Patrick's day picture"/> 13

 <p:cNvPicPr> 14

 <a:picLocks noChangeAspect="1"/> 15

 </p:cNvPicPr> 16

 <p:nvPr/> 17

 </p:nvPicPr> 18

 <p:blipFill> 19

 <a:blip r:embed="rId2"> 20

 <a:duotone> 21

 <a:srgbClr val="000000"/> 22

 <a:schemeClr val="accent4"/> 23

 </a:duotone> 24

 </a:blip> 25

 <a:stretch> 26

 <a:fillRect/> 27

 </a:stretch> 28

 </p:blipFill> 29

Introduction to DrawingML

 350

 <p:spPr> 1

 <a:xfrm> 2

 <a:off x="1346200" y="914400"/> 3

 <a:ext cx="3657600" cy="2743200"/> 4

 </a:xfrm> 5

 <a:prstGeom prst="rect"> 6

 <a:avLst/> 7

 </a:prstGeom> 8

 <a:noFill/> 9

 <a:ln> 10

 <a:noFill/> 11

 </a:ln> 12

 </p:spPr> 13

</p:pic> 14

5.10.4 Transforming this Picture 15

Now that both basic properties and additional picture properties have been specified, we can begin 16

incorporating shape properties. Below is the same picture as described above, with 3D camera perspective 17

applied along with a simple shadow and a white outline. These shape properties are the same that can be 18

applied to a shape element. One picture-specific difference can be seen here with the border around the 19

picture. Instead of the border growing both inward and outward, it only grows outward. 20

 21

<p:pic> 22

 <p:nvPicPr> 23

 <p:cNvPr id="4" name="St_Patrick's_Day.jpg" 24

 descr="This is a Saint Patrick's day picture"/> 25

 <p:cNvPicPr> 26

 <a:picLocks noChangeAspect="1"/> 27

 </p:cNvPicPr> 28

 <p:nvPr/> 29

 </p:nvPicPr> 30

Introduction to DrawingML

 351

 <p:blipFill> 1

 <a:blip r:embed="rId2"> 2

 <a:duotone> 3

 <a:srgbClr val="000000"/> 4

 <a:schemeClr val="accent4"/> 5

 </a:duotone> 6

 </a:blip> 7

 <a:stretch> 8

 <a:fillRect/> 9

 </a:stretch> 10

 </p:blipFill> 11

 <p:spPr> 12

 <a:xfrm> 13

 <a:off x="1346200" y="914400"/> 14

 <a:ext cx="3657600" cy="2743200"/> 15

 </a:xfrm> 16

 <a:prstGeom prst="rect"> 17

 <a:avLst/> 18

 </a:prstGeom> 19

 <a:noFill/> 20

 <a:ln w="57150"> 21

 <a:solidFill> 22

 <a:schemeClr val="bg1"/> 23

 </a:solidFill> 24

 </a:ln> 25

 <a:effectLst> 26

 <a:outerShdw blurRad="50800" dist="50800" dir="2700000" algn="tl" 27

 rotWithShape="0"> 28

 <a:srgbClr val="7D7D7D"> 29

 <a:alpha val="65000"/> 30

 </a:srgbClr> 31

 </a:outerShdw> 32

 </a:effectLst> 33

 <a:scene3d> 34

 <a:camera prst="perspectiveRelaxedModerately"/> 35

 <a:lightRig rig="threePt" dir="t"> 36

 <a:rot lat="0" lon="0" rev="18900000"/> 37

 </a:lightRig> 38

 </a:scene3d> 39

 </p:spPr> 40

</p:pic> 41

End of informative text. 42

Introduction to DrawingML

 352

5.11 WordprocessingML Drawing 1

Within a WordprocessingML document, it is possible to include graphical DrawingML objects: 2

 Charts 3

 Diagrams 4

 Locked Canvases 5

 Pictures 6

When these objects are present in a word processing document, it is necessary to include information that 7

specifies how the objects are to be positioned relative to the paginated document. 8

The WordprocessingML Drawing namespace acts in this capacity, specifying all information necessary to 9

anchor and display DrawingML objects within a word processing document. 10

Consider a DrawingML picture that is to displayed in the center of the printed page on which it appears, 11

modifying the flow of text as necessary. This object would be specified as follows: 12

<w:r> 13

 <w:drawing> 14

 <wp:anchor relativeHeight="10" allowOverlap="true"> 15

 <wp:positionH relativeFrom="margin"> 16

 <wp:align>center</wp:align> 17

 </wp:positionH> 18

 <wp:positionV relativeFrom="margin"> 19

 <wp:align>center</wp:align> 20

 </wp:positionV> 21

 <wp:extent cx="2441542" cy="1828800"/> 22

 <wp:wrapSquare wrapText="bothSides"/> 23

 <a:graphic> 24

 … 25

 </a:graphic> 26

 </wp:anchor> 27

 </w:drawing> 28

</w:r> 29

The anchor element specifies that this object is not positioned in-line with text, and its child elements specify 30

that the object is centered on the page horizontally and vertically, and that text can wrap around it in a square. 31

5.11.1 Object Anchoring 32

When the WordprocessingML Drawing namespace is used to anchor a DrawingML object within a document, 33

that object can be anchored in one of two ways: 34

 In line with text - The object is displayed within the regular text stream (modifying line height and so 35

on to accommodate it). 36

Introduction to DrawingML

 353

 Floating – The object is positioned absolutely or relatively within the document and text flow is 1

modified as needed around it. 2

5.11.2 Text Wrapping 3

Aside from positioning data, WordprocessingML Drawing also needs to specify how text flows around the 4

object. There are five different types of text wrapping which can be applied to floating objects present in 5

WordprocessingML documents: 6

 In Front/Behind Text - In this type of text wrapping, the drawing object is positioned on the document 7

and text is not displaced around it. 8

 9

 10

 11

 Square Wrapping - In this type of text wrapping, the drawing object is positioned on the document and 12

a rectangle is stored within the file format to determine the wrapping extents. 13

 14

 15

 16

 Tight Wrapping - In this type of text wrapping, a wrapping polygon is created and stored in the 17

WordprocessingML document, and this polygon determines how text wraps around the left and right 18

sides of the drawing object. 19

 20

Introduction to DrawingML

 354

 1

 2

 Through Wrapping - In this type of text wrapping, a wrapping polygon is created just like with tight 3

wrapping, but any indents in the wrap polygon can be filled with text in this case. 4

 5

If the wrapping polygon looks like the following: 6

 7

Tight wrapping would look like this: 8

 9

While through wrapping would look like this: 10

 11

In the latter case, notice that text fills in the 'indentation' within the wrapping polygon. 12

 13

 Top and Bottom Wrapping - In this type of text wrapping, text cannot wrap around either side of the 14

object, and shall only restart below the bottom edge of the document. 15

Introduction to DrawingML

 355

 1

 2

 3

5.12 SpreadsheetML Drawing 4

5.12.1 Introduction 5

This subclause provides a high-level overview of the content described in the dml-spreadsheetDrawing.xsd 6

schema. The elements in this schema specify how drawing elements are to be described within a spreadsheet. 7

For example, suppose we want to specify a rectangle drawing shape within a worksheet to look like the 8

following: 9

 10

5.12.2 Overview 11

The elements that specify the drawing objects within a worksheet are all located within its respective drawing 12

XML file. This file is located under the "drawings" folder inside the spreadsheet file. For example, if the drawing 13

element is located on Worksheet 1, then the specifications for the said element would be located in the file 14

\xl\drawings\drawing1.xml. 15

5.12.3 Worksheet Drawings 16

Within the drawing*.xml file is contained a single worksheet drawing wsDr element, which is the parent 17

element for all the drawing elements. Its child specifies the anchoring properties of the drawing elements. It is 18

Introduction to DrawingML

 356

within this element that the main specifications for the drawing elements are located. For example in the 1

above screenshot with a simple shape located on the worksheet, the XML for this would look like: 2

<xdr:wsDr> 3

 <xdr:absoluteAnchor> 4

 <xdr:pos x="2162175" y="1743075"/> 5

 <xdr:ext cx="1238250" cy="1314450"/> 6

 … 7

 </xdr:sp> 8

 </xdr:absoluteAnchor> 9

</xdr:wsDr> 10

In this SpreadsheetDrawingML code there is a single drawing specified almost exactly as it would within the 11

regular DrawingML framework. However the SpreadsheetDrawingML wrapper that is used allows for the 12

specifying of spreadsheet specific properties in addition to the normal drawing properties. 13

5.12.3.1 Anchoring Types 14

To define a drawing within a spreadsheet an anchoring type must be chosen. There are three different 15

anchoring types allowed for use within a spreadsheet: Absolute Anchoring, One Cell Anchoring, and Two Cell 16

Anchoring. Each of these types is described in the following subclauses. 17

5.12.3.1.1 Absolute Anchoring 18

Absolute Anchoring describes the placement of the drawing within the spreadsheet based upon absolute 19

coordinates. This positioning information includes both position coordinates and extent coordinates. The 20

absoluteAnchor element is what specifies this anchoring behavior and a sample usage is shown below. 21

<xdr:absoluteAnchor> 22

 <xdr:pos x="2162175" y="1552575"/> 23

 <xdr:ext cx="1238250" cy="1123950"/> 24

 … 25

 </xdr:sp> 26

</xdr:absoluteAnchor> 27

In this example, there is a single shape specified using absolute anchoring as its anchoring method. 28

5.12.3.1.2 One Cell Anchoring 29

One Cell Anchoring describes the placement of the drawing within the spreadsheet based upon offsets as well 30

as a specified column and row. The offset is always in reference to the specified anchor cell and acts to offset 31

the shape object from being exactly on top of the anchor cell. The offset information determines the actual 32

placement of the drawing within the spreadsheet while the row and column are used to specify to which cell 33

the drawing should be anchored. Thus, if the anchor cell changes positions then the drawing can be moved as 34

well. The oneCellAnchor element is what specifies this anchoring behavior and a sample usage is shown 35

below. 36

Introduction to DrawingML

 357

<xdr:oneCellAnchor> 1

 <xdr:from> 2

 <xdr:col>3</xdr:col> 3

 <xdr:colOff>333375</xdr:colOff> 4

 <xdr:row>8</xdr:row> 5

 <xdr:rowOff>28575</xdr:rowOff> 6

 </xdr:from> 7

 <xdr:ext cx="1238250" cy="1123950"/> 8

 … 9

 </xdr:sp> 10

</xdr:oneCellAnchor> 11

In this example, there is a single shape specified using one cell anchoring as its anchoring method. 12

5.12.3.1.3 Two Cell Anchoring 13

Two Cell Anchoring describes the placement of the drawing within the spreadsheet based upon offsets as well 14

as a specified columns and rows. The offset is always in reference to the specified anchor cell and acts to offset 15

the shape object from being exactly on top of the anchor cell. The offset information determines the actual 16

placement of the drawing within the spreadsheet while the rows and columns are used to specify the cells to 17

which the drawing should be anchored and upon which the resized is based. For instance, if the anchor cell 18

changes positions then the drawing can be moved. Likewise, if the anchor cells behind the shape grow, then 19

the shape can grow as well. The twoCellAnchor element is what specifies this anchoring behavior and a 20

sample usage is shown below. 21

<xdr:twoCellAnchor> 22

 <xdr:from> 23

 <xdr:col>3</xdr:col> 24

 <xdr:colOff>447675</xdr:colOff> 25

 <xdr:row>8</xdr:row> 26

 <xdr:rowOff>28575</xdr:rowOff> 27

 </xdr:from> 28

 <xdr:to> 29

 <xdr:col>5</xdr:col> 30

 <xdr:colOff>466725</xdr:colOff> 31

 <xdr:row>14</xdr:row> 32

 <xdr:rowOff>9525</xdr:rowOff> 33

 </xdr:to> 34

 … 35

 </xdr:sp> 36

</xdr:twoCellAnchor> 37

In this example, there is a single shape specified using two cell anchoring as its anchoring method. 38

Introduction to DrawingML

 358

5.13 Charts 1

5.13.1 Overview 2

Charts provide a great way to visualize information by displaying a graphical representation of the data. The 3

chart XML files can be reused and shared among different applications, such as a spreadsheet, presentation, 4

and word processing. 5

Charts come in many different types and flavors, and this document provides a basic overview of both the 6

different types of charts as well as the XML that is used to generate them. 7

Applications may allow many different runtime behaviors for charts, such as rules for displaying them. This 8

clause and its corresponding reference material define only the XML that is needed to store and generate the 9

charts, and do not dictate any runtime behaviors. 10

5.13.1.1 Basic Chart Types 11

There are 10 basic chart types. Below are examples of each basic type: 12

 13

Column Chart (shown above) 14

 15

Introduction to DrawingML

 359

 1

Bar Chart (shown above) 2

 3

 4

Line Chart (shown above) 5

 6

Introduction to DrawingML

 360

 1

Pie Chart (shown above) 2

 3

 4

Area Chart (shown above) 5

 6

Introduction to DrawingML

 361

 1

Scatter Chart (shown above) 2

 3

 4

Stock Chart (shown above) 5

 6

Introduction to DrawingML

 362

 1

Surface Chart (shown above) 2

 3

 4

Doughnut Chart (shown above) 5

 6

Introduction to DrawingML

 363

 1

Bubble Chart (shown above) 2

 3

 4

Radar Chart (shown above) 5

 6

5.13.1.2 Basic Chart Components 7

Here are some diagrams that label the different individual components of a chart. Some chart components, 8

such as drop lines, are only shown on certain types of charts. 9

Introduction to DrawingML

 364

 1

 2

Introduction to DrawingML

 365

 1

5.13.1.3 3D Charts 2

Most chart types also have three-dimensional representations. 3D charts have extra properties to describe 3

depth, floor, or walls, as well as some other rendering effects. Below is a 2D column chart shown with its 4

3D counterpart. 5

 6

Introduction to DrawingML

 366

 1

5.13.1.4 Chart Styles 2

Charts may have different styles applied to them. This is essentially just a coordinated set of coloring and 3

formatting that is applied across an entire chart and all its elements. Styles allow a quick and easy way to 4

coordinate the look and feel of a chart with the rest of the document. Below is a rendering of a column chart 5

and pie chart showing the same data, with the same style applied. There is also a shot of many different types 6

of styles. It is shown for both charts to illustrate how the idea of a style can apply, and be consistent, across 7

different chart types. 8

Introduction to DrawingML

 367

1

 2

 3

Introduction to DrawingML

 368

1

 2

5.13.2 XML Overview 3

5.13.2.1 Relationships 4

A Drawing XML part contains a chart element, which expresses a relationship ID. This ID is referenced by the 5

drawing.rels part, which points to the corresponding chart XML part. Chart XML contains the core definition of 6

the chart. 7

5.13.2.2 Chart 8

Different chart types can have many different components defined in the XML, and not all are shown here. For 9

many charts though, at a very high level, the chart XML is composed of the following pieces: 10

Introduction to DrawingML

 369

<chartSpace> 1

 <chart> 2

 <view3D> 3

 <plotArea> 4

 <layOut> 5

 <barChart> 6

 <cat> 7

 <val> 8

 <catAx> 9

 <valAx> 10

 </plotArea> 11

 <legend> 12

 </chart> 13

 <printSettings> 14

</chartSpace> 15

chartSpace is the root node, which contains an element defining the chart, and an element defining the print 16

settings for the chart. 17

chart is the root element for the chart. If the chart is a 3D chart, then a view3D element is contained, which 18

specifies the 3D view. It then has a plot area, which defines a layout and contains an element that corresponds 19

to, and defines, the type of chart. 20

The element that defines the type of chart, barChart in this case, also specify caches for both category axis 21

data (which is really just strings for the categories), as well as the for the numbers, or values, shown on the 22

chart. The cat element defines the string cache for the category axis, and the val element defines the number 23

caches. 24

Depending on the type of the chart, the plot area may optionally contain elements that define the axes—such 25

as the value axis and category axis—or shape properties. In the example above, the category axis, catAx, and 26

value axis, valAx are defined. These define things like positioning, orientation, label position, and tick marks 27

for the axis. The actual strings and data that the axis corresponds to are defined by the cat and val elements. 28

Lastly, the chart element contains a legend element which defines the chart legend. 29

5.13.3 Example 30

The XML in this clause defines the following 3D chart: 31

Introduction to DrawingML

 370

 1

For this example, the xml for the chart element will be shown in detail. The xml for the chart element follows: 2

<c:chart> 3

 <c:view3D> 4

 <c:rotX val="30"/> 5

 <c:perspective val="30"/> 6

 </c:view3D> 7

 <c:plotArea> 8

 <c:layout> 9

 <c:lastLayoutOuter> 10

 <c:x val="4.5"/> 11

 <c:y val="4.5"/> 12

 <c:w val="324.75"/> 13

 <c:h val="206.25"/> 14

 </c:lastLayoutOuter> 15

 <c:lastLayout> 16

 <c:x val="10.5"/> 17

 <c:y val="10.5"/> 18

 <c:w val="312.75"/> 19

 <c:h val="194.25"/> 20

 </c:lastLayout> 21

 </c:layout> 22

Introduction to DrawingML

 371

 <c:pie3DChart> 1

 <c:varyColors val="1"/> 2

 <c:ser> 3

 <c:idx val="0"/> 4

 <c:order val="0"/> 5

 <c:cat> 6

 <c:strRef> 7

 <c:f>Sheet1!A1:C1</c:f> 8

 <c:strCache> 9

 <c:pt idx="0"> 10

 <c:v>A</c:v> 11

 </c:pt> 12

 <c:pt idx="1"> 13

 <c:v>B</c:v> 14

 </c:pt> 15

 <c:pt idx="2"> 16

 <c:v>C</c:v> 17

 </c:pt> 18

 </c:strCache> 19

 </c:strRef> 20

 </c:cat> 21

 <c:val> 22

 <c:numRef> 23

 <c:f>Sheet1!A2:C2</c:f> 24

 <c:numCache> 25

 <c:pt idx="0"> 26

 <c:v>1</c:v> 27

 </c:pt> 28

 <c:pt idx="1"> 29

 <c:v>2</c:v> 30

 </c:pt> 31

 <c:pt idx="2"> 32

 <c:v>3</c:v> 33

 </c:pt> 34

 </c:numCache> 35

 </c:numRef> 36

 </c:val> 37

 </c:ser> 38

 </c:pie3DChart> 39

Introduction to DrawingML

 372

 <c:spPr> 1

 <a:noFill/> 2

 <a:ln w="25400"> 3

 <a:noFill/> 4

 </a:ln> 5

 </c:spPr> 6

 </c:plotArea> 7

 <c:legend> 8

 <c:legendPos val="r"/> 9

 <c:layout> 10

 <c:lastLayout> 11

 <c:x val="333.75"/> 12

 <c:y val="81.75"/> 13

 <c:w val="19.5"/> 14

 <c:h val="51.75"/> 15

 </c:lastLayout> 16

 </c:layout> 17

 </c:legend> 18

 <c:plotVisOnly val="1"/> 19

</c:chart> 20

5.14 Chart Drawing 21

5.14.1 Introduction 22

This subclause provides a high-level overview of the content described in the dml-chartDrawing.xsd schema. 23

The elements in this schema specify how drawing elements are to be described within a chart. For example, 24

suppose we want to specify a rectangle drawing shape within a chart to look like the following: 25

 26

Introduction to DrawingML

 373

5.14.2 Overview 1

The elements that specify the drawing objects within a chart are all located within its respective drawing XML 2

file. This file is located under the "drawings" folder inside the spreadsheet file. 3

5.14.3 Chart Drawings 4

Within the drawing*.xml file there is a single drawing file that contains the userShapes element. This element 5

is the parent element for all the drawing elements within a single chart. Its child specifies the anchoring 6

properties of the drawing elements. It is within this element that the main specifications for the drawing 7

elements are located. For example in the above screenshot with a simple shape located in the chart, the XML 8

for this would look like: 9

<c:userShapes> 10

 <cdr:relSizeAnchor> 11

 <cdr:from> 12

 <cdr:x>0.125</cdr:x> 13

 <cdr:y>0.13194</cdr:y> 14

 </cdr:from> 15

 <cdr:to> 16

 <cdr:x>0.36042</cdr:x> 17

 <cdr:y>0.53472</cdr:y> 18

 </cdr:to> 19

 … 20

 </cdr:sp> 21

 </cdr:relSizeAnchor> 22

</c:userShapes> 23

In the ChartDrawingML code above, there is a single drawing specified almost exactly as it would within the 24

regular DrawingML framework. However, the ChartDrawingML wrapper that is used allows for the specifying 25

of chart specific properties in addition to the normal drawing properties. The most interesting of these are the 26

two anchoring types that define the placement behavior of a drawing within a chart. 27

5.14.3.1 Anchoring Types 28

To define a drawing within a chart an anchoring type must be chosen. There are two different anchoring types 29

allowed for use within a chart: Absolute Anchoring and Relative Anchoring. These two types are described in 30

the following two subclauses. 31

5.14.3.1.1 Absolute Size Anchoring 32

Absolute Anchoring describes the placement of the drawing within the chart based upon absolute chart 33

coordinates. The absSizeAnchor element specifies anchoring behavior, using percentage-based position 34

coordinates for the anchor location and extent coordinates (in EMUs) for drawing objects, as shown in the 35

example below.<cdr:absSizeAnchor> 36

 <cdr:from> 37

 <cdr:x>0.125</cdr:x> 38

Introduction to DrawingML

 374

 <cdr:y>0.13194</cdr:y> 1

 </cdr:from> 2

 <cdr:ext cx="1238250" cy="1123950"/> 3

 … 4

 </cdr:sp> 5

</cdr:absSizeAnchor> 6

In this example, there is a single shape specified using absolute anchoring as its anchoring method. 7

5.14.3.1.2 Relative Size Anchoring 8

Relative Anchoring describes the placement of the drawing within the chart based upon relative chart 9

coordinates. For instance, if the chart increases in size then the shape will grow as well. This positioning 10

information includes from and to elements which specify a percentage-based coordinate within the chart 11

bounding box. The relSizeAnchor element is what specifies this anchoring behavior and a sample usage is 12

shown below. 13

<cdr:relSizeAnchor> 14

 <cdr:from> 15

 <cdr:x>0.125</cdr:x> 16

 <cdr:y>0.13194</cdr:y> 17

 </cdr:from> 18

 <cdr:to> 19

 <cdr:x>0.36042</cdr:x> 20

 <cdr:y>0.53472</cdr:y> 21

 </cdr:to> 22

 … 23

 </cdr:sp> 24

</cdr:relSizeAnchor> 25

In this example, there is a single shape specified using relative anchoring as its anchoring method. 26

5.15 Diagrams 27

5.15.1 Introduction 28

This clause provides a high-level overview of the content described in the following schemas: dml-29

diagramTypes.xsd, dml-diagramDataModel.xsd, dml-diagramStyleDefinition.xsd, dml-30

diagramLayoutVariables.xsd, dml-diagramElementPropertySet.xsd, dml-diagramColorTransform.xsd, and dml-31

diagramDefinition.xsd. 32

The DrawingML diagram file format is broken down into the following subjects: 33

 Data Model 34

 Colors 35

 Quick Styles 36

Introduction to DrawingML

 375

 Layout 1

The best way to understand the above subjects will be to cover them in the ordering above. The seven 2

schemas can be grouped into the subjects as seen in table 1 below. 3

Data Colors Quick Styles Layout

dml-
diagramDataModel.xs
d

dml-
diagramColorTra
nsform.xsd

dml-
diagramStyleDefinition.
xsd

dml-diagramTypes.xsd

dml-
diagramElementPrope
rtySet.xsd

 dml-diagramDefinition.xsd

 dml-
diagramLayoutVariables.x
sd

 dml-
diagramElementPropertyS
et.xsd

Table 1: DrawingML schemas grouped by subject. 4

5.15.2 Element Property Set 5

The schema dml-diagramElementPropertySet.xsd defines a complex type, CT_ElemPropSet, which is a catch-6

all for holding element properties and customizations, and is used throughout certain complex types in 7

