Office Open

eeeeeeeeeeee

3

O 00 N o wu

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Table of Contents

Table of Contents

0T = Vo T o Xi
QYo T Lot T o Xii
Y oo o = 1
2. Introduction to WordprocessSingIML........ccueuueuiiiiiniiinemmnnssiiiniiinemssmssiiiimisssssssssiimmmssssssssssssssmesssssssssses 2
A Y o] 1= TP PPPT PP 2
2.2 BasSiC DOCUMENT SEIUCTUIEttt e e e e e et e e e e e e e e e bt e e e e e e e e snnneneeeas 2
P T |V, =TT Do Yol U0 o T=T o L] o] Y PP PPPPPPPPPPIRE 3
20 704 N B o TolU 13 o V=Y oYl 7= Yol €4 o T Lo L3 PR 3
2.4 Paragraphs and RiCh FOIrMattingcueiiiiiiiei ettt et e e tte e e e ette e e e e bte e e eebteeessntaeaesans 4
D N R - 1 -4 =T o] o P 4
B A ¥ | o [P PP PPTOPPPPTN 5

P . B ¥ [o [@o] o 1T o | AP PP PO PPTPPPPPTN 7
2.4.4 FOrmatting ProPerty VAlUEScccueiiieeiiiii ettt e e e et e e e e tte e e e e aae e e e e ntaeeeenntaeaeensenesennnens 8
D2 T -1 o1 13U 9
28 70 R [0 o Yo ¥ T o T o T PSPPSR 9
DT A -1 o1 [oY oY= o =PRI 10
DT T -1 o1 [G o PSP 11
2.5.4 Table ROWS @Nd CelIS.....uuiiiiiiiii ettt e ete e e e sbee e e et ae e e e abee e e esabeeessnnbeeessnrees 12

P T T -1 o1 I I 1Yo T U PRSP 14
2.5.6 FIXEAd Width TableS ..ccccueiiiee ettt e e et ee e e e bae e e e b ee e e esabeeeesnbeeeesnres 15
DT A YU o] o =1 o] 1T PPRPR 15
2.5.8 ComMPIeX Table EXAMPIE ..eiiiiiiiei it cetie ettt ettt e e st e e e et e e e s sabee e e esabae e e eabeeeeesnseeeessnreeeesnnsens 16
2.5.9 Vertically MErged Cells.......o ittt ete e e et e e e bae e e e sabe e e e esabaee e ssabaeeeenres 17

D ST OV 1 o] o 4 I\, - [(0 o RS 19
B TNt Y o o - T I £t 19
2.6.2 CUSTOM XIVIL IMIarKUP .. .cviiee ettt ettt ettt e e tte e e et e e e e e ta e e e e e abae e e e abaeaeenbaeeeennbeeeeennsaneeennrens 21
2.6.3 Structured DOCUMENT TAES .ueveiiiiiiiiiiiiieeeeeieieiitirreeeeeseiitttreeeeeeeessasarereeeessesannsseneseeessasssssensneesessnnnnnns 23

D A Y=o 1 (o o PP UPPPUPOPTP 26
D N Y- ot (o o TN o o] o 1= L= PRt 27

D B Y- Yoi (oY Y = T T | 3 28

D T 4V (=TSSR 29
D J0 N 4 V] (=T 2= Y o USRS 29
DR T A 4 V] (N D =Y 1Y o T LSRR 29
2.8.3 PaAragraph STYIESo e e e et ae e e e ae e e e eareeeeenraes 30
PR R R O o F- T - ot £ =T Y 2] LTSRN 32

D TR T] o] (e By 8] L= PRSP 33
2.8.6 NUMDEIING SEYIES ..veeiiiiiie ettt et e e e e e e tr e e e e stte e e s eabae e e e abaee s e abaeeeesaseeesennseeesensens 36
DR T8 A - o1 I 4] =TSSP 36
2.8.8 Default Document Paragraph and Character Propertiesccccoceeeiicieeiccciee e 40
PR3N Y 4 V] (N 1Y oY = o Vo S PP 40