DrawingML. This type contains many properties, and these are explained in subsequent subclauses. The 8

definition of CT_ElemPropSet is as follows: 9

<xsd:complexType name="CT_ElemPropSet"> 10

 <xsd:sequence> 11

 <xsd:element name="presLayoutVars" 12

 type="CT_LayoutVariablePropertySet" minOccurs="0" 13

 maxOccurs="1" /> 14

 <xsd:element name="style" type="a:CT_ShapeStyle" 15

 minOccurs="0" maxOccurs="1" /> 16

 </xsd:sequence> 17

 <xsd:attribute name="presAssocID" type="ST_ModelId" use="optional" /> 18

 <xsd:attribute name="presName" type="xsd:string" use="optional" /> 19

 <xsd:attribute name="presStyleLbl" type="xsd:string" use="optional" /> 20

 <xsd:attribute name="presStyleIdx" type="xsd:int" use="optional" /> 21

 <xsd:attribute name="presStyleCnt" type="xsd:int" use="optional" /> 22

Introduction to DrawingML

 376

 <xsd:attribute name="loTypeId" type="xsd:string" use="optional" /> 1

 <xsd:attribute name="loCatId" type="xsd:string" use="optional" /> 2

 <xsd:attribute name="qsTypeId" type="xsd:string" use="optional" /> 3

 <xsd:attribute name="qsCatId" type="xsd:string" use="optional" /> 4

 <xsd:attribute name="csTypeId" type="xsd:string" use="optional" /> 5

 <xsd:attribute name="csCatId" type="xsd:string" use="optional" /> 6

 <xsd:attribute name="coherent3DOff" type="xsd:boolean" use="optional" /> 7

 <xsd:attribute name="phldrT" type="xsd:string" use="optional" /> 8

 <xsd:attribute name="phldr" type="xsd:boolean" use="optional" /> 9

 <xsd:attribute name="custAng" type="xsd:int" use="optional" /> 10

 <xsd:attribute name="custFlipVert" type="xsd:boolean" use="optional" /> 11

 <xsd:attribute name="custFlipHor" type="xsd:boolean" use="optional" /> 12

 <xsd:attribute name="custSzX" type="xsd:int" use="optional" /> 13

 <xsd:attribute name="custSzY" type="xsd:int" use="optional" /> 14

 <xsd:attribute name="custScaleX" type="xsd:int" use="optional" /> 15

 <xsd:attribute name="custScaleY" type="xsd:int" use="optional" /> 16

 <xsd:attribute name="custT" type="xsd:boolean" use="optional" /> 17

 <xsd:attribute name="custLinFactX" type="xsd:int" use="optional" /> 18

 <xsd:attribute name="custLinFactY" type="xsd:int" use="optional" /> 19

 <xsd:attribute name="custLinFactNeighborX" type="xsd:int" use="optional" /> 20

 <xsd:attribute name="custLinFactNeighborY" type="xsd:int" use="optional" /> 21

 <xsd:attribute name="custRadScaleRad" type="xsd:int" use="optional" /> 22

 <xsd:attribute name="custRadScaleInc" type="xsd:int" use="optional" /> 23

</xsd:complexType> 24

5.15.2.1 Presentation Element Properties 25

The following attributes deal with presentation elements: 26

 presLayoutVars – The layout variable property set. 27

 style – The link to the permutation of the style matrix. 28

 presAssocID – The semantic element associated with this presentation element. This ID is used 29

together with the presName to create a unique key for presentation element indexing. 30

 presName – The layout node name of this presentation element. This name is used together with 31

presAssocID to create a unique key for presentation element indexing. 32

 presStyleLbl – The layout node style label of this presentation element.. 33

 presStyleIdx – The layout node style index of this presentation element.. 34

 presStyleCnt – The layout node style count of this presentation element. 35

5.15.2.2 Document Element Properties 36

The following attributes deal with the document element: 37

 loTypeID – The ID of the current diagram type. 38

 loCatId – The ID of the current diagram category. 39

Introduction to DrawingML

 377

 qsTypeID – The ID of the current style type. 1

 qaCatID – The ID of the current style category. 2

 csTypeID – The ID of the current color transform. 3

 csCatID – The ID of the current color transform category. 4

 coherent3Doff – Enables or disables coherent 3D behavior for styles that have such behavior defined. 5

5.15.2.3 Semantic Element Properties 6

The following attributes relate to the semantic element properties: 7

 phldrT – The text used for display in the element if the placeholder flag is set to true. If this field is 8

not set, then the default placeholder text will be used. 9

 phldr – Indicates that the element is a placeholder or sample item. 10

5.15.2.4 Customization Properties 11

The following are customization properties or tweaks: 12

 custAng – The amount rotation is customized by, in 60,000th of a degree. 13

 custFlipVert – Vertical flip. 14

 custFlipHor – Horizontal flip. 15

 custSzX – Fixed width override for a shape, in emus. 16

 custSzY – Fixed height override for a shape, in emus. 17

 custScaleX – Amount that the width is scaled by, in 1,000th of a percent. 18

 custScaleY – Amount that the height is scaled by, in 1,000th of a percent. 19

 custT – If text has been customized then layout will no longer change it. 20

 custLinFactX – A percentage of the shape width that is used for offsetting the shape, in 1,000th of a 21

percent. 22

 custLinFactY – A percentage of the shape height that is used for offsetting the shape, in 1,000th of a 23

percent. 24

 custLinFactNeighborX – A percentage of the neighbor’s height used for offsetting the shape, in 25

1,000th of a percent. 26

 custLinFactNeighborY – A percentage of the neighbor’s height used for offsetting the shape, in 27

1,000th of a percent. 28

 custRadScaleRad – Defines how much the radius has been scaled by, in 1,000th of a percent. 29

 custRadScaleInc – Defines how much the include angle has been scaled by, in 1,000th of a percent. 30

5.15.3 Data Model 31

The schema dml-diagramDataModel.xsd defines the data model in a diagram. The purpose of the data model 32

is twofold. The first use of the data model is to hold the information contained in a diagram. For example, in 33

figure 1 below, the purpose of the data model would be to hold the information, “one”, “two” and “three” for 34

the diagram. 35

Introduction to DrawingML

 378

 1

Figure 11: Example diagram with data. 2

The second use of the data model is to define an initial state of the diagram. This initial state consists of what 3

can be thought of as placeholder data, which an application uses to display a diagram initially before any data 4

has been entered. Figure 2 shows an example of what a diagram might look like in an initial state containing 5

three empty nodes. In this example, the placeholder data consists of three nodes and two connections, which 6

will be explained shortly. 7

 8

Figure 12: An empty diagram in its initial state. 9

5.15.3.1 Structural Elements 10

5.15.3.1.1 Element Type 11

There is a single simple type, ST_PtType, used to define a type of element; this is defined later. Element types 12

hold the data associated with a diagram and are defined in relation to one-another through relationship types. 13

Seven different types of elements are available to the user: 14

 doc – A document element. The document element is the root element within a diagram and can be 15

thought of as the canvas which the diagram is drawn on. 16

 node – A model element. This is the basic element type which is used and can be used to hold text for 17

example. 18

 asst – This is used in hierarchy diagrams and represents an assistant element. 19

 pres – A presentation element. This element defines the visual aspects associated with a node, or 20

rather the presentation aspects of an element. 21

 parTrans – A parent transition element. This element holds the data for a parent-child relationship 22

between two elements of type node. 23

Introduction to DrawingML

 379

 sibTrans – A sibling transition element. This element holds the data for the relationship defined 1

between two elements of type node whom are peers of one another. 2

 unknown – An element type that is used to maintain backward compatibility. 3

5.15.3.1.2 Relationship Type 4

There are defined relationships or connections between two model elements. Four types of relationships are 5

defined in the simple type ST_CxnType: 6

 parOf – Parent-child relationship. 7

 presOf – Presentation relationship. 8

 presParOf – Presentation parent of relationship. 9

 unknownRelationship – An unknown relationship type. 10

5.15.3.1.3 Element 11

An element is a single item, such as a node or transition in the data model. Within the realm of DrawingML, 12

the complex type CT_Pt holds information describing an element within a diagram. Within this description lies 13

both the data held within the element, and any formatting on that element. A CT_Pt is defined as follows: 14

<xsd:complexType name="CT_Pt"> 15

 <xsd:sequence> 16

 <xsd:element name="prSet" type="CT_ElemPropSet" minOccurs="0" 17

 maxOccurs="1" /> 18

 <xsd:element name="spPr" type="a:CT_ShapeProperties" 19

 minOccurs="0" maxOccurs="1 /> 20

 <xsd:element name="style" type="a:CT_ShapeStyle" 21

 minOccurs="0" maxOccurs="1" /> 22

 <xsd:element name="t" type="a:CT_TextBody" minOccurs="0" 23

 maxOccurs="1" /> 24

 </xsd:sequence> 25

 <xsd:attribute name="modelId" type="ST_ModelId" use="required" /> 26

 <xsd:attribute name="type" type="ST_PtType" use="optional" 27

 default="node" /> 28

 <xsd:attribute name="cxnId" type="ST_ModelId" use="optional" 29

 default="0" /> 30

</xsd:complexType> 31

The attribute modelId holds a unique id for a particular element. This unique id can be referenced elsewhere, 32

for example, from within a connection list. This attribute is required for every point defined in the data model. 33

The last two attributes of the CT_Pt are optional. The first defines the type of point with the default being a 34

node. The second defines a connection id. This connection id is only used if the point type is of type 35

parTrans, or sibTrans. The connection id refers to a relationship that is defined elsewhere in the data model. 36

Introduction to DrawingML

 380

5.15.3.1.4 Relationship 1

A relationship is a connection between any two model elements. An example of where a relationship would 2

be used can be seen in figures 1 and 2. In each of those examples, the arrows between the nodes have 3

relationships defined. A relationship is defined as follows: 4

<xsd:complexType name="CT_Cxn> 5

 <xsd:attribute name="modelId" type="ST_ModelId" use="required" /> 6

 <xsd:attribute name="type" type="ST_CxnType" use="optional" 7

 default="parOf" /> 8

 <xsd:attribute name="srcId" type="ST_ModelId" use="required" /> 9

 <xsd:attribute name="destId" type="ST_ModelId" use="required" /> 10

 <xsd:attribute name="srcOrd" type="xsd:unsignedInt" use="required" /> 11

 <xsd:attribute name="destOrd" type="xsd:unsignedInt" use="required" /> 12

 <xsd:attribute name="parTransId" type="ST_ModelId" use="optional" 13

 default="0" /> 14

 <xsd:attribute name="sibTransId" type="ST_ModelId" use="optional" 15

 default="0" /> 16

 <xsd:attribute name="presId" type="xsd:string" use="optional" 17

 default="" /> 18

</xsd:complexType> 19

The relationship, as with the element, has a unique id associated with it referred to as the modelID. The srcId 20

and destId attributes refer to ids of the source element and destination element, respectively, that this 21

relationship is defined between. 22

The srcOrd and destOrd refer to the ordinality of siblings for a given connection. For example, if a node had 23

three siblings, A, B, and C, then the srcOrd would define if they were to show up as A, B, C, or perhaps B, C, 24

and then A. 25

The presId attribute contains the presentation that is associated with this particular relationship. 26

5.15.3.1.5 Element List 27

The complex type CT_PtList is simply a sequence of elements. Its definition is as follows: 28

<xsd:complexType name="CT_PtList"> 29

 <xsd:sequence> 30

 <xsd:element name="pt" type="CT_Pt" minOccurs="0" maxOccurs="unbounded"/> 31

 </xsd:sequence> 32

</xsd:complexType> 33

5.15.3.1.6 Relationship List 34

This complex type, CT_CxnList, is simply a sequence of connections. Its definition is as follows: 35

Introduction to DrawingML

 381

<xsd:complexType name="CT_CxnList" oxsd:cname="Relationships"> 1

 <xsd:sequence> 2

 <xsd:element name="cxn" type="CT_Cxn" minOccurs="0" 3

 maxOccurs="unbounded" /> 4

 </xsd:sequence> 5

</xsd:complexType> 6

5.15.3.1.7 Data Model 7

The complex type CT_DataModel defines the data model and contains a sequence of elements. It is defined as 8

follows: 9

<xsd:complexType name="CT_DataModel"> 10

 <xsd:sequence oxsd:emitArgs="flattenSequence"> 11

 <xsd:element name="ptLst" type="CT_PtList" /> 12

 <xsd:element name="cxnLst" type="CT_CxnList" minOccurs="0" 13

 maxOccurs="1" /> 14

 <xsd:element name="bg" type="a:CT_BackgroundFormatting" 15

 minOccurs="0" /> 16

 <xsd:element name="whole" type="a:CT_WholeE2oFormatting" 17

 minOccurs="0" /> 18

 </xsd:sequence> 19

</xsd:complexType> 20

The data model contains a list of elements, a list of connections, and formatting properties for the background 21

object and the diagram container. This complex type is responsible for holding all data-bound information of 22

the diagram being created. 23

5.15.4 Color Transforms 24

Color transforms define how colors are applied to diagrams. Color transforms define how color is used in the 25

diagram as a whole, and they mandate things such as which theme color or colors will be used, if there is a tint 26

or shade applied to a certain color or part of the diagram, or if color is even used at all. Some examples of 27

what color transforms can do to a simple diagram can be seen in figure 3. 28

 29

 30

Figure 13: Different examples of a color transform applied to a diagram 31

Introduction to DrawingML

 382

5.15.4.1 Structural Elements 1

The structural elements which come together to create a color transform, or rather, the complex type 2

CT_ColorTransform, are as follows: 3

 CT_CTName 4

 CT_CTDescription 5

 CT_CTCategory 6

 CT_CTCategories 7

 ST_ClrAppMethod 8

 ST_HueDir 9

 CT_Colors 10

 CT_CTStyleLabel 11

 CT_CTVersion 12

 CT_ColorTransformHeader 13

 CT_ColorTransformHeaderLst 14

The complex types CT_CTName (name), CT_CTDescription (description), CT_CTCategory (category), and 15

CT_CTCategories (list of categories) work together to name, describe and categorize the particular color 16

transform. These types are mirrored elsewhere throughout DrawingML in the different subjects in order to 17

perform the same tasks of naming, describing, and categorizing. 18

The name consists simply of two strings, one of a name for the color transform, which is required, and an 19

optional language tag. The language allows someone to specify a language for a given title. It is possible to 20

specify multiple titles that are language dependant. The description also has the optional language attribute 21

as in the name, along with a second required string attribute which holds the actual description. The usage of 22

this is exactly the same as within CT_CTName. CT_CTName and CT_CTDescription are defined in the 23

following way: 24

<xsd:complexType name="CT_CTName"> 25

 <xsd:attribute name="lang type="xsd:string" use="optional" /> 26

 <xsd:attribute name="val" type="xsd:string" use="required" /> 27

</xsd:complexType> 28

<xsd:complexType name="CT_CTDescription"> 29

 <xsd:attribute name="lang" type="xsd:string" use="optional" /> 30

 <xsd:attribute name="val" type="xsd:string" use="required" /> 31

</xsd:complexType> 32

The category and categories complex types , CT_CTCategory and CT_CTCategories, respectively, define how 33

the color transform is categorized within the user interface of the application. The category contains a name, 34

or type, along with a priority that defines the ordering of the color transform. The lower the priority, the 35

earlier in the category it will display. If there is a tie, the unique id associated with the color transform will 36

decide the order alphabetically. CT_CTCategories is simply a list of CT_CTCategory. The two complex types 37

are defined as follows: 38

Introduction to DrawingML

 383

<xsd:complexType name="CT_CTCategory"> 1

 <xsd:attribute name="type" type="xsd:anyURI" use="required" /> 2

 <xsd:attribute name="pri" type="xsd:unsignedInt" use="required"/> 3

</xsd:complexType> 4

<xsd:complexType name="T_CTCategories"> 5

 <xsd:sequence minOccurs="0" maxOccurs="unbounded"> 6

 <xsd:element name="cat" type="CT_CTCategory" minOccurs="0" 7

 maxOccurs="unbounded" /> 8

 </xsd:sequence> 9

</xsd:complexType> 10

5.15.4.1.1 Color Application Method 11

The simple type ST_ClrAppMethod lists the different options for color to be applied to a diagram. There are 12

three options available to the user: span, cycle, and repeat. Given a list of colors, which go from color A to 13

color B, the differences in these three options can be defined. These options are shown below in Figure 4. 14

The span option will, from the start of the diagram to the end of the diagram, interpolate between the colors A 15

through B for every node along the way. 16

The cycle option will interpolate from A to B then back to A from the start of the diagram to the end of the 17

diagram. 18

The repeat option applies colors A through B one at a time for each point in the diagram, then repeats A 19

through B as needed. 20

 21

Figure 14: Examples of the three different ways a color transform is applied to a diagram. 22

5.15.4.1.2 Hue Direction 23

The simple type ST_HueDir defines the direction of a hue color shift around a color wheel. A user can either 24

define the shift to occur in the clockwise (cw) direction, or in the counterclockwise (ccw) direction. For 25

Introduction to DrawingML

 384

example, in Figure 4, the span colors are red and green. The behavior shown in figure 4 is a shift in the 1

cw direction. If the hue shift had been defined in the ccw direction, the colors interpolated between colors A 2

and B would have been in the hues purple and blue. Another example of a hue direction shift in the clockwise 3

can be seen in Figure 5 below along with the color shift from red to yellow and then from yellow to blue along 4

the primary colors. Counterclockwise shifts would occur in the direction of yellow to red and blue to yellow in 5

the examples below. 6

 7

Figure 15: Example hue shifts in the clockwise direction around a color wheel applied to two diagrams. The 8

three primary colors, red, yellow, and blue are used to represent the three major sections of a color wheel 9

which ranges between red to yellow to blue to red. 10

5.15.4.1.3 Colors 11

The complex type CT_Colors holds the actual color values that are to be applied to a given diagram and how 12

those colors are to be applied. It contains the color application method and hue shift direction, and is defined 13

as follows: 14

<xsd:complexType name="CT_Colors> 15

 <xsd:sequence> 16

 <xsd:group ref="a:EG_ColorChoice" minOccurs="0" maxOccurs="unbounded" /> 17

 </xsd:sequence> 18

 <xsd:attribute name="meth" type="ST_ClrAppMethod" use="optional" 19

 default="span" /> 20

 <xsd:attribute name="hueDir" type="ST_HueDir" use="optional" 21

 default="cw" /> 22

</xsd:complexType> 23

The sequence of colors is defined via the sequence of EG_ColorChoices. 24

Introduction to DrawingML

 385

5.15.4.1.4 Style Label 1

The complex type CT_CTStyleLabel packages together colors for the different pieces of a diagram. There are 2

six different aspects to a diagram that can be colored independently of one another. Each of the six parts is of 3

type CT_Colors. They are: 4

 Fill Colors – The colors that actually fill the shapes in the diagram 5

 Line Colors – The colors of the lines on the shapes in the diagram. 6

 Effect Colors – The colors of the effects applied to the shapes within the diagram (eg. Glow). 7

 Text Line Colors – The colors of the lines on the text within the diagram. 8

 Text Fill Colors – The color of the text within the diagram. 9

 Text Effect Colors – The colors of the effects applied to the text within the diagram. 10

The final piece of a style label is simply its name, which is a string. CT_CTStyleLabel is defined as follows: 11

<xsd:complexType name="CT_CTStyleLabel"> 12

 <xsd:sequence> 13

 <xsd:element name="fillClrLst" type="CT_Colors" 14

 minOccurs="0" maxOccurs="1" /> 15

 <xsd:element name="linClrLst" type="CT_Colors" 16

 minOccurs="0" maxOccurs="1" /> 17

 <xsd:element name="effectClrLst" type="CT_Colors" 18

 minOccurs="0" maxOccurs="1" /> 19

 <xsd:element name="txLinClrLst" type="CT_Colors" 20

 minOccurs="0" maxOccurs="1" /> 21

 <xsd:element name="txFillClrLst" type="CT_Colors" 22

 minOccurs="0" maxOccurs="1" /> 23

 <xsd:element name="txEffectClrLst" type="CT_Colors" 24

 minOccurs="0" maxOccurs="1" /> 25

 </xsd:sequence> 26

 <xsd:attribute name="name" type="xsd:string" use="required" /> 27

</xsd:complexType> 28

5.15.4.1.5 Version 29

The simple type ST_CTVersion defines the minimum version of an application that the color transform will 30

work with. The version corresponds to build numbers in the major.minor.build.revision format and is defined 31

as follows: 32

[0-9]?[0-9])?(\.[0-9]?[0-9])?(\.[0-9]{4})?(\.[0-9]{4} 33

5.15.4.1.6 Color Transform 34

The complex type CT_ColorTransform brings together all of the pieces into one cohesive structure. This is the 35

actual definition of a color transform, which can be applied to any diagram; it is defined as follows: 36

Introduction to DrawingML

 386

<xsd:complexType name="CT_ColorTransform"> 1

 <xsd:sequence> 2

 <xsd:element name="title" type="CT_CTName" minOccurs="0" 3

 maxOccurs="unbounded" /> 4

 <xsd:element name="desc" type="CT_CTDescription" 5

 minOccurs="0" maxOccurs="unbounded" /> 6

 <xsd:element name="catLst" type="CT_CTCategories" 7

 minOccurs="0" /> 8

 <xsd:element name="styleLbl type="CT_CTStyleLabel" 9

 minOccurs="0" maxOccurs="unbounded" odoc /> 10

 </xsd:sequence> 11

 <xsd:attribute name="uniqueId" type="xsd:anyURI" use="optional"/> 12

 <xsd:attribute name="minVer" type="ST_CTVersion" use="optional" 13

 default="12.0" /> 14

</xsd:complexType> 15

A color transform contains a title, description, category list, and style label in a sequence along with a unique 16

id and a minimum version. 17

5.15.4.2 Color Transform Header 18

Two complex types, CT_ColorTransformHeader and CT_ColortransformHeaderLst, help alleviate potential 19

performance concerns with initially loading in a large number of color transforms. The header information 20

contains the minimum information required to load a color transform into the application. Because of this, 21

color transforms themselves can be loaded only when needed, and other initialization work can progress 22

quickly without loading unneeded information. 23

CT_ColorTransformHeader contains information about the title of the color transform, the description, how it 24

is categorized, the unique id, minimum version, and resId. It is defined in the following way: 25

<xsd:complexType name="CT_ColorTransformHeader"> 26

 <xsd:sequence> 27

 <xsd:element name="title" type="CT_CTName" minOccurs="1" 28

 maxOccurs="unbounded" /> 29

 <xsd:element name="desc" type="CT_CTDescription" 30

 minOccurs="1" maxOccurs="unbounded" /> 31

 <xsd:element name="catLst" type="T_CTCategories" 32

 minOccurs="0" o:cname="categories" /> 33

 </xsd:sequence> 34

 <xsd:attribute name="uniqueId" type="xsd:anyURI" use="required"/> 35

 <xsd:attribute name="minVer" type="ST_CTVersion" use="optional" 36

 default="12.0" /> 37

 <xsd:attribute name="resId" type="xsd:int" use="optional" 38

 default="0" /> 39

</xsd:complexType> 40

Introduction to DrawingML

 387

The complex type CT_ColorTransformHeaderLst simply contains a list of color transform headers. It is 1

defined as follows: 2

<xsd:complexType name="CT_ColorTransformHeaderLst"> 3

 <xsd:sequence> 4

 <xsd:element name="colorsDefHdr" type="CT_ColorTransformHeader" 5

 minOccurs="0" maxOccurs="unbounded" /> 6

 </xsd:sequence> 7

</xsd:complexType> 8

5.15.5 Style Definition 9

A style definition is similar to a color transform. A style definition defines items such as the font used, the 10

thickness of a contour line, 3-D properties on the diagram, among other things. Style definitions work in 11

combination with color transforms to give an overall look and feel for the diagram. Some examples of style 12

definitions in use are in figure 5. 13

 14

 15

Figure 16: Examples of using three different style definitions on a diagram. 16

5.15.5.1 Structural Elements 17

The structural elements which come together to create a style definition are as follows: 18

 CT_SDName 19

 CT_SDDescription 20

 CT_SDCategory 21

 CT_SDCategories 22

 CT_TextProps 23

 CT_StyleLabel 24

 ST_SDVersion 25

 CT_StyleDefinition 26

 CT_StyleDefinitionHeader 27

 CT_StyleDefinitionHeaderLst 28

Introduction to DrawingML

 388

CT_SDName, CT_SDDescription, CT_SDCategory, CT_SDCategories, and ST_SDVersion are all defined 1

exactly as they are within color transforms. These types were recreated within the style definition area to 2

allow slight differentiations to be made, although, at this time they are defined exactly the same. 3

The text properties, style label, and then the style definition combine together to create a style definition, 4

which is applied to a diagram. 5

5.15.5.1.1 Text Properties 6

The complex type CT_TextProps holds any 3-D associated properties of the text that is to be held in the 7

diagram. A CT_TextProps is defined as follows: 8

<xsd:complexType name="CT_TextProps"> 9

 <xsd:sequence> 10

 <xsd:group ref="a:EG_Text3D" minOccurs="0" maxOccurs="1" /> 11

 </xsd:sequence> 12

</xsd:complexType> 13

All that is contained within the text properties is an EG_Text3D complex type. The usage of the text properties 14

complex type allows 3-D text properties to be defined for a diagram style. 15

5.15.5.1.2 Style Label 16

The style label contains information pertaining to the styleable elements within a diagram. These elements 17

include the shape properties and text properties along with any references to the style matrix or document 18

theme. The shape properties are defined in two different ways: the scene3d element that pertains to the 19

scene on a whole (and includes lighting effects, rotations, and the like), and any 3-D and material settings are 20

held in the sp3d element. CT_StyleLabel is defined as follows: 21

<xsd:complexType name="CT_StyleLabel"> 22

 <xsd:sequence> 23

 <xsd:element name="scene3d" type="a:CT_Scene3D" 24

 minOccurs="0" maxOccurs="1" /> 25

 <xsd:element name="sp3d" type="a:CT_Shape3D" minOccurs="0" 26

 maxOccurs="1" /> 27

 <xsd:element name="txPr" type="CT_TextProps" minOccurs="0" 28

 maxOccurs="1" /> 29

 <xsd:element name="style" type="a:CT_ShapeStyle" 30

 minOccurs="0" maxOccurs="1" /> 31

 </xsd:sequence> 32

 <xsd:attribute name="name" type="xsd:string" use="required" /> 33

</xsd:complexType> 34

As with many other complex types, the style label has an attribute reserved for a name. This is simply a string 35

that names the particular style label. This style label can then be referenced from within a diagram definition, 36

as we shall see below. 37

Introduction to DrawingML

 389

Note that the scene3d element contained within a style label acts on the level of an individual shape, rather 1

than the diagram as a whole. A second scene3d element is defined within the style definition; that acts on the 2

diagram level and allows for scene coherent 3-D to be applied to the diagram. A style definition contains a 3

style label. 4

5.15.5.1.3 Style Definition 5

The style definition complex type, CT_StyleDefinition, is the root element used to define a style definition. As 6

with the root element of a color transform, within the style definition there exists a title, description, category, 7

unique id, and minimum version number. These elements serve the same purpose as they do within the color 8

transform. 9

The interesting aspects of a style definition complex type are that it holds a style label, another style index 10

(which is contained within the style label as well), and another scene3d (which is also contained within the 11

style label as has been previously mentioned). The scene3d element applies to the diagram on a whole and 12

allows for scene coherent 3-D to be applied to the diagram. The duplication of the style index is two-fold. If a 13

style index is not defined within the style label, then the default style index, or rather, the index defined in this 14

complex typem is used. Since a diagram definition can reference a style label, and not a style definition, the 15

style index is also required within the style label. A CT_StyleDefniition is defined as follows: 16

<xsd:complexType name="CT_StyleDefinition"> 17

 <xsd:sequence> 18

 <xsd:element name="title" type="CT_SDName" minOccurs="0" 19

 maxOccurs="unbounded" /> 20

 <xsd:element name="desc" type="CT_SDDescription" 21

 minOccurs="0" maxOccurs="unbounded" /> 22

 <xsd:element name="catLst" type="CT_SDCategories" 23

 minOccurs="0" /> 24

 <xsd:element name="scene3d" type="a:CT_Scene3D" 25

 minOccurs="0" maxOccurs="1" /> 26

 <xsd:element name="style" type="a:CT_ShapeStyle" 27

 minOccurs="0" maxOccurs="1" /> 28

 <xsd:element name="styleLbl" type="CT_StyleLabel" 29

 minOccurs="1" maxOccurs="unbounded" /> 30

 </xsd:sequence> 31

 <xsd:attribute name="uniqueId" type="xsd:anyURI" use="optional"/> 32

 <xsd:attribute name="minVer" type="ST_SDVersion" use="optional" ` 33

 default="12.0" /> 34

</xsd:complexType> 35

5.15.5.1.4 Style Definition Header 36

The complex types CT_StyleDefinitionHeader and CT_StyleDefinitionHeaderLst perform the same function 37

as the two complex header types in color transforms. They are used to pre-load required information so the 38

actual loading of the style definition can happen only when needed. 39

Introduction to DrawingML

 390

5.15.6 Layout 1

The single largest aspect of DrawingML is Layout. Ultimately, layout is responsible for defining all aspects of 2

the diagram outside of color and style. It defines how the diagram looks, how it behaves, and how the data is 3

to be mapped. Figure 6 shows different examples of how layout works to create a diagram holding the 4

data ‘1’, ‘2’, and ‘3’. 5

 6

Figure 17: Different layouts mapping the data 1, 2, and 3 to four different diagrams 7

There are two aspects to layout: defining the numerous complex types utilized by diagram definitions, and the 8

diagram definitions themselves. Diagram definitions are a fundamental part of layout, and utilize everything in 9

order to define new diagrams. 10

5.15.6.1 Basic Layout Types 11

There are a very large number of simple types defined in this subject. These simple types are all associated 12

with properties of a diagram that can be modified to create a desired behavior. These simple types, along with 13

an explanation of what each does, follow. 14

5.15.6.1.1 Algorithm Type 15

ST_AlgorithmType is responsible for which algorithm will be used to layout the diagram. The algorithm layout 16

chosen determines if the diagram behaves as if it were a simple list, a circular cycle, or some other type of 17

diagram. The algorithms available are: 18

 unknown – Unknown algorithm type. This type is used for extensibility reasons. Use of this algorithm 19

type can used by future versions/implementations which define new algorithm types other than the 20

above mentioned algorithm types. By using this type, the current implementations know that they will 21

not be able to correctly render the diagram if they have only implemented the above mentioned 22

algorithms for layout. 23

Introduction to DrawingML

 391

 composite – The composite algorithm specifies the size and position for all child layout nodes. You can 1

use it to create graphics with a predetermined layout or in combination with other algorithms to 2

create more complex shapes. 3

 conn – the connector algorithm lays out and routes connecting lines, arrows, and shapes between 4

layout nodes 5

 cycle – the cycle algorithm lays out child layout nodes around a circle or portion of a circle using equal 6

angle spacing 7

 hierChild – the hierarchy child algorithm works with the hierRoot algorithm to create hierarchical tree 8

layouts. This algorithm aligns and positions its child layout nodes in a linear path under the hierRoot 9

layout node. 10

 hierRoot – the hierarchy root algorithm works with the hierChild algorithm to create hierarchical tree 11

layouts. The hierRoot algorithm aligns and positions the hierRoot layout node in relation to the 12

hierChild layout nodes. 13

 pyra – the pyramid algorithm lays out child layout nodes along a vertical path and works with the 14

trapezoid shape to create a pyramid 15

 lin – the linear algorithm lays out child layout nodes along a linear path 16

 sp – the space algorithm is used to specify a minimum space between other layout nodes or as an 17

indication to do nothing with the layout node’s size and position 18

 tx – manges layout of text within a shape 19

 snake – the snake algorithm lays out child layout nodes along a linear path in two dimensions, allowing 20

the linear flow to continue across multiple rows or columns 21

5.15.6.1.2 Axis Type 22

The simple type ST_AxisType defines how layout maps data to the diagram for a given point in the diagram. 23

The different ways this can be mapped is as follows: 24

 self – the layout maps to the current data point 25

 ch – the layout node can map to the children of the current data point, but not to descendants lower 26

in the hierarchy 27

 des – the layout node can map to a descendant of the current data point 28

 desOrSelf – the layout node can map the current data point, or to a descendant of the current data 29

point 30

 par – the layout node maps to the parent data point 31

 ancst – the layout node can map to the ancestors of the current data point (parents, grandparents, 32

great grandparents, etc) 33

 ancstOrSelf – the layout node can map an ancestor data point or the current data point 34

 followSib – the layout node can map to a following sibling peer to the current data point 35

 precedSib – the layout node can map to a preceding sibling peer to the current data point. 36

 root – the layout node can map to the root 37

 none – the layout node doesn’t map to any data point 38

Introduction to DrawingML

 392

5.15.6.1.3 Boolean Operators 1

Boolean type operators, defined by ST_BoolOperator, are for layout. 2

 none – no operator defined 3

 equ – ‘equal to’ operator, returns true if the two compared values are equal, false otherwise 4

 gte – ‘greater than or equal to’ operator 5

 lte – ‘less than or equal to’ operator 6

5.15.6.1.4 Child Order Type 7

The simple type ST_ChildOrderType specifices the child order type for a layout node. 8

 b – bottom 9

 t – top 10

5.15.6.1.5 Constraint Types 11

The simple type ST_ConstraintTypes defines the constraints that can be used as limits or modifications to the 12

diagram or the nodes held within the diagram. These constraints manage the behavior of many properties 13

that can be defined within the diagram. The different constraints that can be applied to a diagram are as 14

follows: 15

 unknown – An unknown constraint. This can be used by implementing applications to define a 16

constraint type outside of the scope of what is defined by this simple type. 17

 alignOff – specifies the alignment offset 18

 begMarg – specifies the beginning margin 19

 bendDist – specifies the distance at which a connector will bend 20

 begPad – specifies the distance between the edge of the transition node and the connector shape 21

 b – bottom alignment 22

 bMarg – the bottom margin 23

 bOff – specifies the amount of offset relative to the bottom of the node 24

 ctrX – specifies the center of the node in the X-direction 25

 ctrXOff – specifies the amount of offset of the center of the node in the X-direction 26

 ctrY – specifies the center of the node in the Y-direction 27

 ctrYOff – specifies the amount of offset of the center of the node in the Y-direction 28

 connDist – specifies the distance between connectors. Intended for use with boolean and reference 29

constraints. Overrides values specified in the layout definition part 30

 diam – specifies the diameter, and is used within the cycle algorithm type 31

 endMarg – specifies the end margins 32

 endPad – specifies the distance between the edge of the transition node and the connector shape 33

 h – specifies the height 34

 hArH – specifies the arrowhead height 35

 hOff – specifies the height offset 36

Introduction to DrawingML

 393

 l – specifies the left 1

 lMarg – specifies the amount of left margin 2

 lOff – specifies the amount of left offset 3

 r – specifies right 4

 rMarg – specifies the amount of right margin 5

 rOff – specifies the amount of right offset 6

 primFontSz – specifies the primary font size 7

 pyraAcctRatio - specifies the fraction of the width of the diagram that is reserved for the fly-outs at 8

their shortest distance 9

 secFontSiz – specifies the secondary font size 10

 stemThick – specifies the thickness of the shaft on an arrow 11

 t – specifies the top 12

 tMarg – specifies the amount of top margin 13

 tOff – specifies the amount of top offset 14

 userA through userZ – User defined information. This set of enumerations allow a user to define 15

specific values which can be referenced at a later time within a diagram definition. For example, if the 16

value 5.1 was important to the layout and definition of a diagram, the user could define userA to be 17

equal to 5.1 and then use the userA constraint within the diagram definition. This would allow a single 18

place to update the value across the entire diagram definition. 19

 w – specifies the width 20

 wArH – specifies the width of an arrowhead 21

 wOff – specifies the amount of width offset 22

5.15.6.1.6 Constraint Relationships 23

The simple type ST_ConstraintRelationship defines the application of retrieval data the constraint is applied 24

to. The following relationships are available: 25

 self – the constraint is applicable to the current point 26

 ch – the constraint is applicable to a child of the current point 27

 des – the constraint is applicable to a descendant of the current point 28

5.15.6.1.7 Element Type 29

The simple type ST_ElementType defines the type of element, or point which get created and how they are 30

created from the data at hand. The different ways to pull from the data to create points are as follows: 31

 all – use all of the data points, nodes and transitions 32

 doc – use the document level, or root data point 33

 node – use only data nodes input by the user 34

 norm – in place for extensibility and behaves exactly opposite of the asst element type 35

 nonNorm – in place for extensibility and behaves exactly opposite of the nonAsst element type 36

 asst – use assistant data nodes within hierarchy algorithm 37

Introduction to DrawingML

 394

 nonAsst – use non-assistant nodes within the hierarchy algorithm 1

 parTrans – Use only parent transitions between nodes. Parent transitions are similar to sibling 2

transitions, except that they represent parent/child relationships. Parent transitions are most 3

commonly used in hierarchy diagrams, such as organization charts, to draw lines between parent and 4

child nodes. 5

 pres – specifies that the node is related to the presentation level 6

 sibTrans – Use only sibling transitions between data nodes. These transitions represent sibling 7

relationships between nodes, and are frequently mapped to arrows between shapes in the drawing. A 8

sibTrans value is sometimes used to create white space between nodes. 9

5.15.6.1.8 Parameter ID 10

The simple type ST_ParameterId defines parameters that can be used to modify the behavior or algorithms. 11

The modifications are as follows: 12

 horzAlign – specifies the horizontal alignment 13

 vertAlign – specifies the vertical alignment 14

 chDir – specifies the child direction 15

 chAlign – specifies the alignment of the children 16

 secChAlign – specifies a secondary child alignment 17

 linDir – specifies whether children are arranged from left to right, right to left, top to bottom, or 18

bottom to top 19

 secLinDir – specifies a secondary linear direction in which children are 20

 arranged from left to right, right to left, top to bottom, or bottom to top 21

 stElem – specifies the point type of the layout node to use as the first shape in the cycle 22

 bendPt – specifies where the bend point is to be located on connectors 23

 connRout – specifies whether the connector is drawn as a single straight line, orthogonal lines with a 24

single bend, or a curve that uses the diam constraint 25

 begSty – specifies whether the beginning of the connector has an arrowhead 26

 endSty – specifies whether the end of the connector has an arrowhead 27

 dim – specifies the connector dimension, 2-D, 3-D, or custom 28

 rotPath - if rotPath=alongPath, the algorithm rotates all children perpendicular to the line from the 29

cycle’s center to the child node; otherwise they are not rotated. The alongPath value does not take 30

rotation into account when determining if shapes overlap 31

 ctrShpMap - None specifies to place nodes around a circle. First node (fNode) specifies to place the 32

first node in the center and the remaining nodes around the circle 33

 nodeHorzAlign – specifies the horizontal node alignment 34

 nodeVertAlign – specifies the vertical node alignment 35

 fallback – specifies if the fallback occurs in a single dimension (e.g. vertically) or if it occurs in two 36

dimensions 37

 txDir – specifies where the text of the first node starts 38

 pyraAcctPos – specifies the placement of the fly-out grandchildren 39

Introduction to DrawingML

 395

 pyraAcctTxMar – specifies the placement of one edge of the child text 1

 txBlDir – Specifies the text block direction, vertical or horizontal 2

 txAnchorHorz – Specifies the horizontal text anchor position. 3

 txAnchorVert – Specifies the vertical text anchor position. 4

 txAnchorHorzCh – Specifies the horizontal text anchor position for child text. 5

 txAnchorVertCh – Specifies the vertical text anchor position for child text. 6

 parTxLTRAlign – Specifies the paragraph alignment of parent text when the shape has only parent 7

text. This parameter applies when the text direction is left to right. 8

 partTxRTLAlign – Specifies the paragraph alignment of parent text when the shape has only parent 9

text. This parameter applies when the text direction is right to left. 10

 shpTxLTRAlignCh – Specifies the paragraph alignment of all text within the shape when the shape 11

contains both parent and child text. This parameter applies when the text direction is left to right. 12

 shpTxRTLAlignCh – Specifies the paragraph alignment of all text within the shape when the shape 13

contains both parent and child text. This parameter applies when the text direction is right to left. 14

 autoTxRot – specifies how text is oriented relative to the shape 15

 grDir – Specifies the direction of growth for the snake algorithm. 16

 flowDir – specifies weather nodes are arranged in rows or columns for the snake algorithm. 17

 contDir – Specifies the direction of subsequent rows or columns in the snake algorithm. 18

 bkpt – specifies the point at which the diagram starts to snake 19

 off – specifies whether each row and column is centered or offset from the previous row or column 20

 hierAlign – specifies the alignment of the hierarchy 21

 bkPtFixedVal – specifies where the sname should break if bkpt is set to fixed 22

 stBulletLvl – Specifies the level at which to start using bullets for incoming text. 23

 stAng – Specifies the angle at which the first shape is placed. Angles are in degrees, measured 24

clockwise from a line pointing straight upward from the center of the cycle. 25

 spanAng – Specifies the angle the cycle spans. Final shapealign text is placed at stAng+spanAng, 26

unless spanAng=360. In that case, the algorithm places the text so that shapes do not overlap 27

 ar – Specifies the aspect ratio (width to height) of the composite node to use when determining child 28

constraints. A value of 0 means leave the width and height constraints as is. The algorithm may 29

temporarily shrink one dimension to achieve that ratio 30

 lnSpPar – specifies the line spacing of the parent 31

 lnSpAfParP – specifies the line spacing after the parent paragraph 32

 LnSpCh specifies the line spacing of a child 33

 lnSpAfChP – specifies the line spacing after the child paragraph 34

 rtShortDist – Specifies the routing to use the shortest distance for connectors. 35

 alignTx – specifies if to hold text or not 36

 pyraLvlNode – If pyramid has a composite child node, specifies the name of the node that is a child of 37

the composite that makes up the pyramid itself. If the node specifies a trapezoid shape, it modifies the 38

adjustment handles to construct a pyramid. 39

Introduction to DrawingML

 396

 pyraAcctBkgdNode – If pyramid has a composite child node, specifies the child node that should hold 1

the child text. 2

 pyraAcctTxNode – If pyramid has a composite child node, specifies the name of the node that is a 3

child of the composite that makes up the child flyout shape. 4

 srcNode – Specifies the name of the layout node from which to start the connection. 5

 dstNode – Specifies the name of the layout node from which to end the connection from. 6

 begPts – Specifies the point type for the beginning of a connector. 7

 endPts – Specifies the point type for the end of a connector. 8

 unknown – An unkown parameter id. This can be used by implementing applications to define a 9

parameter id outside of the scope of what is defined by this simple type. 10

5.15.6.1.9 Function Type 11

The simple type ST_FunctionType defines different types of conditional expressions that can be utilized. The 12

different types of expressions are: 13

 cnt – Specifies the count of items. 14

 pos - Retrieves the position of the node in the specified set of nodes. 15

 revPos - Reverse position function. 16

 posEven - Returns 1 if the specified node is at an even numbered position in the data model. 17

 posOdd - Returns 1 if the specified node is in an odd position in the data model. 18

 var - Used to reference a variable. 19

 depth - Specifies the depth of items. 20

 maxDepth - Defines the maximum depth of items. 21

5.15.6.1.10 Function Operator 22

The simple type ST_FunctionOperator defines the different condition expression operators that can be used. 23

The different operators are as follows: 24

 equ – equal 25

 neq – not equal 26

 gt – greater than 27

 lt – less than 28

 gte – greater than or equal to 29

 lte – less than or equal to 30

5.15.6.1.11 Horizontal Alignment 31

The simple type, ST_HorizontalAlignment, specifies the different options available for alignment horizontally. 32

The options are: 33

 l – left 34

 ctr – center 35

 r – right 36

Introduction to DrawingML

 397

 none – none 1

5.15.6.1.12 Vertical Alignment 2

The simple type, ST_VerticalAlignment, specifies the different options available for alignment vertically. The 3

options are: 4

 t – top 5

 mid – middle 6

 b – bottom 7

 none – none 8

 Child Direction 9

The simple type ST_ChildDirection is used to specify the direction the children are laid out. The different 10

options are: 11

 horz – horizontally 12

 vert – vertically 13

5.15.6.1.13 Child Alignment 14

The simple type ST_ChildAlignment defines the alignment parameter types for children. The different types 15

are: 16

 t – top 17

 b – bottom 18

 l – left 19

 r – right 20

5.15.6.1.14 Secondary Child Alignment 21

The simple type ST_SecondaryChildAlignment defines secondary alignment parameter types for children. 22

The simple type ST_ChildAlignment is mirrored here with the addition of the none type. 23

5.15.6.1.15 Linear Direction 24

The simple type ST_LinearDirection defines the linear direction parameter types. The types are as follows: 25

 fromL – from left 26

 fromR – from right 27

 fromT – from top 28

 fromB – from bottom 29

5.15.6.1.16 Secondary Linear Direction 30

The simple type ST_SecondaryLinearDirection defines a secondary linear direction parameter. This simple 31

type mirrors exactly the simple type ST_LinearDirection with the addition of the none type. 32

Introduction to DrawingML

 398

5.15.6.1.17 Starting Element 1

The simple type ST_StartingElement specifies the first node point type for a cycle diagram. The different 2

starting elements are: 3

 node – node 4

 trans – transition 5

5.15.6.1.18 Rotation Path 6

The simple type ST_RotationPath specifies the way in which the algorithm rotates children. The different 7

rotation types are: 8

 none – no rotation is performed 9

 alongPath – the children are rotated perpendicular to the line from the cycle’s center to the child 10

node 11

5.15.6.1.19 Center Shape Mapping 12

The simple type ST_CenterShapeMapping specifies how the first node of a cycle diagram is laid out within the 13

diagram. The different places to put the first node are: 14

 none – the node is laid out around the circle 15

 fNode – the node is placed in the center of the circle and the remaining nodes along the outside of the 16

circle 17

5.15.6.1.20 Bend Point 18

The simple type ST_BendPoint specifies where the bend point is to be located along elbow connectors. The 19

different options are: 20

 beg – beginning 21

 def – default 22

 end – end 23

5.15.6.1.21 Connector Routing 24

The simple type ST_ConnectorRouting defines how the routing of a connector happens within the diagram. 25