D 201 L I 4 V] (=N o] o] [oF- | oY o VUSSP 41

D 20 B R I Y 0] Y S PPRP 42
PR B oo 11| £SO U P TP UPPPPPOPRP 43
D28 TN A o o Y 2= Y =Y ool Y 43

O 00 N O U A W N B

A A B D D D PSH DA DWWWWWW W WWWNNDNDNDNDNDNDNDNNDNNDNR R R R R P RB RB R
00 N O A W N P O VO OO N O U B W N P O O WO NO LA WN PFRP O O OO NO UL A W N = O

Table of Contents

DR A oY o 1= L= =T o Yol I N =SSRt 43
PR R T Yo o] o1 = {0 e JU L O o = ot =T PSPPI 44
DR IR S o A 11 o] [P 44
2.9.5 FONt SUDSTITULION DAta ..uuiiiiiiiiiiiiiie sttt et e e e ee e e e sabee e e et e e e ssabee e s snbeeesenrees 45
P28 TN ST o o 35 0] o T=T o 1o V- PSPPI 45
PR B A I o 1=T0 V=N o) £ ST STP 46
B2 0 N 1U T 0] oY= 1o Y-SR 46
2 0I5t R N 1W T 0] o 1= g Ve - o O PUP 47
2.10.2 NUMDBEIING DEfiNITIONS ...eeiiiiiiiii et bre e e e ee e e e b ee e e e enbeeeeesnbaeesenres 47
2.10.3 Abstract NUMbBering DefiNitioNS.......ccocciiii it e e e e rrae e e e satee e e e earae e s enneees 47
2.10.4 Numbering Definition INSTANCES.......cciciiiei it e e srre e e e rbae e e e saree e s esnraeeeeenrees 50
2.10.5 Applying NUMbEring to Paragraphscceiiciiiee ettt e e rvae e e e earee e e e enrae e e e nrees 51
D O I N o 1ol @00 Y] =]) o] PP 54
2.10.7 NUMDEIING STYIES ..veeeiiiiee ettt et e e et e e e s et e e e esbee e e s abaee e e abaeeeesnbaeeeennseeeeennraeesensees 55
2.10.8 Referencing NUMDBEING STYIESuviii et tee e e e bee e e e earee e e enrae e e eennees 56
D R o T=F- o [T ST o Lo I o Yo] PR 59
D S R o =T o [Tl o Y PSSP 60
Dt A o T} (= gl o | AP PP PP PP PP PPPPPPPPPPPPPPPOt 60
D T & =T Vo [T S T o To I oo | =] PSPPSR 60
D V[0 AT o] [Y=Y o PSPPSR 63
D T o oo Y VA o [T [T o o Tl oo Yo} T PP 64
P28 2 o To 4 Lo] =T3E- [o I = g o [To] =13 USSR 64
D 0 R o T} g Lo (= =Y o PP PP P P PP PP PPPPPPPPPPPPPOt 65
D A o To [o To 1 < - T o PRSP 65
P28 7055 T o To 14 Vo) £ Y3E- [o I S g o [oo 1P PP 66
2.12.4 Footnote and ENANOTE TYPES ..eiiiciiieeieiiie e ecieee ettt e ettt e e et e e e e etee e e e eabae e s eeataeaeesabeeeeesnseeesennseeeeennsens 67