The different routing options are: 26

 stra – straight 27

 bend – an elbow connection 28

 curve – a curved connection 29

 longCurve – a curved connection with a larger radius than simple curve 30

5.15.6.1.22 Arrowhead Style 31

The simple type ST_ArrowheadStyle defines the style of the arrowhead used on a connector. The different 32

options are: 33

Introduction to DrawingML

 399

 auto – automatic 1

 arr – an arrowhead is used 2

 noArr – no arrowhead is used 3

5.15.6.1.23 Connector Dimension 4

The simple type ST_ConnectorDimension defines the dimension of a connector used in a diagram. The 5

different dimension types are: 6

 1D – a single dimension connector, for example, a line 7

 2D – a two dimensional connector, for example, an arrow 8

 cust – custom 9

5.15.6.1.24 Connector Point 10

The simple type ST_ConnectorPoint defines the point at which the connector starts and ends. The different 11

beginning and ending types are: 12

 auto – automatic 13

 bCtr – bottom center 14

 ctr – center 15

 midL – middle left 16

 midR – middle right 17

 tCtr – top center 18

 bL – bottom left 19

 bR – bottom right 20

 tL – top left 21

 tR – top right 22

 radial – radial 23

5.15.6.1.25 Node Horizontal Alignment 24

The simple type ST_NodeHorizontalAlignment defines the alignment of a node in the horizontal direction. 25

The different alignments are: 26

 l – left 27

 ctr – center 28

 r – right 29

5.15.6.1.26 Node Vertical Alignment 30

The simple type ST_NodeVerticalAlignment defines the alignment of a node in the vertical direction. The 31

different alignments are: 32

 t – top 33

 mid – mid 34

Introduction to DrawingML

 400

 b – bottom 1

5.15.6.1.27 Fallback Dimension 2

The simple type ST_FallbackDimension defines how many dimensions fallback will resize the diagram in. The 3

different options for fallback dimension are: 4

 1D – fallback occurs in a single dimension (X or Y) 5

 2D – fallback occurs in two dimensions (X and Y) 6

5.15.6.1.28 Text Direction 7

The simple type ST_TextDirection specifies where the text on the first node starts. The different text 8

directions are: 9

 fromT – from top 10

 fromB – from bottom 11

5.15.6.1.29 Pyramid Accent Position 12

The simple type ST_PyramidAccentPosition defines where the position of the fly-out grandchildren. The 13

possible positions are: 14

 bef – before 15

 after – after 16

5.15.6.1.30 Pyramid Text Margin 17

The simple type ST_PyramidAccentTextMargin specifies the alignment of the text in the fly-out 18

grandchildren. The different alignments are: 19

 step – the text is against the edge of the pyramid 20

 stack – the text aligns 21

5.15.6.1.31 Text Block Direction 22

The simple type ST_TextBlockDirection defines the text block direction. The different direction the text can 23

have are: 24

 vert – vertical 25

 horz – horizontal 26

5.15.6.1.32 Text Anchor Horizontal 27

The simple type ST_AnchorHorizontal is responsible for anchoring text horizontally. The available options 28

are: 29

 none – no anchor set 30

 ctr – the text is anchored the center 31

Introduction to DrawingML

 401

5.15.6.1.33 Text Anchor Vertical 1

The simple type ST_AnchorVertical is responsible for anchoring the text vertically. The available options are: 2

 t – top anchor 3

 mid – middle anchor 4

 b – bottom anchor 5

5.15.6.1.34 Text Alignment 6

The simple type ST_TextAlignment defines the text alignment. The available options are: 7

 l – left 8

 ctr – ctr 9

 r – right 10

5.15.6.1.35 Auto Text Rotation 11

The simple type ST_AutoTextRotation defines the behavior of the text as the containing shape is rotated. The 12

following options are available: 13

 none – no rotation, the text rotates with the shape 14

 upr – upright 15

 grav – gravity 16

5.15.6.1.36 Grow Direction 17

The simple type ST_GrowDirection defines the growing behavior of the snake algorithm. The following 18

options are available: 19

 tL – grow from the top left 20

 tR – grow from the top right 21

 bL – grow from the bottom left 22

 gR – grow from the bottom right 23

5.15.6.1.37 Flow Direction 24

The simple type ST_FlowDirection Specifies whether nodes are arranged in rows or columns for the snake 25

algorithm. The following options are available: 26

 row – Row 27

 col – column 28

5.15.6.1.38 Continue Direction 29

The simple type ST_ContinueDirection specifies the direction of the subsequent row or column in the snake 30

algorithm. The following options are available: 31

 revDir – reverse direction 32

Introduction to DrawingML

 402

 sameDir – same direction 1

5.15.6.1.39 Breakpoint 2

The simple type ST_Breakpoint defines the behavior of a snake diagram’s breaking behavior. The available 3

options are: 4

 endCnv – end of canvas 5

 bal – balanced 6

 fixed – fixed 7

5.15.6.1.40 Offset 8

The simple type ST_Offset defines the behavior of whether each row or column in the snake algorithm is offset 9

from the previous row or column. The available options are: 10

 ctr – the offset is center based 11

 off – there is an offset defined 12

5.15.6.1.41 Hierarchy Alignment 13

The simple type ST_HierarchyAlignment specifies the relationship between parent and children in a hierarchy 14

diagram. The following options exist: 15

 tL – top left 16

 tR – top right 17

 tCtrCh – top center children 18

 tCtrDes – top center descendants 19

 bL – bottom left 20

 bR – bottom right 21

 bCtrCh – bottom center children 22

 bCtrDes – bottom center descendants 23

 lT – left top 24

 lB – left bottom 25

 lCtrCh – left center children 26

 lCtrDes – left center descendants 27

 rT – right top 28

 rB – right bottom 29

 rCtrCh – right center children 30

 rCtrDes – right center descendants 31

5.15.6.2 Variable Type 32

The simple type ST_VariableType defines the type of the conditional expression. These variables turn user 33

interface options on and off. The available variable types are: 34

Introduction to DrawingML

 403

 unknown – Unknown variable type. This can be used by implementing applications to define a 1

variable type outside of the scope of what is defined by this simple type. 2

 orgChart – organizational chart command 3

 chMax – used for the insert shape dropdown commands 4

 chPref – used for the insert shape button 5

 bulEnabled – used for the insert bullet command 6

 dir – diagram direction, RTL or LTR 7

 hierBranch – stores the different layouts for org chart 8

 animOne – exposes options for animation 9

 animLvl – exposes options for animation 10

5.15.6.2.1 Output Shape Type 11

The simple type ST_OutputShapeType defines special shape types which are unique to diagrams. The unique 12

types are: 13

 none – none 14

 conn – connector 15

5.15.6.3 Diagram Definitions 16

Diagram definitions define the look of a diagram. They utilize almost all the aspects of the file format 17

discussed thus far in order to create layout properties which get translated into visual diagrams. 18

There are a few more simple types that need to be defined before talking about the larger aspects of what it 19

takes to create a diagram definition. Many of these simple types are provided as wrappers or lists of the above 20

mentioned simple types. 21

5.15.6.3.1 Lists 22

There are a group of simple types which act as lists of the simple types already mentioned. They are all 23

defined in the following general way: 24

<xsd:simpleType name= NAME OF TYPE > 25

 <xsd:list itemType= NAME OF SIMPLE TYPE /> 26

</xsd:simpleType> 27

The list of these list types are the following simple types: 28

 ST_AxisTypes – list of ST_AxisType 29

 ST_ElementTypes – list of ST_ElementType 30

 ST_Ints – list of xsd:int 31

 ST_UnsignedInts – list of xsd:unsignedInt 32

 ST_Booleans – list of xsd:boolean 33

Introduction to DrawingML

 404

5.15.6.3.2 Function Value 1

The simple type ST_FunctionValue is a value for a condition expression. It is defined as: 2

<xsd:simpleType name="ST_FunctionValue" final="restriction"> 3

 <xsd:union memberTypes="xsd:int xsd:boolean ST_Direction 4

 ST_HierBranchStyle ST_AnimOneStr ST_AnimLvlStr" /> 5

</xsd:simpleType> 6

5.15.6.3.3 Direction 7

The simple type ST_Direction defines the direction the diagram is to be laid out. The directions available are: 8

 norm – normal 9

 rev – reversed 10

5.15.6.3.4 Hierarchy Branch Style 11

The simple type ST_HierBranchStyle changes the behavior of the branch style in hierarchy, or org chart, 12

diagrams. This value can be modified by a user directly from the user interface. The different types of branch 13

styles are: 14

 l – left 15

 r – right 16

 hang – hanging 17

 std – standard 18

 init – initial 19

5.15.6.3.5 One by One Animation 20

The simple type ST_AnimOneStr allows for differentiation in the way a one-by-one animation is displayed in 21

the user interface. The following options are available: 22

 none – nothing is displayed 23

 one – the term one-by-one is used 24

 branch – the term branch one-by-one is used to distinguish a hierarchy diagram 25

5.15.6.3.6 Level Animation 26

The simple type ST_AnimLvlStr acts very much like the type ST_AminOneStr, as it allows for two different 27

descriptions of a single animation depending upon the desired behavior for a particular diagram. The 28

following allows for differentiation of radial diagrams. The different options are: 29

 none – nothing 30

 lvl – normal depth first traversal 31

 ctr – allows a radial diagram to be shown with the center node first 32

Introduction to DrawingML

 405

5.15.6.3.7 Org Chart Flag 1

The complex type CT_OrgChart defines that the diagram will be an organizational chart. Organizational charts 2

contain special behavior in that assistants can now be utilized correctly. The complex type is defined as 3

follows: 4

<xsd:complexType name="CT_OrgChart"> 5

 <xsd:attribute name="val" type="xsd:boolean" default="false" 6

 use="optional" /> 7

</xsd:complexType> 8

5.15.6.3.8 Node Count 9

The simple type ST_NodeCount holds a value that is used by the complex types CT_ChildMax and 10

CT_ChildPref. 11

5.15.6.3.9 Child Max 12

This complex type defines when the user interface for inserting a child shape is to become disabled for a given 13

node, or rather the max number of children that the user interface will be enabled for. This complex type is 14

defined as: 15

<xsd:complexType name="CT_ChildMax"> 16

 <xsd:attribute name="val" type="ST_NodeCount" default="-1" 17

 use="optional" /> 18

</xsd:complexType> 19

5.15.6.3.10 Child Preference 20

This complex type defines how many children are inserted with a single action through the user interface to 21

add a child. This is useful in hierarchy diagrams in which one would like to specify that every shape should 22

have three children. A single click of the add shape button would add three children. The complex type is 23

defined as follows: 24

<xsd:complexType name="CT_ChildPref"> 25

 <xsd:attribute name="val" type="ST_NodeCount" default="-1" 26

 use="optional" /> 27

</xsd:complexType> 28

5.15.6.3.11 Bullets Enabled 29

This complex type defines if the user interface for inserting a bullet into a shape is enabled or disabled for a 30

given node. The complex type is defined as follows: 31

<xsd:complexType name="CT_BulletEnabled"> 32

 <xsd:attribute name="val" type="xsd:boolean" default="false" 33

 use="optional" /> 34

</xsd:complexType> 35

Introduction to DrawingML

 406

5.15.6.3.12 Direction 1

This complex type defines the direction of the diagram, be it normal or reversed. The complex type is defined 2

as: 3

<xsd:complexType name="CT_Direction"> 4

 <xsd:attribute name="val" type="ST_Direction" default="norm" 5

 use="optional" /> 6

</xsd:complexType> 7

5.15.6.3.13 Hierarchy Branch Style 8

This complex type defines the hierarchy branch style for a diagram. The complex type is defined as: 9

<xsd:complexType name="CT_HierBranchStyle"> 10

 <xsd:attribute name="val" type="ST_HierBranchStyle" default="std" 11

 use="optional" /> 12

</xsd:complexType> 13

5.15.6.3.14 Animate as One 14

This complex type defines the animate as one value for a diagram. The complex type is defined as: 15

<xsd:complexType name="CT_AnimOne" > 16

 <xsd:attribute name="val" type="ST_AnimOneStr" default="one" 17

 use="optional" /> 18

</xsd:complexType> 19

5.15.6.3.15 Animate by Level 20

This complex type defines the animate by level value for a diagram. The complex type is defined as: 21

<xsd:complexType name="CT_AnimLvl"> 22

 <xsd:attribute name="val" type="ST_AnimLvlStr" default="none" 23

 use="optional" /> 24

</xsd:complexType> 25

5.15.6.3.16 Layout Property Set 26

The complex type CT_LayoutPropertySet holds all of the layout properties for a given diagram. The layout 27

property set is a single structure which contains most of what has been talked about thus far in a diagram 28

definition. The layout property set is defined as: 29

<xsd:complexType name="CT_LayoutVariablePropertySet"> 30

 <xsd:sequence> 31

 <xsd:element name="orgChart" type="CT_OrgChart" 32

 minOccurs="0" maxOccurs="1" /> 33

 <xsd:element name="chMax" type="CT_ChildMax" minOccurs="0" 34

 maxOccurs="1" /> 35

Introduction to DrawingML

 407

 <xsd:element name="chPref" type="CT_ChildPref" 1

 minOccurs="0" maxOccurs="1" /> 2

 <xsd:element name="bulletEnabled" type="CT_BulletEnabled" 3

 minOccurs="0" maxOccurs="1" /> 4

 <xsd:element name="dir" type="CT_Direction" minOccurs="0" 5

 maxOccurs="1" /> 6

 <xsd:element name="hierBranch" type="CT_HierBranchStyle" 7

 minOccurs="0" maxOccurs="1" /> 8

 <xsd:element name="animOne" type="CT_AnimOne" minOccurs="0" 9

 maxOccurs="1" /> 10

 <xsd:element name="animLvltype="CT_AnimLvl" minOccurs="0" 11

 maxOccurs="1" /> 12

 </xsd:sequence> 13

</xsd:complexType> 14

Because all of the contents of this complex type have already been discussed, no further detail on this complex 15

type needs to be given. 16

5.15.6.3.17 Iterators 17

The attribute group AG_IteratorAttributes defines the attributes used by the iterators forEach, presOf, and if. 18

The attribute group is defined as follows: 19

<xsd:attributeGroup name="AG_IteratorAttributes"> 20

 <xsd:attribute name="axis" type="ST_AxisTypes" use="optional" 21

 default="none" /> 22

 <xsd:attribute name="ptType" type="ST_ElementTypes" 23

 use="optional" default="all" /> 24

 <xsd:attribute name="hideLastTrans" type="ST_Booleans" 25

 use="optional" default="true" /> 26

 <xsd:attribute name="st" type="ST_Ints" use="optional" default="1" /> 27

 <xsd:attribute name="cnt" type="ST_UnsignedInts" use="optional" 28

 default="0" /> 29

 <xsd:attribute name="step" type="ST_Ints" use="optional" default="1" /> 30

</xsd:attributeGroup> 31

5.15.6.3.18 Constraints 32

The attribute group AG_ConstraintAttributes defines the attributes used to specify a constraint. The attribute 33

group is defined as: 34

<xsd:attributeGroup name="AG_ConstraintAttributes"> 35

 <xsd:attribute name="type" type="ST_ConstraintType" use="required" /> 36

 <xsd:attribute name="for" type="ST_ConstraintRelationship" 37

 use="optional" default="self" /> 38

 <xsd:attribute name="forName" type="xsd:IDREF" use="optional" /> 39

Introduction to DrawingML

 408

 <xsd:attribute name="ptType" type="ST_ElementType" use="optional" 1

 default="all" /> 2

</xsd:attributeGroup> 3

5.15.6.3.19 Constraint References 4

The attribute group AG_ConstraintRefAttributes defines the attributes used to specify a constraint reference. 5

The attribute group is defined as: 6

<xsd:attributeGroup name="AG_ConstraintRefAttributes"> 7

 <xsd:attribute name="refType" type="ST_ConstraintType" 8

 use="optional" default="unknown" /> 9

 <xsd:attribute name="refFor" type="ST_ConstraintRelationship" 10

 use="optional" default="self" /> 11

 <xsd:attribute name="refForName" type="xsd:IDREF" 12

 use="optional" /> 13

 <xsd:attribute name="refPtType" type="ST_ElementType" 14

 use="optional" default="all" /> 15

</xsd:attributeGroup> 16

5.15.6.3.20 Constraint 17

The complex type CT_Constraint define a constraint within the layout framework. A constraint acts as a limit 18

or sets a value to a given parameter in a diagram definition, for example, it can be used to specify that all 19

nodes of a give point type are the same size. A constraint is defined as: 20

<xsd:complexType name="CT_Constraint"> 21

 <xsd:attributeGroup ref="AG_ConstraintAttributes" /> 22

 <xsd:attributeGroup ref="AG_ConstraintRefAttributes" /> 23

 <xsd:attribute name="op" type="ST_BoolOperator" use="optional" 24

 default="none" /> 25

 <xsd:attribute name="val" type="xsd:double" use="optional" 26

 default="0" /> 27

 <xsd:attribute name="fact" type="xsd:double" use="optional" 28

 default="1" /> 29

</xsd:complexType> 30

5.15.6.3.21 Constraint List 31

The complex type CT_Constraints is a sequence of CT_Constraint complex types. It is defined as: 32

<xsd:complexType name="CT_Constraints"> 33

 <xsd:sequence> 34

 <xsd:element name="constr" type="CT_Constraint" minOccurs="0" 35

 maxOccurs="unbounded" /> 36

 </xsd:sequence> 37

</xsd:complexType> 38

Introduction to DrawingML

 409

5.15.6.3.22 Rule 1

The complex type CT_NumericRule defines a layout framework constraint rule. Rules are run after the 2

diagram is created in order to specify what happens when the diagram doesn’t fully fit within the bounds. This 3

allows for specific behavior to be defined rather than using default rules for fitting the diagram. A rule is 4

defined in the following way: 5

<xsd:complexType name="CT_NumericRule" > 6

 <xsd:attributeGroup ref="AG_ConstraintAttributes" /> 7

 <xsd:attribute name="val" type="xsd:double" use="optional" 8

 default="NaN" /> 9

 <xsd:attribute name="fact" type="xsd:double" use="optional" 10

 default="NaN" /> 11

 <xsd:attribute name="max" type="xsd:double" use="optional" 12

 default="NaN" /> 13

</xsd:complexType> 14

5.15.6.3.23 Rule List 15

The complex type CT_Rules is simply a list of CT_NumericRule complex types. It is defined in the following 16

manner: 17

<xsd:complexType name="CT_Rules"> 18

 <xsd:sequence> 19

 <xsd:element name="rule" type="CT_NumericRule" 20

 minOccurs="0" maxOccurs="unbounded" /> 21

 </xsd:sequence> 22

</xsd:complexType> 23

5.15.6.3.24 Presentation Of 24

The complex type CT_PresentationOf defines the mapping between data and the diagram. The complex type 25

is defined in the following manner: 26

<xsd:complexType name="CT_PresentationOf"> 27

 <xsd:attributeGroup ref="AG_IteratorAttributes" /> 28

</xsd:complexType> 29

5.15.6.3.25 Layout Shape 30

The simple type ST_LayoutShapeType is a simple type that contains all of the shapes available which can be 31

used within a diagram. The simple type is defined as a union of ST_OutputShapeType and an externally 32

defined ST_ShapeType. 33

5.15.6.3.26 Index1 34

The simple type ST_Index1 defines a 1-based index that is used to index values elsewhere. The simple type is 35

defined as: 36

Introduction to DrawingML

 410

<xsd:simpleType name="ST_Index1"> 1

 <xsd:restriction base="xsd:unsignedInt"> 2

 <xsd:minInclusive value="1" /> 3

 </xsd:restriction> 4

</xsd:simpleType> 5

5.15.6.3.27 Adjust Handle 6

The complex type CT_Adj specifies a shape adjust handle modification. The shapes within a diagram can be 7

modified based on their adjust handles, for example, the radius of the corner rounding in a rounded rectangle 8

can be adjusted using this complex type. The complex type is defined in the following manner: 9

<xsd:complexType name="CT_Adj"> 10

 <xsd:attribute name="idx" type="ST_Index1" use="required" /> 11

 <xsd:attribute name="val" type="xsd:double" use="required" /> 12

</xsd:complexType> 13

5.15.6.3.28 Adjust Handle List 14

The complex type CT_AdjLst holds all of the adjust handles for a given shape. The number of adjust handles 15

accessible varies shape by shape, but there are usually less than four for a given shape. The complex type is 16

defined in the following way: 17

<xsd:complexType name="CT_AdjLst" o:cname="CAdjList"> 18

 <xsd:sequence> 19

 <xsd:element name="adj" type="CT_Adj" minOccurs="0" 20

 maxOccurs="unbounded" /> 21

 </xsd:sequence> 22

</xsd:complexType> 23

5.15.6.3.29 Shape 24

The complex type CT_Shape specifies a shape for a layout node. The shape complex type holds all of the 25

information associated with the particular layout node and all of the adjustments or modifications that can be 26

made to the shape. The rot attribute specifies a rotation on the shape. The blip attribute specifies an image 27

that is used as a background fill for the shape and the blipPhldr attribute specifies whether or not the shape 28

shows up with an image placeholder. The zOrderOff attribute specifies an offset to be used for the z-ordering 29

of this shape, while the lkTxEntry attribute prevents text editing within the shape. A shape is defined in the 30

following manner: 31

<xsd:complexType name="CT_Shape"> 32

 <xsd:sequence> 33

 <xsd:element name="adjLst" type="CT_AdjLst" minOccurs="0" 34

 maxOccurs="1" /> 35

 </xsd:sequence> 36

 <xsd:attribute name="rot" type="xsd:double" use="optional" default="0" /> 37

Introduction to DrawingML

 411

 <xsd:attribute name="type" type="ST_LayoutShapeType" 1

 use="optional" default="none" /> 2

 <xsd:attribute ref="r:blip" use="optional" /> 3

 <xsd:attribute name="zOrderOff" type="xsd:int" use="optional" 4

 default="0" /> 5

 <xsd:attribute name="hideGeom" type="xsd:boolean" use="optional" 6

 default="false" /> 7

 <xsd:attribute name="lkTxEntry" type="xsd:boolean" use="optional" 8

 default="false" /> 9

 <xsd:attribute name="blipPhldr" type="xsd:boolean" use="optional" 10

 default="false" /> 11

</xsd:complexType> 12

5.15.6.3.30 Parameter 13

The complex type CT_Parameter holds the information regarding an algorithm parameter. The complex type 14

is defined as: 15

<xsd:complexType name="CT_Parameter"> 16

 <xsd:attribute name="type" type="ST_ParameterId" use="required" /> 17

 <xsd:attribute name="val" type="xsd:string" use="required" /> 18

</xsd:complexType> 19

5.15.6.3.31 Algorithm 20

The complex type CT_Algorithm defines the algorithm which the diagram will use to layout the nodes which 21

contain the data. Also defined here are the optional list of parameters which are associated with this 22

algorithm and modify its behavior. An algorithm is defined in the following manner: 23

<xsd:complexType name="CT_Algorithm" > 24

 <xsd:sequence> 25

 <xsd:element name="param" type="CT_Parameter" minOccurs="0" 26

 maxOccurs="unbounded" /> 27

 </xsd:sequence> 28

 <xsd:attribute name="type" type="ST_AlgorithmType" use="required" /> 29

 <xsd:attribute name="rev" type="xsd:unsignedInt" use="optional" 30

 default="0" /> 31

</xsd:complexType> 32

5.15.6.3.32 Layout Node 33

The complex type CT_LayoutNode is the main building block of a diagram. A layout node contains enough 34

information to lay out itself and its children. The name attribute is simply a unique string given to the layout 35

node. The styleLbl attribute references the style label that is used to style the layout node. This style label 36

has already been defined in this document. A layout node is defined in the following manner: 37

Introduction to DrawingML

 412

<xsd:complexType name="CT_LayoutNode"> 1

 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 2

 <xsd:element name="alg" type="CT_Algorithm" minOccurs="0" 3

 maxOccurs="1" /> 4

 <xsd:element name="shape" type="CT_Shape" minOccurs="0" 5

 maxOccurs="1" /> 6

 <xsd:element name="presOf" type="CT_PresentationOf" 7

 minOccurs="0" maxOccurs="1" /> 8

 <xsd:element name="constrLst" type="CT_Constraints" 9

 minOccurs="0" maxOccurs="1" /> 10

 <xsd:element name="ruleLst" type="CT_Rules" minOccurs="0" 11

 maxOccurs="1" /> 12

 <xsd:element name="varLst" 13

 type="CT_LayoutVariablePropertySet" minOccurs="0" 14

 maxOccurs="1" /> 15

 <xsd:element name="forEach" type="CT_ForEach" /> 16

 <xsd:element name="layoutNode" type="CT_LayoutNode" /> 17

 <xsd:element name="choose" type="CT_Choose" /> 18

 </xsd:choice> 19

 <xsd:attribute name="name" type="xsd:ID" use="optional" /> 20

 <xsd:attribute name="styleLbl" type="xsd:string" use="optional" /> 21

 <xsd:attribute name="chOrder" type="ST_ChildOrderType" 22

 use="optional" default="b" /> 23

 <xsd:attribute name="moveWith" type="xsd:IDREF" use="optional" /> 24

</xsd:complexType> 25

5.15.6.3.33 For Each 26

The complex type CT_ForEach defines a for each iterator. The iteration behaves as if it were a for each loop. 27

The complex type is defined as: 28

<xsd:complexType name="CT_ForEach"> 29

 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 30

 <xsd:element name="alg" type="CT_Algorithm" minOccurs="0" 31

 maxOccurs="1" /> 32

 <xsd:element name="shape" type="CT_Shape" minOccurs="0" 33

 maxOccurs="1" /> 34

 <xsd:element name="presOf" type="CT_PresentationOf" 35

 minOccurs="0" maxOccurs="1" /> 36

 <xsd:element name="constrLst" type="CT_Constraints" 37

 minOccurs="0" maxOccurs="1" /> 38

 <xsd:element name="ruleLst" type="CT_Rules" minOccurs="0" 39

 maxOccurs="1" /> 40

Introduction to DrawingML

 413

 <xsd:element name="forEach" type="CT_ForEach" /> 1

 <xsd:element name="layoutNode" type="CT_LayoutNode" /> 2

 <xsd:element name="choose" type="CT_Choose" /> 3

 </xsd:choice> 4

 <xsd:attribute name="name" type="xsd:ID" use="optional" /> 5

 <xsd:attribute name="ref" type="xsd:IDREF" use="optional" /> 6

 <xsd:attributeGroup ref="AG_IteratorAttributes" /> 7

</xsd:complexType> 8

5.15.6.3.34 When 9

The complex type CT_When defines an if conditional expression. The complex type is usually used in 10

conjunction with the else counterpart which is defined next. The CT_When complex type is defined in the 11

following manner: 12

<xsd:complexType name="CT_When"> 13

 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 14

 <xsd:element name="alg" type="CT_Algorithm" minOccurs="0" 15

 maxOccurs="1" /> 16

 <xsd:element name="shape" type="CT_Shape" minOccurs="0" 17

 maxOccurs="1" /> 18

 <xsd:element name="presOf" type="CT_PresentationOf" 19

 minOccurs="0" maxOccurs="1" /> 20

 <xsd:element name="constrLst" type="CT_Constraints" 21

 minOccurs="0" maxOccurs="1‛ /> 22

 <xsd:element name="ruleLst" type="CT_Rules" minOccurs="0" 23

 maxOccurs="1" o:cname="Rules" /> 24

 <xsd:element name="forEach" type="CT_ForEach" /> 25

 <xsd:element name="layoutNode" type="CT_LayoutNode" /> 26

 <xsd:element name="choose" type="CT_Choose" /> 27

 </xsd:choice> 28

 <xsd:attribute name="name" type="xsd:ID" use="optional" /> 29

 <xsd:attributeGroup ref="AG_IteratorAttributes" /> 30

 <xsd:attribute name="func" type="ST_FunctionType" 31

 use="required" /> 32

 <xsd:attribute name="arg" type="ST_FunctionArgument" 33

 use="optional" /> 34

 <xsd:attribute name="op" type="ST_FunctionOperator" 35

 use="required‛ /> 36

 <xsd:attribute name="val" type="ST_FunctionValue" 37

 use="required" /> 38

</xsd:complexType> 39

Introduction to DrawingML

 414

5.15.6.3.35 Otherwise 1

The complex type CT_Otherwise is the else counterpart to the already defined if conditional expression. The 2

complex type is defined as: 3

<xsd:complexType name="CT_Otherwise" o:cname="DDOtherwise"> 4

 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 5

 <xsd:element name="alg" type="CT_Algorithm" minOccurs="0" 6

 maxOccurs="1" /> 7

 <xsd:element name="shape" type="CT_Shape" minOccurs="0" 8

 maxOccurs="1" /> 9

 <xsd:element name="presOf" type="CT_PresentationOf" 10

 minOccurs="0" maxOccurs="1" /> 11

 <xsd:element name="constrLst" type="CT_Constraints" 12

 minOccurs="0" maxOccurs="1" /> 13

 <xsd:element name="ruleLst" type="CT_Rules" minOccurs="0" 14

 maxOccurs="1" /> 15

 <xsd:element name="forEach" type="CT_ForEach" /> 16

 <xsd:element name="layoutNode" type="CT_LayoutNode" /> 17

 <xsd:element name="choose" type="CT_Choose" /> 18

 </xsd:choice> 19

 <xsd:attribute name="name" type="xsd:ID" use="optional" /> 20

</xsd:complexType> 21

5.15.6.3.36 Choose Statement 22

The complex type CT_Choose packages together the if and else conditions into an actual if/else statement. 23

The complex type is defined in the following manner: 24

<xsd:complexType name="CT_Choose" o:cname="DDChoose"> 25

 <xsd:sequence> 26

 <xsd:element name="if" type="CT_When" maxOccurs="unbounded" /> 27

 <xsd:element name="else" type="CT_Otherwise" minOccurs="0" /> 28

 </xsd:sequence> 29

 <xsd:attribute name="name" type="xsd:ID" use="optional" /> 30

</xsd:complexType> 31

5.15.6.3.37 Sample Data 32

The complex type CT_SampleData defines how the data model is to be populated in an initial manner. The 33

complex type holds a temporary data model when there is no data model present in order to display a diagram 34

on an initial insert. The complex type is defined by: 35

<xsd:complexType name="CT_SampleData"> 36

 <xsd:sequence> 37

 <xsd:element name="dataModel" type="CT_DataModel" minOccurs="0" /> 38

 </xsd:sequence> 39

Introduction to DrawingML

 415

 <xsd:attribute name="useDef" type="xsd:boolean" use="optional" 1

 default="false" /> 2

</xsd:complexType> 3

5.15.6.3.38 Common Structures 4

CT_Category, CT_Categories, CT_Name, CT_Description, and ST_Version are defined just as their counterparts 5

in the subclauses above, and they perform the same tasks. 6

5.15.6.3.39 Diagram Definition 7

The complex type CT_DiagramDefinition is the root element for a diagram definition. It is defined in the 8

following manner: 9

<xsd:complexType name="CT_DiagramDefinition"> 10

 <xsd:sequence> 11

 <xsd:element name="title" type="CT_Name" minOccurs="0" 12

 maxOccurs="unbounded" /> 13

 <xsd:element name="desc" type="CT_Description" 14

 minOccurs="0" maxOccurs="unbounded" /> 15

 <xsd:element name="catLst" type="CT_Categories" minOccurs="0 /> 16

 <xsd:element name="sampData" type="CT_SampleData" minOccurs="0" /> 17

 <xsd:element name="styleData" type="CT_SampleData" minOccurs="0" /> 18

 <xsd:element name="clrData" type="CT_SampleData" minOccurs="0" /> 19

 <xsd:element name="layoutNode" type="CT_LayoutNode" /> 20

 </xsd:sequence> 21

 <xsd:attribute name="uniqueId" type="xsd:anyURI" use="optional" /> 22

 <xsd:attribute name="minVer" type="ST_Version" use="optional" 23

 default="12.0" /> 24

 <xsd:attribute name="defStyle" type="xsd:anyURI" use="optional" /> 25

</xsd:complexType> 26

Introduction to VML

 416

6. Introduction to VML 1

This clause is informative. 2

This clause contains a detailed introduction to the components of Vector Markup Language (VML). 3

6.1 Introduction 4

This section provides an overview of the most common parts of VML. The VML format is a legacy format 5

originally introduced with Office 2000 and is included and fully defined in this specification for backwards 6

compatibility reasons. The DrawingML format is a newer and richer format created with the goal of eventually 7

replacing any uses of VML in the Office Open XML formats. VML should be considered a deprecated format 8

included in Office Open XML for legacy reasons only and new applications that need a file format for drawings 9

are strongly encouraged to use preferentially DrawingML . 10

VML is an XML-based exchange, editing, and delivery format for high-quality vector graphics. VML facilitates 11

the exchange and subsequent editing of vector graphics between a wide variety of productivity and design 12

applications. VML is based on XML 1.0, which is an open, simple, text-based language for describing structured 13

data. VML also supports other World Wide Web Consortium standards, such as Cascading Style Sheets 2.0 14

(CSS), which specifies style information and 2-D positioning. 15

As the VML format is a format provided for backward compatibility, many VML elements are defined in the 16

same urn:schemas-microsoft-com:vml namespace that is currently used by millions of documents 17

already using VML. In the documentation this is typically shortened to a v: prefix in the VML tag by defining 18

xmlns:v="urn:schemas-microsoft-com:vml". The namespaces used for VML are legacy namespaces. 19

Once again, VML should be considered a deprecated format included in Office Open XML for legacy reasons 20

only and new applications that need a file format for drawings are strongly encouraged to use preferentially 21

DrawingML . 22

Additional elements and attributes are defined in namespaces that reflect how they are used (all VML 23

namespaces defined in this Standard maintain the legacy namespace structure for backward compatibility): 24

 urn:schemas-microsoft-com:office:office (office document) 25

 urn:schemas-microsoft-com:office:word (word-processing document) 26

 urn:schemas-microsoft-com:office:excel (spreadsheet document) 27

 urn:schemas-microsoft-com:office:powerpoint (presentation document) 28

6.2 Shape Element 29

The Shape element is the basic building block of VML. A shape may exist on its own or within a Group 30

element. Shape defines many attributes and sub-elements that control the look and behavior of the shape. A 31

Introduction to VML

 417

shape must define at least a Path and size (Width, Height). VML also uses properties of the CSS2 style 1

attribute to specify positioning and sizing. 2

Note that this subclause also applies to the set of pre-defined shape primitives provided by the VML elements 3

Arc, Curve, Image, Line, Oval, Polyline, Rect, and RoundRect. 4

The following attributes are used to define a minimal shape: 5

Attribute Description

FillColor Brush color that fills the closed path of a shape.

Position Type of positioning used to place an element.

Top Position of the shape relative to the element above it in the flow of the page.

Left Position of the shape relative to the element left of it in the document flow.

Width Width of the shape.

Height Height of the shape.

Path Line that makes up the edges of a shape.

 6

The following example creates a minimal shape: 7

<v:shape fillcolor="green"

 style="position:relative;top:1;left:1;width:50;

 height:50" path="m 1,1 l 1,50, 50,50, 50,1 x e">

</v:shape>

Although there is no official categorization of the Shape element’s attributes or sub-elements, it is useful to 8

think of them in groups. The following sections broadly describe the characteristics of the Shape element. A 9

few fundamental attributes and elements are introduced here. For complete details, see the VML reference in 10

Part 4. 11

6.2.1 Geometry 12

The following attributes affect the basic structure or outline of the shape. 13

Attribute Description

Adj Adjustment value used to define values for a formula.

Height* Height of the shape.

Path Line that makes up the edges of a shape.

Width* Width of the shape.

 14

* indicates a CSS2 style property 15

Element Description

Introduction to VML

 418

Element Description

Callout Defines a callout for a shape.

Extrusion Defines an extrusion for a shape.

Path Defines a path for a shape.

Skew Defines a skew for a shape.

Stroke Defines a stroke for a shape.

TextBox Defines a textbox for a shape.

TextPath Defines a text path for a shape.

6.2.1.1 Height and Width Attributes 1

Height and Width may be specified using any of the following units. If no unit is specified, pixels is assumed. 2

Relative

em Height of the element's font

ex Height of the letter "x"

px Pixels

% Percentage

 3

Absolute

in Inches

cm Centimeters

mm Millimeters

pt Points

pc Picas

 4

For example: 5

style="position:relative;top:1;left:1;width:50;height:50" 6

style="position:relative;top:1;left:1;width:10%;height:10%" 7

6.2.1.2 Path Attribute 8

The Path attribute contains specially formatted text that describes a set of points and line connections 9

between them that define the shape’s outline. The path defined must be closed. A path is begun by 10

specifying m and a coordinate. This indicates a moveto the given coordinate. Line segments are drawn using l 11

(lineto) and specifying subsequent coordinates. A line is closed with x after the closing coordinate. The path is 12

ended with e. 13

For example: 14

Introduction to VML

 419

path="m 1,1 l 1,50, 50,50, 50,1 x e" 1

This starts at (1,1), draws a line to (1,50), (50,50) and (50,1), where the line is closed and the path ended. 2

The coordinates specified correspond to relative coordinate space (the size of units in relative space can be set 3

by the CoordSize attribute). The shape’s actual size is determined by the Height and Width attributes. 4

For example: 5

<v:shape style="position:relative;top:1;left:1;width:5000;

 height:5000" fillcolor="teal"

 path="m 1,1 l 1,10 10,10 10,1 1,1 x e" />

<v:shape style="position:relative;top:1;left:1;width:2500;

 height:2500" fillcolor="teal"

 path="m 1,1 l 1,10 10,10 10,1 1,1 x e" />

More than one closed line path may be specified in the Path attribute and each closed region is filled. 6

<v:shape style="position:relative;top:1;left:1;width:5000;

 height:5000" fillcolor="teal"

 path="m 1,1 l 1,10 10,10 10,1 1,1 x m 20,20 l 20,40 40,40

 40,20 20,20 x e" />

The optional Path element, which allows for the creation of more complex paths and regions, overrides the 7

Path attribute if it is specified. 8

6.2.2 Placement 9

These attributes affect the layout and placement of shapes. Placement may be defined relative to other 10

shapes or non-VML content that also exists in the container holding the shape. 11

Attribute Description

AllowOverlap Determines if a shape can overlap other shapes.

CoordOrigin Specifies the coordinate unit origin of the rectangle that bounds a shape.

CoordSize Specifies the horizontal and vertical units of the rectangle that bounds a
shape.

Flip* Switches the orientation of a shape.

Left* Determines the position of the shape relative to the element left of it in the
document flow.

Margin-Bottom* Specifies the bottom edge of the shape's containing rectangle relative to the
shape anchor.

Margin-Left* Specifies the left edge of the shape's containing rectangle relative to the shape
anchor.

Introduction to VML

 420

Attribute Description

Margin-Right* Specifies the right edge of the shape's containing rectangle relative to the
shape anchor.

Margin-Top* Specifies the top edge of the shape's containing rectangle relative to the shape
anchor.

MSO-Position-
Horizontal*

Specifies the horizontal positioning data for objects in WordprocessingML.

MSO-Position-
Horizontal-
Relative*

Specifies relative horizontal position data for objects in WordprocessingML.

MSO-Position-
Vertical*

Specifies the vertical position data for objects in WordprocessingML.

MSO-Position-
Vertical-Relative*

Specifies relative vertical position data for objects in WordprocessingML.

MSO-Wrap-
Distance-Bottom*

Defines the distance from the bottom side of the shape to the text that wraps
around it.

MSO-Wrap-
Distance-Left*

Defines the distance from the left side of the shape to the text that wraps
around it.

MSO-Wrap-
Distance-Right*

Defines the distance from the right side of the shape to the text that wraps
around it.

MSO-Wrap-
Distance-Top*

Defines the distance from the shape top to the text that wraps around it.

MSO-Wrap-Edited* Determines whether the wrap coordinates were customized by the user.

MSO-Wrap-Mode* Defines the wrapping mode for text.

Position* Defines the type of positioning used to place an element.

RelativePosition Defines a relative position for an object.

Rotation* Defines the angle that a shape is rotated.

Top* Defines the position of the shape relative to the element above it in the flow
of the page.

Z-Index* Determines the display order of overlapping shapes.

 1

* indicates a CSS2 style property 2

6.2.2.1 CoordOrigin and CoordSize Attributes 3

These attributes define the relative coordinate space of a shape. This space is scaled up or down to match the 4

specified Width and Height of the shape. Coordinates in the Path attribute (or element) are relative to the 5

space defined by CoordOrigin and CoordSize, so the Path definition never needs to change simply to scale the 6

shape. 7

Introduction to VML

 421

CoordSize defines the “width” and “height” of the local coordinate space. CoordOrigin defines the top-left 1

coordinate of this space. 2

For example: 3

coordorigin="0,0"

coordsize="200,200"

Extents of local space are (0,0) to (200,200)

coordorigin="-100,-100"

coordsize="200,200"

Extents of local space are (-100,-100) to (100,100)

 4

This local space definition affects the position of the shape. Changing the CoordOrigin translates the shape 5

within the local space. Changing the CoordSize affects the size of the shape by changing the size of the local 6

space relative to the shape’s Width and Height. 7

For example: 8

coordorigin="0,0"

coordsize="500,500"

style="position:absolute;top:0;left:0;width:100pt;

 height:100pt"

coordorigin="-250,-250"

coordsize="500,500"

style="position:absolute;top:0;left:0;width:100pt;

 height:100pt"

coordorigin="0,0"

coordsize="250,250"

style="position:absolute;top:0;left:0;width:100pt;

height:100pt"

6.2.2.2 Position Attribute 9

Position can be specified as “static”, “relative” or “absolute”. Static positioning keeps the shape inline with the 10

current flow of the surrounding content – the Top and Left attributes are ignored. Relative uses the Top and 11

Introduction to VML

 422

Left attributes to position the shape relative to its position in the current flow. Absolute uses the Top and Left 1

attributes to position the shape with respect to its container. 2

6.2.3 Formatting 3

These attributes and elements affect the fill and line properties of the shape. 4

Attribute Description

BorderBottomColor Bottom border color of an inline shape.

BorderLeftColor Left border color of an inline shape.

BorderRightColor Right border color of an inline shape.

BorderTopColor Top border color of an inline shape.

BWMode Determines how a shape will render for black-and-white output devices.

BWNormal Defines the black-and-white mode for normal black-and-white output devices.

BWPure Defines the black-and-white mode for pure black-and-white output devices.

Chromakey Defines a color that will be transparent and show anything behind the shape.

FillColor Defines the brush color that fills the closed path of a shape.

Filled Determines whether the closed path will be filled.

ForceDash Determines whether a dashed outline is used to draw a shape when a shape
has no line or fill.

HR Specifies that a shape is a horizontal rule.

HRAlign Defines the alignment of a horizontal rule.

HRHeight Defines the thickness of a horizontal rule.

HRNoShade Determines whether a horizontal rule will be displayed with 3-D shading.

HRPct Defines the length of a horizontal rule as a percentage of page width.

HRStd Determines whether a shape is a standard horizontal rule.

HRWidth Defines the length of a horizontal rule.

StrokeColor Defines the brush color that strokes the path of a shape.

Stroked Defines whether the path will be stroked.

StrokeWeight Defines the brush thickness that strokes the path of a shape.

 5

Element Description

Fill Defines a fill for a shape.

Imagedata Defines image data for a shape.

Shadow Defines a shadow for a shape.

6.2.4 Other 6

These are miscellaneous attributes and elements. 7

Introduction to VML

 423

Attribute Description

Alt Defines alternative text to be displayed instead of a graphic.

AllowInCell Determines whether a shape can be placed in a table.

Bullet Determines whether a shape is a graphical bullet.

Button Determines whether a shape will be processed as a button.

Class Refers to a definition of a CSS style.

ConnectorType Indicates the type of connector used for joining shapes.

DoubleClickNotify Sends an event message when a shape is double-clicked.

HRef Defines a URL for a shape. When the shape is clicked, the browser will load the
URL.

ID Provides a unique identifier for an element.

InsetMode Specifies whether the host calculates the internal text margin instead of using
the inset attribute of the textbox element.

OLE Specifies whether the shape is an embedded OLE object.

OLEIcon Determines whether an OLE object will be displayed as an icon.

OnEd Determines whether the extra handles of a shape are hidden.

OnMouseOver Triggers a mouse event for a shape.

PreferRelative Determines whether the original size of an object is saved after reformatting.

Print Determines whether the shape will be printed.

ReGroupID Defines a previous group for a shape.

RuleInitiator Determines whether a rules engine will be used.

RuleProxy Determines whether a proxy for the rules engine will be used.

Spt Defines a number used to identify types of shapes.

TableLimits List of minimum height values for each row in a table.

TableProperties Determines table properties.

Target Defines a frame or window that a URL will be displayed in.

Title Defines the text displayed when the mouse pointer moves over the shape.

Type Defines a reference to the ID of a ShapeType element.

UserDrawn Determines whether the user has added the shape to a master slide.

UserHidden Determines whether a script anchor is hidden.

Visibility Determines whether a shape is displayed.

WrapCoords Defines the bounding polygon that surrounds a shape.

 1

Element Description

Formulas Defines formulas for a shape.

Introduction to VML

 424

Element Description

Handles Defines handles for a shape.

Locks Defines a lock for a shape.