2.12.5 Footnote and ENANOtE REFEIENCE ...ccuiiiiieictee ettt sve e s ae e s te e ebe e e snaeeenees 71
DA e T €1 (o 13- | V2 Lo Yol ¥ 4 1 1= o Y ARSI 72
P AN o [T =) 4 o] L3O OO UPPPPT RO 73
28 I 35t R [0 o Yo [0 T o Y o F P PO PP TPPP 73
D A [o111 Y0 o T o = [[S 74
2.14.3 Cross-STructure ANNOTAtIONS ..ccci ittt ettt e e e e e e s ee et e e e s s snnrebeeeeeeesennnne 74
N S o o T oY= o Y 2\ gV T) - T o PRt 75
2. 145 COMMEBNTS . .eeeeeetee ettt e e e e ettt et e e e e e ettt e e e e e e e s e b et e e e e e e e e anra b et eeeeeeeaannrbnteeeeeeaaannrebeeeaeeeaaaannne 76
2.14.6 COMMEBNTS PAlT....ooiiiiiiiieeiee ettt ettt e e e e e e ettt e e e e e e s abebe e eeeeeee s nnrbrteeeeeeaaannreneeeeeeesaannnns 78
2.14.7 ROVISIONS..eiiiiiiieiiitieeeeettee e sttt e e ettt e e sttt e e s aabe e e e saubeeeesaubeee s s nbeeessnbaeessnbeeesenbeeeeeareeeeeanreeesenranesennres 78
2.14.8 BOOKMAIKS. . .veiiiiieiieeiiie ettt et ste e ettt e st e st e e stbe e st e e e bbeesab e e sabeeesabeesabeeenbeesabe e e bbeesabaesabaeenabeeeares 79
2.14.9 RANGE PEIMISSIONS iiiiiiiiiiiiitiietiiiiiiiiteeeeeessssirtteeeeeesssstbreeeeeessssssabaraeaeesssssssssssaeeeesssnsssseseeesesssnsnsnns 80
2.14.20 SPelling @Nd GramMaAr.....ccccccieeeiiiieeeceiiee e seitee e eette e e e etee e e e sbeeeessabaeeesasbaeesesssaeeeassseeeesssseeesssnseeessnnsens 81
D R Y T Y =T o USSR 81
2.15.1 Mail Merge, WordprocessingML, and Hosting ApplicationsS........cccceeveiieiiiciiee e 82
2.15.2 Connecting Documents to an External Data SOUICEccoovcieiiiciiei e 82
2.15.3 Populating Merged Documents with External Data........cccccceeeieiiiiiiiiiiee e 83
P LSRN Y1 0] o =P P PP PPPPPPPPPPPPPPPPPPPPPRE 85
B0 70 R B To Yol 0 0 1= o | AT =Y o] =4 PP P PP PP PPPPPPPPPPPPPPPPPRE 85
2.16.2 Compatibility SELHINGS e e e e e e e e e e narraaeeaeeeennnnnes 86
B T T VAV oY JY=Y o [TSRS 87
D A 1T o R Y Vo I AV o Y=Y o 17]SSP 87