6.3 Group Element 1

The Group element is used to collect multiple objects so they can be positioned and transformed as a single 2

unit. Objects that reference their parent container’s coordinate space become relative to the group’s local 3

space when inserted into a group. Using groups supports creation of complex shapes, composed of many sub-4

shapes, that can be treated as a single entity. 5

Group supports a subset of the Shape element’s attributes. 6

Attribute

AllowInCell Class HRPct Style

AllowOverlap CoordOrig HRStd TableLimits

Alt CoordSize HRWidth TableProperties

BorderBottomColor DoubleClickNotify ID Target

BorderLeftColor HR OnEd Title

BorderRightColor HRAlign OnMouseOver UserDrawn

BorderTopColor HRef Print UserHidden

Bullet HRHeight ReGroupID WrapCoords

Button HRNoShade RelativePosition

 7

The following elements are valid inside a Group: 8

Element

Arc Image Polyline Shape

Curve Line Rect ShapeType

Group Oval RoundRect

6.4 ShapeType Element 9

The ShapeType element defines a definition, or template, for a shape. Such a template is “instantiated” by 10

creating a Shape element that references the ShapeType. The shape can override any value specified by its 11

ShapeType, or define attributes and elements the ShapeType does not provide. A ShapeType may not 12

reference another ShapeType. 13

The attributes and elements a ShapeType uses are identical to those of the Shape element, with these 14

exceptions. 15

ShapeType may not use the Type element. 16

Introduction to VML

 425

CSS positioning attributes are ignored and not passed to individual Shape instances. 1

Visibility is always hidden. 2

A VML authoring agent may make the ShapeType visible, in which case the CSS positioning attributes are 3

meaningful. 4

The ShapeType element is used to define a shape once and reference it multiple times throughout a 5

document. One of the most useful attributes or elements a ShapeType defines is a complex Path. Since Path 6

coordinates are defined in a relative coordinate space that scales with a shape’s height and width, this is very 7

flexible for defining a shape outline that can be custom scaled and formatted for a given use. 8

6.5 VML Usage in the Office Open XML Format 9

6.5.1 OfficeArt Shapes 10

WordprocessingML takes advantage of the template-based shape definition VML provides. This example 11

shows how the two shapes in the screenshot below are created. 12

 13

The star is first defined using a ShapeType. 14

<v:shapetype id="_x0000_t12" coordsize="21600,21600" o:spt="12"

 path="m10800,l8280,8259,,8259r6720,5146l4200,21600r6600,

 -5019l17400,21600,14880,13405,21600,8259r-8280,xe">

 <v:stroke joinstyle="miter" />

 <v:path gradientshapeok="t" o:connecttype="custom"

…

 o:connectlocs="10800,0;0,8259;4200,21600;17400,21600;21600,8259"

 textboxrect="6720,8259,14880,15628" />

</v:shapetype>

 15

The first star is created by referencing the ShapeType via the Type attribute. It sets its own positioning and 16

scaling. 17

<v:shape id="_x0000_s1026" type="#_x0000_t12"

 style="position:absolute;margin-left:33pt;margin-top:25.5pt;

 width:47.25pt;height:47.25pt;z-index:251656704" />

Introduction to VML

 426

The second star is created by referencing the ShapeType and providing its own positioning, scaling and 1

formatting. 2

<v:shape id="_x0000_s1027" type="#_x0000_t12"

 style="position:absolute;margin-left:145.5pt;margin-top:25.5pt;

 width:47.25pt;height:47.25pt;z-index:251657728"

 fillcolor="#4f81bd [3204]" strokecolor="#f2f2f2 [3041]"

 strokeweight="3pt">

 <v:shadow on="t" type="perspective" color="#27405e [1604]"

 opacity=".5" offset="1pt" offset2="-1pt" />

</v:shape>

The example contains only the two star shapes. What follows is the entire document: 3

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<w:document "…">

<w:body>

 <w:p>

 <w:r w:rsidR="00496863">

 <w:rPr>

 <w:noProof />

 </w:rPr>

 <w:pict>

 <v:shapetype id="_x0000_t12" coordsize="21600,21600"

 o:spt="12"

 path="m10800,l8280,8259,,8259r6720,5146l4200,21600r6600,

 -5019l17400,21600,14880,13405,21600,8259r-8280,xe">

 <v:stroke joinstyle="miter" />

 <v:path gradientshapeok="t" o:connecttype="custom"

 o:connectlocs="10800,0;0,8259;4200,21600;

 17400,21600;21600,8259"

 textboxrect="6720,8259,14880,15628" />

 </v:shapetype>

 <v:shape id="_x0000_s1026" type="#_x0000_t12"

 style="position:absolute;margin-left:33pt;

 margin-top:25.5pt;

 width:47.25pt;height:47.25pt;z-index:251656704" />

 </w:pict>

 </w:r>

 <w:r w:rsidR="00496863">

 <w:rPr>

 <w:noProof />

 </w:rPr>

 <w:pict>

Introduction to VML

 427

 <v:shape id="_x0000_s1027" type="#_x0000_t12"

 style="position:absolute;margin-left:145.5pt;

 margin-top:25.5pt;width:47.25pt;height:47.25pt;

 z-index:251657728" fillcolor="#4f81bd [3204]"

 strokecolor="#f2f2f2 [3041]" strokeweight="3pt">

 <v:shadow on="t" type="perspective"

 color="#27405e [1604]"

 opacity=".5" offset="1pt" offset2="-1pt" />

 </v:shape>

 </w:pict>

 </w:r>

 </w:p>

 <w:sectPr w:rsidR="00953D70" w:rsidSect="00667294">

 <w:pgSz w:w="12240" w:h="15840" />

 <w:pgMar w:top="1440" w:right="1440" w:bottom="1440"

 w:left="1440"

 w:header="720" w:footer="720" w:gutter="0" />

 <w:cols w:space="720" />

 <w:docGrid w:linePitch="360" />

 </w:sectPr>

</w:body>

</w:document>

6.5.2 SpreadsheetML Comments 1

The visible box shown for comments attached to cells is persisted using VML. The comment contents are 2

stored separately as part of SpreadsheetML. 3

 4

The package item xl/worksheets/sheet1.xml contains the following reference: 5

<legacyDrawing r:id="rId1" />

This is a relationship defined in xl/worksheets/_rels/sheet1.xml.rels: 6

<Relationship Id="rId1" Type="…/legacyDrawing"

 Target="../drawings/legacyDrawing1.vml" />

The package item xl/drawings/legacyDrawing1.vml defines the yellow gradient rectangle. Again, note that the 7

basic rectangle is defined using a ShapeType. This is reused if multiple comments exist. 8

Introduction to VML

 428

<xml "…">

 <o:shapelayout v:ext="edit">

 <o:idmap v:ext="edit" data="1" />

 </o:shapelayout>

 <v:shapetype id="_x0000_t202" coordsize="21600,21600" o:spt="202"

 path="m,l,21600r21600,l21600,xe">

 <v:stroke joinstyle="miter" />

 <v:path gradientshapeok="t" o:connecttype="rect" />

 </v:shapetype>

 <v:shape id="_x0000_s1027" type="#_x0000_t202"

 style="position:absolute;

 margin-left:107.25pt;margin-top:52.5pt;width:96pt;height:55.5pt;

 z-index:1" fillcolor="#f2f3cb" strokecolor="#81835a"

 o:insetmode="auto">

 <v:fill color2="#fefefb" type="gradient">

 <o:fill v:ext="view" type="gradientUnscaled" />

 </v:fill>

 <v:shadow on="t" color="silver" opacity=".5" obscured="t" />

 <v:path o:connecttype="none" />

 <v:textbox style="mso-direction-alt:auto">

 <div style="text-align:left" />

 </v:textbox>

 <x:ClientData ObjectType="Note">

 <x:MoveWithCells />

 <x:SizeWithCells />

 <x:Anchor>2, 15, 3, 10, 4, 15, 7, 4</x:Anchor>

 <x:AutoFill>False</x:AutoFill>

 <x:Row>4</x:Row>

 <x:Column>1</x:Column>

 <x:Visible />

 </x:ClientData>

 </v:shape>

</xml>

6.5.3 WordprocessingML Text Box 1

WordprocessingML stores all textbox geometry using VML. This example shows how a simple text box is 2

stored. 3

 4

Introduction to VML

 429

All the VML is embedded directly in the word/document.xml file as it is intermingled with other XML. VML is 1

used to define the graphic content. Within the VML textbox tag, additional information about the text box 2

text is added. The following is the section of the document.xml that defines the text box. 3

<w:r w:rsidR="00735D93">

 <w:rPr>

 <w:noProof />

 </w:rPr>

 <w:pict>

 <v:roundrect id="_x0000_s1027" style="position:absolute;

 margin-left:193.2pt;margin-top:-18pt;width:385.75pt;

 height:36.5pt;z-index:251660288;mso-width-percent:900;

 mso-position-horizontal-relative:page;

 mso-position-vertical-relative:margin;mso-width-percent:900;

 mso-width-relative:margin" arcsize="2543f" o:allowincell="f"

 stroked="f">

 <v:shadow on="t" type="perspective" color="#4f81bd [3204]"

 origin="-.5,-.5" offset="-3pt,-3pt" offset2="6pt,6pt"

 matrix=".75,,,.75" />

 <v:textbox style="mso-next-textbox:#_x0000_s1027;

 mso-fit-shape-to-text:t" inset=",,36pt,18pt">

 <w:txbxContent>

 <w:p>

 <w:pPr>

 <w:rPr>

 <w:i />

 <w:color w:val="7F7F7F" w:themeColor="background1"

 w:themeShade="7F" />

 </w:rPr>

 </w:pPr>

 <w:r w:rsidR="00CA19B3">

 <w:rPr>

 <w:i />

 <w:color w:val="7F7F7F" w:themeColor="background1"

 w:themeShade="7F" />

 </w:rPr>

 <w:t>Text box</w:t>

 </w:r>

 </w:p>

 </w:txbxContent>

 </v:textbox>

 <w10:wrap type="square" anchorx="page" anchory="margin" />

 </v:roundrect>

Introduction to VML

 430

 </w:pict>

</w:r>

This general format is used for any type of textbox, such as those added automatically when a cover page is 1

added to a document. 2

End of informative text. 3

Introduction to Shared MLs

 431

7. Introduction to Shared MLs 1

This clause is informative. 2

7.1 Math 3

In this subclause, every mathematical expression is called an equation, even if the expression is merely a string 4

of variables or a single object such as a fraction. In XML, an equation is called OMath. A Math Paragraph is a 5

group of one or more equations separated by soft carriage returns; that is, they are separate equations that 6

comprise a single paragraph. A Math Paragraph carries its own justification that can be separate from the 7

justification of the paragraph that contains it. Different equations within a Math Paragraph cannot have 8

different types of justification. 9

Equations can be Display (the only text on the line) or Inline (on a line with text outside of the equation). The 10

Display vs. Inline state is not specified by this standard; instead, a text processor determines how to format 11

Display and Inline equations. Display and Inline equations innately carry different formatting characteristics; 12

Inline equations consume less vertical space so as not to disrupt line spacing with adjacent lines. This means, 13

for example, reducing the size of fractions and n-ary objects that grow. 14

The following subclauses introduce each of the objects (also called functions) that comprise the majority of the 15

Equations schema. As a text processor and not a calculation engine, when converting equations into XML 16

representation, more attention is given to the layout and appearance than to the mathematical meaning of 17

the expressions. That is, abc and abc are represented with the same object, although they carry 18

different mathematical meanings, because both consist of text paired with a stretching character. Similarly,
n

k
 19

and
n
k

 are represented as the same object. Though mathematically they have different meaning, their layout 20

is similar. 21

Although the functionality described in this clause is purely about the appearance of equations, other markup 22

defined in this Office Open XML Standard provides independent functionality enabling calculation of 23

mathematical expressions. Formulas in SpreadsheetML (§3.15.1) and Fields in WordprocessingML (§2.17.1) 24

are two examples. 25

7.1.1 Accent Object 26

Consider the following letters having diacritical marks: 27

 28

Introduction to Shared MLs

 432

The accent object is used to represent any baseline text having a combining diacritical mark placed above the 1

base. The accent has only one child, the base element. The accent mark itself is stored as a property. In the 2

examples above, the only difference in the XML representations is the character. 3

 4

7.1.2 Bar Object 5

The bar object consists of baseline text with a bar drawn above or below the base. The bar has only one child, 6

the base element. The location of the bar is stored as a property. For example: 7

 8

7.1.3 Border Box Object 9

The Border Box object consists of math text—often a formula the author wishes to call out or give special 10

attention—surrounded by a border. Any combination of the edges of the border can be hidden. For example: 11

 12

The Border Box can also be used to "cross out" text with a horizontal, vertical, or diagonal (from top-left to 13

bottom-right or from top-right to bottom-left) strikethrough, as follows: 14

 15

7.1.4 Box Object 16

The Box object is used to group components of an equation, to apply a single property to everything in the 17

box. The Box serves a number of distinct purposes, including grouping characters to form a single operator (an 18

operator emulator), and thereby inheriting the alignment and manual break properties of operators; grouping 19

a differential such as ; preventing line breaks from occurring within; and allowing text inside to be reduced 20

in script level. 21

An example of a Box serving as an operator emulator is: 22

 23

Introduction to Shared MLs

 433

7.1.5 Delimiters 1

Delimiters consist of opening and closing delimiting characters (such as parentheses, braces, brackets, and 2

vertical bars), and an element contained inside. If two or more elements are contained within delimiters, 3

separating characters are used. 4

Delimiters can grow to the height of the object they contain. For example, parentheses could grow quite tall to 5

enclose this multi-row matrix: . Or, at the user's discretion, they can maintain 6

their height regardless of the content inside, as in . 7

Delimiters have a single type of child, the base argument, which can be used multiple times in the object to 8

signify that a separator character is to be used. For example: 9

 10

If the separator character is not specified in XML, the vertical bar is used. 11

7.1.6 Equation Array Object 12

The Equation Array object consists of one or more equations grouped as an object. Within the equation array, 13

multiple components can be aligned to each other. Examples of equation arrays are: 14

and 15

Equation arrays can have "maximum distribution" such that they occupy the entire width of the column that 16

contains them, as in: 17

 18

Introduction to Shared MLs

 434

Or, they can have "object distribution" such that there is even spacing between the margin and text (distance1 1

= distance2 = distance 3): 2

 3

7.1.7 Fraction Object 4

The Fraction object consists of a numerator and denominator separated by a fraction bar. The Fraction object 5

is used to classify the different styles of fractions. It is also used to classify the stack object, which places one 6

element above another, with no fraction bar. The four types of fractions are shown below: 7

 8

7.1.8 Function Apply Object 9

The Function Apply object consists of a function name (or object) applied to a base. The function name, by 10

default, does not use math italics. The Function Apply object consists of a function name (a string or object) 11

and a base element acted upon, as in: 12

 13

The user can modify the text in a function name, or can add strings to be recognized automatically by the text 14

processor as function names. 15

7.1.9 Group Character Object 16

The Group Character object consists of a character drawn above or below text, often with the purpose of 17

visually grouping items. In the following example, the text above the overbrace is not part of the group 18

character object; it is included only to demonstrate a real-world example of the object in use: 19

Introduction to Shared MLs

 435

 1

7.1.10 Upper and Lower Limits 2

Upper Limits and Lower Limits are treated as separate (but similar) objects in the XML representation. Both 3

consist of text on the baseline and reduced-size text immediately above or below it. Examples include: 4

 and , where in the second example the upper limit is and the base is 5

 6

7.1.11 Matrix Object 7

The Matrix object consists of one or more elements laid out in one or more rows and one or more columns 8

(delimiters not included). Examples include and . 9

The entire matrix can be aligned, with respect to the surrounding text, at the center, with the top row, or with 10

the bottom row. This property is defined as baseJc. Spacing between columns can be defined using cGp, 11

cGpRule, and cSp. Column Gap refers to the space between the end of one column and the start of the next; 12

column spacing refers to the space between two corresponding edges of adjacent columns. 13

 14

Row spacing can also be defined using rSp and rSpRule. Row spacing is defined as the distance between 15

baselines on adjacent matrix rows: 16

 17

 18

Finally, a matrix can have hidden placeholders (hidePlc). The identity matrix above has hidden placeholders, 19

while the following matrix has placeholders showing: 20

Introduction to Shared MLs

 436

7.1.12 N-ary Object 1

The N-ary object consists of an n-ary object, a base (or operand), and optional upper and lower limits, as in: 2

 3

The components of an n-ary object are as follows: 4

 5

Other properties of the n-ary object are: 6

 grow: specifies whether the n-ary object grows to the height of its operand, or stays a fixed height 7

 limLoc: specifies the placement of n-ary limits: either to the right of the n-ary operator (the subSup 8

position) or centered above and below (the undOvr position). 9

 supHide: specifies that the upper limit is hidden and no placeholder shows 10

 subHide: specifies that the upper limit is hidden and no placeholder shows 11

7.1.13 Phantom Object 12

The Phantom object allows extra spacing, horizontal, vertical, or both, to be added or suppressed during layout 13

for enhanced appearance. 14

In the following example, the two radicals are unbalanced: . For enhanced typography, the radical 15

bars and bottom points should line up. To accomplish this, the user should adjust the height of the second 16

radical, to make it the height of the fraction. However, no extra padding should be added to the width. The 17

user can accomplish this by inserting a phantom of the fraction under the second radical, as in: . In 18

this case, the radicals line up, and the phantom fraction acts as ghost text that adds vertical space but no width 19

(zeroWid). The phantom can also be used to add horizontal space, alone or in conjunction with vertical space. 20

Phantoms are not always invisible. The "smash" is a type of phantom in which the content remains visible. 21

However, part or all of the smash can be ignored during layout of text around it. For example, examine the 22

following two radicals: 23

 24

Introduction to Shared MLs

 437

A discerning typographer might desire less vertical spacing between the tip of the "d" and the radical bar in the 1

first example. By placing the differential in a smash and assigning it zero height (zeroAsc), the spacing is 2

reduced. 3

Note that in this same example, when the differential term is placed inside a phantom, the spacing between 4

the first and second characters changes. Again, the discerning typographer wishes that despite the presence of 5

the phantom, differential spacing is retained. By assigning the phantom transparency for spacing (transp), 6

proper spacing is preserved. 7

Finally, zeroDesc phantom allows the descent of the phantom base to be ignored during layout. The following 8

example illustrates the usage of zeroDesc: 9

 10

Each of the phantom properties can be applied whether the phantom is visible or hidden (the show property). 11

7.1.14 Radical Object 12

The Radical object consists of a radical, a base e, and an optional degree. When the degree is not shown and a 13

placeholder character is not to appear, the property degHide is used. 14

 15

7.1.15 Scripts (Superscript, Subscript, SubSuperscript, PreSubSuperscript) 16

There are four distinct but related objects that consist of a base and a smaller “script” term either raised or 17

lowered, on the left or right of the base. These are the Subscript, Superscript, SubSuperscript, and 18

PreSubSuperscript: 19

 20

The SubSuperscript has the option of aligning scripts (alnScr), as in: 21

 vs. . 22

Introduction to Shared MLs

 438

7.2 Metadata 1

Office Open XML document metadata consists of 43 well-defined properties and user-defined custom 2

properties. Metadata properties are divided into three categories: Core, Extended, and Custom. 3

 4

Each metadata category is represented by a document part with a corresponding relationship type, content 5

type, and schema. Each metadata property is associated with exactly one metadata part. 6

The following table lists all well-defined metadata properties: 7

Property Category

category Core

contentStatus Core

contentType Core

Created Core

Creator Core

description Core

identifier Core

keywords Core

language Core

lastModifiedBy Core

lastPrinted Core

modified Core

Metadata

Core Extended Custom

Introduction to Shared MLs

 439

Property Category

revision Core

subject Core

title Core

version Core

Application Extended

AppVersion Extended

Characters Extended

CharactersWithSpaces Extended

Company Extended

DigSig Extended

DocSecurity Extended

HeadingPairs Extended

HiddenSlides Extended

HLinks Extended

HyperlinkBase Extended

HyperlinksChanged Extended

Lines Extended

LinksUpToDate Extended

Manager Extended

MMClips Extended

Notes Extended

Pages Extended

Paragraphs Extended

PresentationFormat Extended

ScaleCrop Extended

SharedDoc Extended

Slides Extended

Template Extended

TitlesOfParts Extended

TotalTime Extended

Words Extended

7.2.1 Metadata Properties 1

Metadata properties are represented as XML elements with associated name and type. There are two types of 2

properties: simple and complex. Simple properties are singular XML elements whose type and value is defined 3

Introduction to Shared MLs

 440

by the type and value of that XML element. Complex properties contain nested variant type XML elements 1

that define the type and value of complex data such as arrays and vectors. Metadata properties are non-2

repeatable and must be defined within their associated metadata part. All metadata properties may be empty 3

or omitted. If all properties of a metadata part are omitted, that part may be excluded from the document. 4

Simple property and custom complex property 5

<dc:creator>John Smith<dc:creator> 6

<property fmtid="{D5CDD505-2E9C-101B-9397-08002B2CF9AE}" pid="2" name="Editor"> 7

 <vt:lpwstr>John Smith</vt:lpwstr> 8

</property> 9

7.2.2 Core Properties 10

Core properties are a predefined set of metadata properties common to all packages, and are discussed in 11

detail in §11 of Part 2 of this Standard: "Open Packaging Conventions". 12

7.2.3 Extended Properties 13

Extended properties are a predefined set of metadata properties that are specifically applicable to Office Open 14

XML documents. Extended properties consist of 24 simple properties and 3 complex properties stored in the 15

part targeted by the relationship of type: 16

http://schemas.openxmlformats.org/officeDocument/2006/relationships/extended-properties. 17

7.2.4 Custom Properties 18

Custom properties allow users to extend pre-defined metadata properties with user-defined properties. 19

Custom properties are stored in the part targeted by the relationship of type: 20

http://schemas.openxmlformats.org/officeDocument/2006/relationships/custom-properties. Each 21

property is represented as a property XML element and uniquely identified through the name, fmtid, and pid 22

attributes. All custom properties are considered complex properties. The type and value of custom properties 23

are specified by its child variant type XML elements. 24

7.2.5 Variant Types 25

Office Open XML defines 35 XML elements representing commonly-used variant types to enable the 26

representation and round-tripping of complex data. Variant type XML elements are used as child elements of 27

complex metadata properties to define the type and value. 28

7.3 Custom XML Data 29

Within an Office Open XML document, it is sometimes desirable or necessary to store custom XML data (that 30

is, data in a format not defined by this Office Open XML specification) within the contents of the package. To 31

accommodate this need, Office Open XML allows the storage of any arbitrary XML within a package as the 32

target of the http://schemas.openxmlformats.org/officeDocument/2006/relationships/customXml 33

relationship (valid source parts are listed within Part 1 of the Standard). 34

The following examples illustrate potential uses of this mechanism: 35

Introduction to Shared MLs

 441

 A document which collects and displays information from a backend data source might want to store 1

the original form of that backend data, so it can be manipulated and uploaded to the original data 2

source at a later date. 3

 A document author may wish to store additional metadata in an XML format not defined by this Office 4

Open XML specification's existing metadata schemas. 5

 A document management system may wish to store data tracking the workflow status, retention 6

policies, and so on for this document along with the document. 7

Once present within a package, this custom XML data shall be maintained as a distinct part separate from the 8

contents of the document, spreadsheet, or presentation. If there are multiple distinct streams of custom XML 9

data, each is maintained as a separate part within the package, so that each can be manipulated 10

independently of all others. 11

Each Custom XML Data part may also have an implicit relationship to a Custom XML Data Properties part which 12

stores: 13

 The target namespace of all XML schemas which shall be used to validate the content of the custom 14

XML data part. 15

 A GUID which shall remain constant over the lifetime of this part (and can therefore be used to 16

uniquely identify it). 17

7.4 Bibliography 18

Office Open XML offers functionality to store bibliography entries to permit automatic formatting of citations 19

and bibliographies in the document according to a set of documentation rules defined in an XSLT. 20

7.4.1 Types of Sources 21

The Office Open XML formats support a collection of predefined source types for bibliography entries based on 22

the categories most commonly used in various citation and bibliography style guidelines . The set of predefined 23

source types can be extended as needed. The recommended approach for extending this set is to use the Misc 24

type, and then leverage the methods described in Part 5 of this standard for extending the format with new 25

attributes or elements. The following types of sources are predefined: 26

 Book (Book) 27

 BookSection (Book Section) 28

 JournalArticle (Journal Article) 29

 MagOrNewsArticle (Magazine or Newspaper Article) 30

 ConferenceProceedings (Conference Proceedings) 31

 Report (Report) 32

 SoundRecording (Sound Recording) 33

 Performance (Performance) 34

 Art (Art) 35

 DocumentFromInternetSite (Document from Internet Site) 36

Introduction to Shared MLs

 442

 InternetSite (Internet Site) 1

 Film (Film) 2

 Interview (Interview) 3

 Patent (Patent) 4

 ElectronicSource (Electronic Source) 5

 Case (Case) 6

 Misc (Miscellaneous) 7

7.4.2 Child Elements 8

Each Source element has a number of elements as children, each of which represents a different piece of data 9

for the bibliography entries. For example, a book might have an author, title, publisher, year, and city. Most 10

are self-explanatory, but this document will pay special attention to some of the more complex children. 11

The child elements are: 12

 AbbreviatedCaseNumber 13

 AlbumTitle 14

 Author 15

 BookTitle 16

 Broadcaster 17

 BroadcastTitle 18

 CaseNumber 19

 ChapterNumber 20

 City 21

 Comments 22

 ConferenceName 23

 Country 24

 CountryRegion 25

 Court 26

 Day 27

 DayAccessed 28

 Department 29

 Distributor 30

 Edition 31

 Guid 32

 Institution 33

 InternetSiteTitle 34

 Issue 35

 JournalName 36

 LCID 37

 Medium 38

Introduction to Shared MLs

 443

 Month 1

 MonthAccessed 2

 NumberVolumes 3

 Pages 4

 PatentNumber 5

 PeriodicalTitle 6

 PlacePublished 7

 ProductionCompany 8

 PublicationTitle 9

 Publisher 10

 RecordingNumber 11

 RefOrder 12

 Reporter 13

 SourceType 14

 ShortTitle 15

 StandardNumber 16

 StateProvince 17

 Station 18

 Tag 19

 Theater 20

 ThesisType 21

 Title 22

 Type 23

 URL 24

 Version 25

 Volume 26

 Year 27

 YearAccessed 28

An example of the XML defining a source of type Book with the title Office Open XML formats, and two 29

Authors named Jones, Brian and Davis, Tristan is: 30

<b:Source> 31

 <b:Tag>Las07</b:Tag> 32

 <b:SourceType>Book</b:SourceType> 33

 <b:Author> 34

 <b:Author> 35

 <b:NameList> 36

 <b:Person> 37

 <b:Last>Jones</b:Last> 38

 <b:First>Brian</b:First> 39

 </b:Person> 40

Introduction to Shared MLs

 444

 <b:Person> 1

 <b:Last>Davis</b:Last> 2

 <b:First>Tristan</b:First> 3

 </b:Person> 4

 </b:NameList> 5

 </b:Author> 6

 </b:Author> 7

 <b:Title>Office Open XML formats</b:Title> 8

 <b:Year>2007</b:Year> 9

 <b:City>Trondheim</b:City> 10

 <b:Publisher>Publisher</b:Publisher> 11

 <b:Comments>Comments</b:Comments> 12

 <b:RefOrder>1</b:RefOrder> 13

 <b:Guid>{DCC25FA1-67CC-4013-B56A-2D42CED7FF0C}</b:Guid> 14

 <b:LCID>0</b:LCID> 15

</b:Source> 16

7.4.3 Author 17

There are two elements with the same name: Author. The first Author element is a container for the set of 18

contributors attributed to the current source. The second Author element is a child of the first and is used to 19

represent a single contributor. The valid set of contributors is defined as: 20

 Artist 21

 Author 22

 BookAuthor 23

 Compiler 24

 Composer 25

 Conductor 26

 Counsel 27

 Director 28

 Editor 29

 Interviewee 30

 Interviewer 31

 Inventor 32

 Performer 33

 ProducerName 34

 Translator 35

 Writer 36

For example, a bibliographic source with an author (Davis, Tristan), editor (Jaeschke, Rex), and translator 37

(Jones, Brian) would be represented by a group of elements representing the three contributors and their 38

specific roles inside an outer Author element, as in: 39

Introduction to Shared MLs

 445

<b:Author> 1

 <b:Author> 2

 <b:NameList> 3

 <b:Person> 4

 <b:Last>Davis</b:Last> 5

 <b:First>Tristan</b:First> 6

 </b:Person> 7

 </b:Author> 8

 <b:Editor> 9

 <b:NameList> 10

 <b:Person> 11

 <b:Last>Jaeschke</b:Last> 12

 <b:First>Rex</b:First> 13

 </b:Person> 14

 </b:Editor> 15

 <b:Translator> 16

 <b:NameList> 17

 <b:Person> 18

 <b:Last>Jones</b:Last> 19

 <b:First>Brian</b:First> 20

 </b:Person> 21

 </b:Translator> 22

</b:Author> 23

7.4.4 LCID, Guid, Tag, and RefOrder 24

Four of the child elements for the Source element support important functionality for consuming applications 25

that generate bibliographies using an externally defined stylesheet. The LCID element describes the language 26

to be used when displaying the bibliography entry. This piece of data provides an instruction to the consuming 27

application on the grammar of the citations and bibliography (including international name formats, date 28

formats, and punctuation marks). 29

The Guid and Tag elements can be leveraged if an application wishes to uniquely identify the bibliography 30

entry described in the Source element. For example, when a Source element is brought into a document and 31

the Tag value for that Source element matches that of another Source element already in the document, the 32

existing Source elements values could be overwritten with the new Source element. Two Source elements 33

with the same Tag element value cannot exist in the same document. GUIDs can then be used in conjunction 34

with Tags to indicate whether a Source element has been edited. When a Source element from one document 35

has been edited, an application may decide to apply the edits to matching Source elements in other 36

documents. 37

The RefOrder element for a source indicates the position, in numeric sequence, for the first reference to the 38

source within the document text. This information is used in bibliography styles that sort sources by order in 39

the document rather than alphabetical order. 40

Introduction to Shared MLs

 446

End of informative text. 1

Miscellaneous Topics

 447

8. Miscellaneous Topics 1

This clause is informative. 2

8.1 Additional Characteristics 3

Office Open XML provides a way for a producer to provide information to consumers regarding how the data 4

was created and how it should be interpreted. This information is provided by one or more additional 5

characteristics. 6

A producing application has the option of writing out as many or as few additional characteristics as desired. 7

A consuming application has the option of acting on the additional characteristics or ignoring them 8

The additional characteristics are stored in a separate XML part, as follows: 9

<additionalCharacteristics> 10

 <characteristic name='name of characteristic' 11

 relation='well defined set of relation types' 12

 val='string' vocabulary='uri'/> 13

</additionalCharacteristics> 14

For example, consider the case in which numColumns is the characteristic name to specify the maximum 15

number of columns supported by the producing SpreadsheetML application, so that the consuming application 16

can understand how to distinguish cell references and variables unambiguously. 17

The relation attribute specifies the way in which the val attribute should be interpreted. The possible values 18

for relation are: lt | le | eq | gt | ge, which mean <, <=, =, >=, >, respectively, and relate to numerical 19

comparison for values and alphabetical comparison for ordering of strings. These relations permit expression 20

of the maximum value, the minimum value, the value, and so on. 21

The vocabulary attribute is a URI that provides a namespace for the specific characteristic names provided as 22

values of the name attribute. This allows for the creation of a vocabulary of characteristics of interest within a 23

given domain of application without concern for name conflict between vocabularies. 24

Another example use case would be for a producer to inform the consumer that the computations used to 25

calculate the stored numbers in the SpreadsheetML formulas have a particular numeric precision expressed by 26

the mantissa and exponent. A consumer can optionally check those values to determine whether, for example, 27

the values should be recalculated. The XML to represent these characteristics might look like the following: 28

Miscellaneous Topics

 448

<additionalCharacteristics> 1

 <characteristic name='precisionMantissa' 2

 relation='gt' 3

 val='-9007199254740992'/> 4

 <characteristic name='precisionMantissa' 5

 relation='lt' val='9007199254740992'/> 6

 <characteristic name='precisionExponent' 7

 relation='ge' val='-1075'/> 8

 <characteristic name='precisionExponent' 9

 relation='le' val='970'/> 10

</additionalCharacteristics> 11

8.2 Embeddings 12

Office Open XML provides facilities allowing the embedding of any object within a document. For example, a 13

WordprocessingML document might include data as an embedded SpreadsheetML document rather than a 14

native WordprocessingML table, in order to allow that data to be edited and recalculated by a SpreadsheetML 15

calculation engine, rather than having it stored as a static table of data. 16

Office Open XML provides for two classes of embedded objects: 17

 Embedded Packages - An embedded Office Open XML document embedded within another Office 18

Open XML document, with both documents stored in the format defined by this Office Open XML 19

specification. For example, a PresentationML document embedded within a SpreadsheetML document 20

results in an embedded package. 21

 Embedded Objects - Any other embedded object data. The data stored in the object shall be identified 22

by a unique string, referred to as its ProgID. This string shall be used to determine both the type of 23

data and the application (if any) that shall be used to load and edit the embedded object data. 24

Office Open XML also allows an image to be optionally associated with the embedded object data, for use 25

when the embedded object application and data itself is not used by the consuming application (e.g. when the 26

object cannot be loaded – the object is from an unknown source; the object is known, but the application has 27

chosen not to load it for performance reasons, and so on). 28

8.2.1 Embedded Packages 29

Whenever an Office Open XML document is stored as an embedded object, the embedding shall be referred to 30

as an embedded package. Embedded packages shall be the target of the Embedded Package relationship 31

defined in Part 1: http://schemas.openxmlformats.org/officeDocument/2006/relationships/package. this 32

Office Open XML specification 33

8.2.2 Embedded Objects 34

For all other embeddings, the embedded object is stored in an arbitrary format defined by the application 35

whose data is being embedded. These generic embedded objects shall be the target of the Embedded Object 36

relationship: http://schemas.openxmlformats.org/officeDocument/2006/relationships/oleObject. When 37

http://schemas.openxmlformats.org/officeDocument/2006/relationships/package
http://schemas.openxmlformats.org/officeDocument/2006/relationships/oleObject

Miscellaneous Topics

 449

parsing the data stored in an embedded object part, an application shall use the associated ProgID (whose 1

location is described in the following subclauses) for the object. 2

8.2.3 Embeddings in a WordprocessingML Document 3

When an embedding is stored in a WordprocessingML document, it is stored in one of the following ways: 4

 In line with text - The object is displayed within the regular text stream (modifying line height and so 5

on to accommodate it). 6

 Floating – The object is positioned absolutely or relatively within the document and text flow is 7

modified as needed around it. 8

Each case permits the storage of both the object and the optional VML representation of the image that may 9

be used when the object data is not used by the hosting application as follows: 10

8.2.3.1 Embeddings In Line With Text 11

When the embedding is present in line with text, it is stored as follows: 12

 The WordprocessingML object element specifies the presence of an embedded object in line with text. 13

 The child Office VML Drawing OLEObject element shall specify the details about the embedding itself, 14

including an explicit relationship to the appropriate Embedded Package or Embedded Object part. 15

 The child VML shape element shall specify the presence of the image which may be used to represent 16

the object. 17

For example, if we embed a SpreadsheetML worksheet in a WordprocessingML document, the following run 18

content would be present: 19

<w:r> 20

 <w:object w:dxaOrig="7247" w:dyaOrig="2920"> 21

 <v:shape id="_x0000_i1026" type="#_x0000_t75" 22

 style="width:362.25pt;height:146.25pt" o:ole=""> 23

 <v:imagedata r:id="rId6" o:title="" /> 24

 </v:shape> 25

 <o:OLEObject Type="Embed" ProgID="Excel.Sheet.8" 26

 ShapeID="_x0000_i1026" DrawAspect="Content" ObjectID="_1218026609" 27

 r:id="rId7" /> 28

 </w:object> 29

</w:r> 30

If we examine this markup, it can be seen that: 31

 We have an inline embedded object, as defined by the object element. 32

 The OLEObject element specifies that that object is stored as an Embed, and that its ProgID is 33

Excel.Sheet.8 (the ProgID code for Microsoft Excel worksheets); it also specifies that the associated 34

Miscellaneous Topics

 450

image (when the object data cannot be used) is stored in the VML shape with a shape ID of 1

_x0000_i1026. 2

 The associated VML shape element with an id attribute value of _x0000_i1026 shall be used in 3

place of the object whenever it is not loaded - this shape is typically, but is not required to be, stored 4

in the same object element as the OLEObject element. This shape specifies its desired size and 5

provides an explicit relationship to the part that stores the image data. 6

8.2.3.2 Floating Embeddings 7

When the embedding is present as a floating object, it is stored as follows: 8

 The WordprocessingML pict element specifies the presence of a floating image in the document. 9

 The child Office VML Drawing OLEObject element shall specify the details about the embedding itself, 10

including an explicit relationship to the appropriate Embedded Package or Embedded Object part. 11

 The child VML shape element shall specify the presence of the image that may be used to represent 12

the object in place of loading the actual object data. 13

For example, if we embed a SpreadsheetML worksheet in a WordprocessingML document as a floating object, 14

the following run content would be present: 15

<w:r> 16

 <w:pict> 17

 <v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" 18

 o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" 19

 stroked="f"> 20

 … 21

 </v:shapetype> 22

 <v:shape id="_x0000_s1028" type="#_x0000_t75" 23

 style="position:absolute;margin-left:354.75pt;margin- 24

 top:642.75pt;width:182.3pt;height:73.6pt;z-index:251660288"> 25

 <v:imagedata r:id="rId4" o:title="" /> 26

 </v:shape> 27

 <o:OLEObject Type="Embed" ProgID="Excel.Sheet.8" 28

 ShapeID="_x0000_s1028" DrawAspect="Content" ObjectID="_1218026611" 29

 r:id="rId5" /> 30

 </w:pict> 31

</w:r> 32

If we examine this markup, it can be seen that: 33

 We have a floating image, as defined by the pict element. 34

 The OLEObject element specifies that that floating image is actually an embedding that is stored as an 35

Embed, and that its ProgID is Excel.Sheet.8 (the ProgID code for Microsoft Excel worksheets); it 36

also specifies that the associated image (when the object data cannot be used) is stored in the VML 37

shape with a shape ID of _x0000_s1028. 38

Miscellaneous Topics

 451

 The associated VML shape element with an id attribute value of _x0000_s1028 shall be used in 1

place of the object whenever it is not loaded - this shape is typically, but is not required to be, stored 2

in the same pict element as the corresponding OLEObject element. This shape specifies its desired 3

size and provides an explicit relationship to the part which stores the image data. 4

8.2.4 Embeddings in a SpreadsheetML Document 5

When an embedding is present in a SpreadsheetML document, it shall be stored as follows: 6

 In the worksheet, the oleObjects element shall store one or more oleObject child elements, one for 7

each embedding within the current worksheet. Each of those oleObject child elements shall also store: 8

an explicit relationship to the associated Embedded Package or Embedded Object part, the ProgID for 9

that embedded object, and (optionally) the last four digits of the shape ID for the associated VML 10

shape. The shape ID itself shall be of the form _x0000_s####, where # specifies a single Arabic 11

numeral, in order to be referenced as the alternate image for an embedding in a SpreadsheetML 12

document. 13

 In the worksheet, the sibling legacyDrawing element shall contain an explicit relationship to the VML 14

Drawing part that (optionally) contains the image data which may be used in place of loading the 15

actual object data. 16

For example, if we embed a Contoso Test object (an example for illustration) in a SpreadsheetML 17

document, the following markup would be stored in the appropriate Sheet part: 18

<s:worksheet> 19

 … 20

 <s:legacyDrawing r:id="rId9" /> 21

 <s:oleObjects> 22

 <s:oleObject progId="Contoso.Test.1" shapeId="1025" r:id="rId5"/> 23

 </s:oleObjects> 24

</s:worksheet> 25

If we examine this markup, it can be seen that: 26

 The oleObject element specifies that we have one embedded object on the worksheet. Its attributes 27

specify that the object is of type Contoso.Test.1 and that the explicit relationship to the embedded 28

object is rId5. 29

 The sibling legacyDrawing element specifies that the Legacy Drawing part which contains the 30

associated legacy drawing data is contained at the target of the relationship with an ID of rId9. 31

 If we examine the VML Drawing part's contents, we'll see the shape which ends in 1025, which 32

contains the alternate image for the object: 33

Miscellaneous Topics

 452

<v:shape id="_x0000_s1025" type="#_x0000_t75" style='position:absolute; 1

 margin-left:240.75pt;margin-top:105.75pt;width:334.5pt;height:253.5pt; 2

 z-index:1' filled="t" fillcolor="window [65]" stroked="t" 3

 strokecolor="windowText [64]" o:insetmode="auto"> 4

 <v:fill color2="window [65]"/> 5

 <v:imagedata o:relid="rId1" o:title=""/> 6

 <x:ClientData ObjectType="Pict"> 7

 <x:SizeWithCells/> 8

 <x:Anchor>5, 1, 7, 1, 11, 63, 23, 19</x:Anchor> 9

 <x:CF>Pict</x:CF> 10

 </x:ClientData> 11

</v:shape> 12

8.2.5 Embeddings in a PresentationML Document 13

When an embedding is present in a PresentationML document, it shall be stored as follows: 14

 In the slide, the embedding is stored as a graphic frame using the graphicFrame element in 15

PresentationML. 16

 The graphicData element for the frame shall have the appropriate URI for its contents: 17

http://schemas.openxmlformats.org/presentationml/2006/ole. Its child element shall be the 18

PresentationML oleObj element, which stores an explicit relationship to the associated Embedded 19

Package or Embedded Object part, the ProgID for that embedded object, and (optionally) the shape ID 20

for the associated VML shape. 21

 The Slide part shall also have an implicit relationship to a VML Drawing part that (optionally) contains 22

the image data to be used in place of loading the actual object data. 23

For example, if we embed the Equation.3 object in a PresentationML document, the following markup 24

would be stored in the shape tree of the appropriate Slide part: 25

<p:graphicFrame> 26

 … 27

 <a:graphic> 28

 C:\Documents and Settings\tristand\Local Settings\Temp\Temporary Directory 4 for 29

embeddedObject.pptx.zip\ppt\slides\slide1.xml <a:graphicData 30

 uri="http://schemas.openxmlformats.org/presentationml/2006/ole"> 31

 <p:oleObj spid="_x0000_s1026" name="Equation" r:id="rId3" 32

 imgW="320" imgH="272" progId="Equation.3"> 33

 <p:embed /> 34

 </p:oleObj> 35

 </a:graphicData> 36

 </a:graphic> 37

</p:graphicFrame> 38

If we examine this markup, it can be seen that: 39

http://schemas.openxmlformats.org/presentationml/2006/ole
file:///C:\Documents%20and%20Settings\tristand\Local%20Settings\Temp\Temporary%20Directory%204%20for%20embeddedObject.pptx.zip\ppt\slides\slide1.xml
file:///C:\Documents%20and%20Settings\tristand\Local%20Settings\Temp\Temporary%20Directory%204%20for%20embeddedObject.pptx.zip\ppt\slides\slide1.xml

Miscellaneous Topics

 453

 The uri attribute on the graphicData element is 1

http://schemas.openxmlformats.org/presentationml/2006/ole, which dictates that this is an 2

embedded object 3

 It contains an oleObj element that specifies that the properties of the embedded object. Its attributes 4

specify that the object is of type Equation.3 and that the explicit relationship to the embedded 5

object is rId3. 6

 The slide may also contain an implicit relationship to a Legacy Drawing part. If we examine the legacy 7

drawing part's contents, the shape with ID _x0000_s1026 (if present) defines the alternate image: 8

<v:shape id="_x0000_s1026" type="#_x0000_t75" style='position:absolute; 9

 left:282pt;top:24pt;width:152pt;height:129.25pt'> 10

 <v:imagedata o:relid="rId1" o:title=""/> 11

</v:shape> 12

8.3 Future Extensibility 13

This clause provides a high-level overview of the extensibility model for Office Open XML documents, and a 14

description of packaging conventions in the context of DrawingML and PresentationML. Two main constructs 15

are described: extensibility lists (extLst/ext) and alternate content blocks (AlternateContent). 16

To illustrate certain points, a number of examples refer to versions of a (fictitious) PresentationML 17

consumer/producer called PML. The 2003 version is called PML 2003; the 2007 version is called PML 2007; and 18

so on. 19

8.3.1 Terminology 20

Here are some terms useful when discussing future extensibility. 21

 Round tripping involves the interchange of documents between different consumers/producers, as 22

well as between different versions of the same consumer/producer. The pair of consumers/producers 23

can be on the same or different platforms. Consider the case in which a document is created by the 24

PML 2007. This document is then opened by PML 2003, edited, and saved. The edited document is 25

now opened and used by PML 2007. In this case, the document originally created by PML 2007 has 26

been round-tripped through PML 2003. It is also possible to round-trip a document created by PML 27

2003 through PML 2007. 28

 A Downrev (or down-level) version of a consumer/producer refers to one that understands an older 29

version of a given schema. An Uprev (or up-level) version of a consumer/producer refers to one that 30

understands a newer version of a given schema. The terms Downrev and Uprev are typically used in 31

relative reference to one another. As an example, let's consider again, the two consumer/producer 32

PML 2003 and PML 2007, where PML 2007 was released sometime after PML 2003, and, consequently, 33

PML 2007 understands a newer revision of the DrawingML schema then does PML 2003. PML 2003 is 34

referred to as the Downrev version while PML 2007 is referred to as the Uprev version. It is assumed 35

that the Downrev version has less capability than the Uprev version. 36

http://schemas.openxmlformats.org/presentationml/2006/ole

Miscellaneous Topics

 454

8.3.2 What is Future Extensibility? 1

The main objective of future extensibility is to design an infrastructure that allows the file format to be 2

extended for representation of data structures in future versions of a given consumer/producer. 3

On the surface, that isn’t hard to do; there could be a special extension bit bucket allocated across every 4

existing schema element, and any future extension could be placed there. However, the problem is more 5

complex than that. The infrastructure must allow document interoperability between current 6

consumers/producers and future consumers/producers, some which have not yet even been designed or built. 7

That is, future extensibility involves building forward compatibility into the document infrastructure while 8

remaining compatible with the current version. 9

8.3.3 Future Extensibility Requirements 10

There are three design goals to be considered: visual fidelity, editability, and security. 11

 Visual fidelity involves the desire for users of two consumers/producers to see visually the same thing. 12

This seems like a simple design goal to meet, but, in practice, is not easy to achieve. The difference lies 13

in the capabilities of an Uprev and Downrev consumer/producer. Typically, an Uprev 14

consumer/producer has been extended to have new base capabilities that are not present in the 15

Downrev consumer/producer. As such, the Downrev client does not have the base primitives 16

necessary to express visually the new capability introduced in the Uprev consumer/producer. 17

 18

Consider the case in which PML 2007 has the capability to highlight text with a given color, while PML 19

2003 does not. Given the desire to have PML 2007 documents interoperate with PML 2003, it is 20

necessary for PML 2003 to some way to express visually that text highlight. For example, it might 21

insert a picture of the highlighted text instead of inserting the text itself, since PML 2003 does know 22

how to deal with pictures. 23

 Editability involves the desire for two consumers/producers to be able to edit the same content. Using 24

the highlighted text example from above, despite the fact that PML 2003 and PML 2007 have different 25

capabilities, one would still desire to edit highlighted text a regardless of which version of PML is in 26

use. Again, this becomes difficult when the underlying capabilities of the consumer/producer versions 27

are different. 28

 Security involves the desire to have multiple representations of the same data synchronized. This 29

desire is referred to as security for the reason that out-of-sync representation can have dire 30

consequences. For example, there might be multiple representations for a sensitive piece of 31

information such as a Social Security number. If this piece of information were edited, it would be 32

critical to keep all alternate representations in sync. What if that information were deleted 33

altogether? If only one representation was deleted but others remained, it would be possible for one 34

to have sensitive information in a document when the intent was to have it deleted. 35

One solution to try to solve the visual fidelity and editability goals is to have two equivalent representations for 36

the same construct. In the highlighted text example above, a picture of the highlighted text (also called a 37

rasterized version of the highlighted text) is an equivalent representation of the highlighted text itself. One 38

Miscellaneous Topics

 455

might use the highlighted text representation when the underlying consumer/producer is capable of 1

understanding it; otherwise, the picture version would be used. 2

Clearly, these design goals compete with each other. While a picture representation of text is capable of 3

capturing full visual fidelity of how extended text looks, obviously that representation doesn't offer the same 4

editability properties of text. One can't manipulate a picture of text nearly as easily as the text itself. 5

The competing nature of these design characteristics requires that one choose an extensibility construct that 6

offers the best mix of desired characteristics. It will not always be possible to have visual fidelity, editability, 7

and security, at the same time. 8

8.3.4 Future Extensibility Constructs 9

The two extensibility constructs used to represent extensions in OOXML schemas are: 10

8.3.4.1 extLst/ext 11

The extLst construct is used for straight-up extension of existing schemas of a non-visual nature. The term 12

straight up refers to the notion that sometimes extension means refining the semantics of existing constructs. 13

In doing so, an extension sometimes overrides the meaning of previous schemas. extLst and ext were not 14

designed for this scenario. Instead of overriding existing meaning, these two constructs purely augment 15

existing schemas. The nature of the augmentation must be such that it does not overlap any semantics 16

embedded in existing schema constructs. 17

Consider a schema that represents an address, which contain a house number, a street name, a city, a state, 18

and a postal code. An example of a straight-up extension is the addition of a field that describes whether this 19

address is a business or residential location. This is a straight-up extension because the notion of whether an 20

address is business or residential does not conflict with any information that is embedded in the existing 21

schema. Now let's consider the case in which the Postal Service replaces a purely numeric postal code with one 22

that can contain alphanumeric characters. Such a change would not be a straight-up extension because the 23

new representation conflicts with the old representation of the same data, namely the postal code. 24

Some extensions are visual in nature. An example would be extending a schema to represent text that has 25

been highlighted. By definition, highlighting text is a visual extension. Contrast that to the case of adding a 26

business or residential classification. The latter does not necessarily involve any visual change to the way data 27

is presented. 28

The extLst and ext constructs are for extensions of a non-visual nature. The main reason their use is limited to 29

this scenario lies in the fact that they do not offer the capability to create alternative representations of the 30

same data. 31

8.3.4.1.1 extLst/ext Syntax 32

The extLst and ext construct can be placed only at specific locations within the OOXML schemas. Its syntax is 33

as below: 34

Miscellaneous Topics

 456

 1

An extLst is a list of extension blocks that are placed one after the other. Each extension block has an uri 2

attribute, which serves as an identifier to indicate the kind of extension that has been placed here. Upon 3

encountering an extension block, a processing consumer, will determine whether it knows how to process 4

extensions matching that attribute. If the consumer knows how to process such an extension, the markup 5

contained within that extension block is processed. Otherwise, the extension block is preserved so long as the 6

underlying structure being extended by the extLst has not been deleted. 7

There is no limit to the number of ext extension block constructs. The order of extension blocks can be 8

arbitrary. 9

An optional modified attribute, mod, is available on extLst. This attribute is set to true whenever an edit has 10

occurred at the extended location. Its presence is to aid up-level clients that receive modified documents that 11

have been edited in down-level consumers/producers. 12

8.3.4.1.2 Round-Trip Behavior of ext Blocks 13

When extLsts are processed, some consumers/producers will understand some extensions, but not others. 14

The preservation model of ext blocks is that unprocessed extensions are always preserved and retained as long 15

as the underlying schema extended by the structure remains. 16

8.3.4.1.3 Example 17

Consider the case in which the notion that each shape can be associated with a given layer, is to be added. The 18

schema for this might look like the following: 19

Miscellaneous Topics

 457

 1

The extLst block is under the non-visual shape properties (i.e., p:nvSpPr). A uri attribute identifies the 2

extension. 3

Now consider how this markup will be processed by PML 2007 and PML 2009, where PML 2009 is an up-level 4

version of PML 2007. 5

PML 2007 processes the above markup, and ignores the ext block because it doesn't understand this 6

extension. However, this block will be preserved for any other consumer/producer that may understand it. 7

PML 2009 processes the above markup, and understands how to deal with layer extensions as indicated by the 8

uri. The spLayer extension is returned, PML 2009 processes the extension and is responsible for writing out 9

any updates to this markup, as required. For example, layer might be changed from 1 to 2. 10

Note that the extension is a straight-up extension in that layer information is orthogonal to all other non-visual 11

properties, such as the ID, name, and description. 12

Being non-visual in nature, the information in this extension does not directly affect the appearance of the 13

shape. 14

8.3.4.2 AlternateContent Blocks 15

An alternate content block allows for an alternative representation of information. In some cases, the desire 16

will be to revise a schema with a newer representation. It will also be common to express visual differences 17

using alternate content blocks. Recall that typically lower-level clients will not have the same capability as their 18

future cousins (i.e., the up level version). As such, any future extension done in the up-level version will need 19

to be expressed in a form that the lower-level version can understand. Hence, the need for alternate 20

representations. 21

Miscellaneous Topics

 458

8.3.4.2.1 AlternateContent Syntax 1

<AlternateContent> 2

 <Choice Requires="namespacefoo"> 3

 <Somemarkup/> 4

 <Choice Requires="namespacefoo namespacefoobar"> 5

 <Somealternatemarkup/> 6

 <Fallback> 7

 <Choiceoflastresort/> 8

</AlternateContent> 9

The AlternateContent element and its children, Choice and Fallback, are used to provide alternates for 10

specified content. Each Choice element is examined in turn. The Requires attribute specifies a set of space-11

delimited namespaces that must be understood in order to select that choice. If there is a match between 12

required namespaces and what the consumer understands, the appropriate Choice is returned. If there are 13

multiple possible matches, only the first match is returned. An optional Fallback element can be used, and is 14

utilized as a default when no match occurs. 15

8.3.4.2.2 Example 16

Using PML 2007 and PML 2009, let’s assume that PML 2007 understands some current schema version while 17

PML 2009 will understand some future extended version of the current schema. 18

PML 2007 knows how to handle connectors: 19

 20

 21

Now let's suppose that we desire to add a notion of labels on connectors: 22

 23

Two alternate representations are required: PML 2009's schema has been extended to natively understand 24

how to represent a label on a connector; however, PML 2007 does not. With PML 2007, we approximate this 25

feature by representing the connector and label independently. The label is represented using a textbox. To 26

keep the two elements together, for convenience sake, they are grouped. 27

Looking at the corresponding XML, PML 2007's markup looks as follows: 28

Miscellaneous Topics

 459

 1

PML 2009 has been extended such that we may represent a label natively: 2

Miscellaneous Topics

 460

 1

The final markup putting these choices together is as follows: 2

Miscellaneous Topics

 461

 1

8.3.4.2.3 AlternateContent Round-Trip Behavior 2

AlternateContent maintains multiple representations for the same content. Consider an extreme case. Using 3

the example above, let's suppose one edited the label using PML 2007. As PML 2007 wouldn't understand 4

future representations, there is no possibility that it could keep PML 2009's markup consistent with the edit 5

performed. Considering a simple case, let's suppose one deleted the label in its entirety. PML 2007 would only 6

know how to delete the corresponding textbox, and would not know how to update the corresponding 7

cntrLblPr. 8

If this textbox contained sensitive information, one might consider this a security leak. The user's belief is that 9

the information in the textbox was deleted, yet it persists in an alternate representation. 10

To solve this problem, all AlternateContent choices are discarded when an edit is performed at the location 11

the AlternateContent is placed. It is the consuming client's responsibility to replace the discarded 12

AlternateContent with a new representation. 13

If an edit to the label occurred in PML 2007, the PML 2009 version is discarded. 14

If an edit occurs in PML 2009, since PML 2009 understands both PML 2007 and PML 2009 schemas, it is 15

possible for PML 2009 to write an updated AlternateContent Block encompassing an update to both choices. 16

End of informative text. 17

	Office Open XML
	Table of Contents
	Foreword
	Introduction
	Scope
	Introduction to WordprocessingML
	Stories
	Basic Document Structure
	Main Document Story
	Document Backgrounds

	Paragraphs and Rich Formatting
	Paragraphs
	Runs
	Run Content
	Text

	Formatting Property Values

	Tables
	Introduction
	Table Properties
	Table Grid
	Table Rows and Cells
	Table Layout
	Fixed Width Tables
	AutoFit Tables
	Complex Table Example
	Vertically Merged Cells

	Custom Markup
	Smart Tags
	Custom XML Markup
	Structured Document Tags
	Structured Document Tag Properties
	Structured Document Tag Content
	XML Mapping

	Sections
	Section Properties
	Section Breaks

	Styles
	Styles Part
	Style Definitions
	Paragraph Styles
	Character Styles
	Linked Styles
	Numbering Styles
	Table Styles
	Default Document Paragraph and Character Properties
	Style Inheritance
	Style Application
	Latent Styles

	Fonts
	Font References
	Font Reference Types
	Ambiguous Characters
	Font Table
	Font Substitution Data
	Font Embedding
	Theme Fonts

	Numbering
	Numbering Part
	Numbering Definitions
	Abstract Numbering Definitions
	Numbering Definition Instances
	Applying Numbering to Paragraphs
	The Complete Story
	Numbering Styles
	Referencing Numbering Styles

	Headers and Footers
	Header Part
	Footer Part
	Headers and Footers
	Multiple Sections
	Empty Header or Footer

	Footnotes and Endnotes
	Footnote Part
	Endnote Part
	Footnotes and Endnotes
	Footnote and Endnote Types
	Footnote and Endnote Reference

	Glossary Document
	Annotations
	Introduction
	Inline Annotations
	Cross-Structure Annotations
	Property Annotations
	Comments
	Comments Part
	Revisions
	Bookmarks
	Range Permissions
	Spelling and Grammar

	Mail Merge
	Mail Merge, WordprocessingML, and Hosting Applications
	Connecting Documents to an External Data Source
	Populating Merged Documents with External Data

	Settings
	Document Settings
	Compatibility Settings
	Web Settings

	Fields and Hyperlinks
	Fields
	Hyperlinks

	Miscellaneous Topics
	Text Boxes
	Subdocuments
	Importing External Content
	Roundtripping Alternate Content

	Introduction to SpreadsheetML
	Workbook
	Overview
	Minimum Workbook Scenario
	Example Workbook Properties
	fileVersion
	workbookView

	Sheets
	Minimum Worksheet Scenario
	Example Sheet
	Sheet Properties
	Sheet Data
	Supporting Features
	Sheet Properties
	sheetData Cell Table
	Row
	Cell
	Cell Values
	Formulas
	Shared Formulas
	External Referencing Formulas

	Supporting Sheet Features
	Defined Names
	AutoFilter
	Merged Cells
	Conditional Formatting

	Shared String Table
	Overview
	File Architecture
	Example: Plain Text
	Illustration
	The XML
	Shared String Table
	Cell Table
	Example: Rich Text
	Illustration
	Shared String Table

	Tables
	Overview
	File Architecture
	Example: Table
	Illustration
	The Sheet XML
	The Table XML

	Calculation Chain
	Overview
	Example
	Partial Calculation
	First Full Calculation
	Twentieth 20th Full Calculation

	Comments
	Overview
	Example
	File Architecture
	The XML
	Authors
	Comments

	Styles
	Overview
	File Architecture
	Organization in the Styles Part
	Number Format Expressions
	Font Definitions
	Fill Definitions
	Borders Definitions
	Master Records - Cell Styles
	Master Records - Formatting
	Cell Styles
	Differential Formatting Records
	Custom Table Style Definitions

	Example
	Illustration
	File Architecture
	The XML For This Example
	Cell D2 Formatting
	Custom Table Style

	Worksheet Metadata
	Overview
	OLAP Cube Review
	OLAP Function Summary

	File Architecture – Relationships
	Example
	Illustration
	Function Summary
	Walk Through

	Worksheet Metadata XML
	General Organization
	Metadata Behaviors
	Metadata Strings
	mdxMetadata
	valueMetadata

	Pivot Table, Pivot Cache, and Common Types
	Feature Overview
	File Architecture
	Example - Native with Range Source
	Illustration
	XML - pivotCacheDefinition part
	XML - pivotCacheRecords part
	XML - pivotTable part
	Attributes on pivotTableDefinition
	Location Information
	PivotTable Fields
	Row Axis Fields
	Row Items
	Column Axis Fields
	Column Items
	Report Filter Area Fields
	Values Area Fields
	PivotTable Style Information

	Shared Workbook Revisions
	Overview
	How It Works
	Example
	First Edit
	Summary Revision Table
	First Edit Revision Log

	Second Edit
	Summary Revision Table
	Second Edit Revision Log

	Third Edit
	Summary Revision Table
	Third Edit Revision Log

	Fourth Edit
	Summary Revision Table
	Fourth Edit Revision Log

	Fifth Edit
	Summary Revision Table
	Fifth Edit Revision Log

	Query Tables
	Overview
	Web Query Example
	QueryTable XML

	Text Import Example
	QueryTable XML

	Access Table Example
	QueryTable XML

	External Connection
	Overview
	OLAP Connection
	Pivot XML fragment
	Connection XML
	Web Query
	QueryTable XML
	Connection XML
	Unused Connection
	ODBC
	Connection XML
	SQL
	Connection XML
	Text Import
	Connection XML

	External Links
	Overview
	Formula Example
	Sheet XML
	Cell B2
	Cell C2
	Workbook XML

	Workbook Relationships
	Supporting Workbook Cache (Cell C2)
	External Link (Cell C2)
	Supporting Workbook Cache (Cell B2)
	External Link (Cell B2)
	Hyperlink Example
	Worksheet XML
	Relationship

	Volatile Dependencies
	Overview
	File Architecture - Relationships
	Example
	Illustration
	volatileDependencies.xml
	RTD Supporting Data
	Cube Function Supporting Data

	Custom XML Mappings
	Overview
	File Architecture - Relationships
	Conceptual Model
	Example
	Illustration
	The xmlMap XML
	The Table XML
	Single Cell XML

	Formulas
	Introduction
	Constants
	Operators
	Cell References
	Functions
	Names
	Types and Values
	Error values
	Dates and Times
	Date Representation
	Time Representation
	Combined Date and Time Representation

	XML Representation

	Introduction to PresentationML
	Basics
	Introduction
	Basic Utilities
	Empty Element
	Name
	Direction
	Index and Index Range
	Slide Show ID
	Slide List Choice
	Slide Relationship
	Customer Data
	Future Extensibility

	The Presentation Object
	Structural Information
	Presentation-Level Properties
	Text-Related Properties
	Save-Related Properties
	Editor-Related Properties
	Content-Related Properties

	Presentation Properties
	HTML Publish Properties
	Web Properties

	Print Options Properties
	Slide Show Properties
	View Properties

	Slides, Masters, Layouts, and Placeholders
	Introduction
	Masters
	Slide Master
	Notes Master
	Handout Master

	Presentation Slide
	Notes Page
	Slide Layouts

	Comments
	Introduction
	Functional Overview
	Comment Author List
	Comment List

	Animation
	Introduction
	Slide Transitions
	Timeline Overview
	Timeline Construction
	Animation Behaviors
	Conditional Properties
	Build Animations

	Slide Synchronization
	Introduction
	Slide Update Info

	Introduction to DrawingML
	Basics
	Introduction
	Overview
	Basic Elements
	Colors
	Compatibility
	Locked Canvas

	Audio and Video
	Introduction
	Functional Overview
	DrawingML Syntax

	Styles
	Introduction
	Shared Style Sheet
	Theme
	Theme Elements
	Color Scheme
	Font Scheme
	Major and Minor Font (Font Collection)
	Supplemental Font
	Format Scheme (Style Matrix)
	Fill Style List
	Line Style List
	Effect Style List
	Effect Style Item
	Background Fill Style List
	Table Styles
	Cell 3D
	Themeable Styles
	On/Off Property Definition
	Text Properties
	Cell Border Properties
	Cell Style Properties
	Table Background Style
	Table Part Style
	Table Style
	Table Style List

	Text
	Introduction
	Overview
	Body Level Properties
	Setting Up the Text Area
	Manipulating the Text
	Backwards and Forwards Compatibility
	Paragraph-Level Properties
	Spacing, Alignment, and Direction
	Tabs and Line Breaks
	Adding Bullets
	Run- and Character-Level Properties
	Visual Properties
	Properties for Interactivity
	International Language Support

	Tables
	Introduction
	Table Styles
	Cell 3-D
	Themeable Styles
	On/Off Property Definition
	Text Properties
	Cell Border Properties
	Cell Style Properties
	Table Background Style
	Table Part Style
	Table Style
	Table Style List

	Table Definition
	Cell Properties
	Column
	Table Grid
	Cell
	Row
	Table Properties
	Table

	3D Aspects
	Introduction
	3-D
	3-D Scene
	Camera
	Light
	Backdrop

	Styles
	Simple Types
	Bevel Type
	Preset Material Type

	Complex Types
	Bevel
	Shape 3-D
	Flat Text
	Group, Text 3-D

	Coordinate Systems and Transformations
	Introduction
	Coordinate System
	Shape Transformations
	Scaling and Translating a Shape
	Rotating a Shape
	Flipping a Shape

	Group Transformations
	Scaling and Translating a Group
	Rotating a Group

	Nesting Transformations
	Transformation Matrices
	Symbol Definitions
	Transformation Pipeline

	Shape Properties and Effects
	Introduction
	Color Models
	scrgbClr
	srgbClr
	hslClr
	sysClr
	schemeClr
	prstClr

	Color Transforms
	Fills
	Solid Fills
	Gradient Fills
	Blip Fills
	Pattern Fills
	Group Fills

	Line Properties
	Line Fill Properties
	Line Dash Properties
	Custom Dashes

	Line Join Properties
	Head/Tail End Properties
	Line Attributes

	Effects
	Effects Lists
	Blur
	Inner Shadow
	Outer Shadow
	Preset Shadows
	Reflection Effects
	Soft Edge Effects
	Glow Effects

	Shape Definitions and Attributes
	Introduction
	The Coordinate Systems
	The Document Coordinate System
	The Shape Coordinate System
	The Path Coordinate System

	Specifying a Preset Shape
	Defining a Preset Shape
	Adjusting a Preset Shape

	Specifying a Custom Shape
	Defining the Geometry
	Adjusting the Geometry
	Geometry Guides
	Adjust Handles

	Additional Properties
	Connection Sites
	Text Rectangle

	Pictures
	Introduction
	Specifying a Basic Picture
	Attaching Properties to this Picture
	Transforming this Picture

	WordprocessingML Drawing
	Object Anchoring
	Text Wrapping

	SpreadsheetML Drawing
	Introduction
	Overview
	Worksheet Drawings
	Anchoring Types
	Absolute Anchoring
	One Cell Anchoring
	Two Cell Anchoring

	Charts
	Overview
	Basic Chart Types
	Basic Chart Components
	3D Charts
	Chart Styles

	XML Overview
	Relationships
	Chart

	Example

	Chart Drawing
	Introduction
	Overview
	Chart Drawings
	Anchoring Types
	Absolute Size Anchoring
	Relative Size Anchoring

	Diagrams
	Introduction
	Element Property Set
	Presentation Element Properties
	Document Element Properties
	Semantic Element Properties
	Customization Properties

	Data Model
	Structural Elements
	Element Type
	Relationship Type
	Element
	Relationship
	Element List
	Relationship List
	Data Model

	Color Transforms
	Structural Elements
	Color Application Method
	Hue Direction
	Colors
	Style Label
	Version
	Color Transform

	Color Transform Header

	Style Definition
	Structural Elements
	Text Properties
	Style Label
	Style Definition
	Style Definition Header

	Layout
	Basic Layout Types
	Algorithm Type
	Axis Type
	Boolean Operators
	Child Order Type
	Constraint Types
	Constraint Relationships
	Element Type
	Parameter ID
	Function Type
	Function Operator
	Horizontal Alignment
	Vertical Alignment
	Child Alignment
	Secondary Child Alignment
	Linear Direction
	Secondary Linear Direction
	Starting Element
	Rotation Path
	Center Shape Mapping
	Bend Point
	Connector Routing
	Arrowhead Style
	Connector Dimension
	Connector Point
	Node Horizontal Alignment
	Node Vertical Alignment
	Fallback Dimension
	Text Direction
	Pyramid Accent Position
	Pyramid Text Margin
	Text Block Direction
	Text Anchor Horizontal
	Text Anchor Vertical
	Text Alignment
	Auto Text Rotation
	Grow Direction
	Flow Direction
	Continue Direction
	Breakpoint
	Offset
	Hierarchy Alignment

	Variable Type
	Output Shape Type

	Diagram Definitions
	Lists
	Function Value
	Direction
	Hierarchy Branch Style
	One by One Animation
	Level Animation
	Org Chart Flag
	Node Count
	Child Max
	Child Preference
	Bullets Enabled
	Direction
	Hierarchy Branch Style
	Animate as One
	Animate by Level
	Layout Property Set
	Iterators
	Constraints
	Constraint References
	Constraint
	Constraint List
	Rule
	Rule List
	Presentation Of
	Layout Shape
	Index1
	Adjust Handle
	Adjust Handle List
	Shape
	Parameter
	Algorithm
	Layout Node
	For Each
	When
	Otherwise
	Choose Statement
	Sample Data
	Common Structures
	Diagram Definition

	Introduction to VML
	Introduction
	Shape Element
	Geometry
	Height and Width Attributes
	Path Attribute

	Placement
	CoordOrigin and CoordSize Attributes
	Position Attribute

	Formatting
	Other

	Group Element
	ShapeType Element
	VML Usage in the Office Open XML Format
	OfficeArt Shapes
	SpreadsheetML Comments
	WordprocessingML Text Box

	Introduction to Shared MLs
	Math
	Accent Object
	Bar Object
	Border Box Object
	Box Object
	Delimiters
	Equation Array Object
	Fraction Object
	Function Apply Object
	Group Character Object
	Upper and Lower Limits
	Matrix Object
	N-ary Object
	Phantom Object
	Radical Object
	Scripts (Superscript, Subscript, SubSuperscript, PreSubSuperscript)

	Metadata
	Metadata Properties
	Core Properties
	Extended Properties
	Custom Properties
	Variant Types

	Custom XML Data
	Bibliography
	Types of Sources
	Child Elements
	Author
	LCID, Guid, Tag, and RefOrder

	Miscellaneous Topics
	Additional Characteristics
	Embeddings
	Embedded Packages
	Embedded Objects
	Embeddings in a WordprocessingML Document
	Embeddings In Line With Text
	Floating Embeddings

	Embeddings in a SpreadsheetML Document
	Embeddings in a PresentationML Document

	Future Extensibility
	Terminology
	What is Future Extensibility?
	Future Extensibility Requirements
	Future Extensibility Constructs
	extLst/ext
	extLst/ext Syntax
	Round-Trip Behavior of ext Blocks
	Example

	AlternateContent Blocks
	AlternateContent Syntax
	Example
	AlternateContent Round-Trip Behavior