36

38
39

41
42
43
44
45
46
47

Table of Contents

0 A R 1= £t 87
D A & V] T=Y g 11 0] PSP 88
2.18 MISCEIANEOUS TOPICS. .utiiiirriteiiiieteiiittteessettteesetteeseetteeeesesteeeesaataeeesassaeeeaastaeesssssaeeesssssnessassseessnssseessnssseeen 88
D Tt R = ol = To) (=L PP PP PPPPPPPPPPPPPPPPPPPOt 88
D T U o To Lo Yol U 13 0 1= o) £ PSPPSR 88
2.18.3 IMporting EXtErNal CONTENT.....cciiiiiiei et e e e e et ae e e eeaba e e e e abee e e eeareeeeesabaeesennsees 89
2.18.4 Roundtripping AILErNate CONTENT ...ccciiiiie ettt sre e e eree e e e ebee e e e eatee e e eearaeeeennees 90
3. Introduction to SPreadsh@etML...........ccueciiieeiiiiieecerrreererrreeeeerrennesrrenssessennssessennssessennssessennssessennnnsnns 93
0 A V1Yo T o 4T To USRSt 93
01 0 R O 17T V11 93
3.1.2 Minimum WOrkbooK SCENAIMIO ..ciiiiiiii ittt e et e et e e s sbae e e e ssnaeeeeeans 93
3.1.3 Example Workbook Propertiesc.ueiiieciiiiiiiiiee ettt e sttt e et e e st e e s sbae e e s snaaeaeeans 93
0t I 1 1oAY T Y 1] o SRR 95
3.1.5 WOIKBOOKVIEW ettt et e e e et e e e e bt e e e e e bte e e s ebteeesesteeasenseaeaeenseneananns 95
B [T £ SRR 96
3.2.1 Minimum WOrKShEET SCENGAIIO ...cc.eviiiieiiiee ettt ettt e e e tte e e e e bte e e e ebte e e e ebaaeeeeneeeeeaans 96
I A -1 0] o] (I T AU 96
0 T o [TcY o o o T=Y o SRS 97
A R o [TCY D -1 - (U 98
3.2.5 SUPPOITING FEATUIES ...uuviitiiiiiiiiitititttt s nannnnnnnn 102
I S T o [Tl o o] o T=T o U 103
A o 11y d D - | = W =] I =1 o] =TS 103
20 - T o 17T PSPPI 103
0 B = | DS U U SRU 104
3.2.10 SUPPOILING SNEET FEATUIES...cuuiiii ittt eecitee ettt ee ettt e e e st e e st e e e e ara e e e eaareeesaseeeesntaeeesannseeeen 106
I R 1= T = N V- o TSRO 106
I A A YU o] o1 1T S O O T T O TSP TOU PRSP OPOTOPRRPPPRTOT 106
I R T |V =Y =Y I]| LU 107
0 A 0o [o [o o =1 Il oo g s g - L [o= USSR 107
e Y o = T4 =T I d g oY= -1 o] T PP 108
3.3.1 OVEIVIEW wetiiieiiiiiiiiiteee e e ee sttt et e e s es sttt et e e e e seaabtbeaeeeeessasssbsaaaaeessssssssbasaaeeesssnssssrtsaeeeessssssssseaaaeeesns 108
3.3.2 File ArCRITECIUIE ..ottt sttt e st e st e e sabe e sabeeesabeesabeesbaeesabeesnneean 109
I T T - o 0 o] (R ad - 11 T =Y G SRS U 110
I T A 11 (VT o =Y 4o o ISR 110
0 70 T I o T {1 RSP 110
o T ST o =T =To I] 1 g V= = o] =TSR 117
I T A =Y | B =Y o L= USSR 118
o TR N -1] o (T 2ol = AU 119
I TR I 11 (VT o = 4T o ISR 119
I 0t (O T o =Y =T B 4 oY= - o) 1RSSR 119
S 1= o] =TSR 122
S R O 17T V11 122
N S 1 [l g o 11 =] U 122
S T - 1 0 o] (S - o] LSRR 123
S R 1| (VT = 4 [o TSR 123
345 ThEe SNEEE XIML...ueiiiiiiieiieeciee ettt ettt ettt st e st e s bt e e s be e s bae e sabeesabaeesabeesabaesnbaeesaseesnssees 124
34,6 ThE TADIE XML ueiiiiiiieie ettt ettt et ettt bt e e st e e st e e sabeesabeeesabeesabaesnbaeesabaesnssees 124

O 00 N O U A W N B

A A B D D D PSH DA DWWWWWW W WWWNNDNDNDNDNDNDNDNNDNNDNR R R R R P RB RB R
00 N O A W N P O VO OO N O U B W N P O O WO NO LA WN PFRP O O OO NO UL A W N = O

Table of Contents

R 6| (o] = 4 o1 o @1 o = 11 s F PP PPPPPPPPPPPPPPRt 125
8= T B @ 1Y T o V1L TP 125
I T A b - 1o 0] o] (=SOSR 125

T I 0o 0 ¢ 0 4 1= 1 3OS 129
ST R @ 1Y T o V1L RPN 129
T A 5 -1 1 0] o (=TSR 129
e T S 1 <3V o] o1 (=T {0 | TR 130
S S I o T=ID {1V, | OO 130
S T 1 YU 1 o o] SRRSO 132
Y ST I o] 010 0 1= o} £ TR 132

B A 1Y/ L= PSR 133
TN R O 1T o V1= L U UUTN 133
A R S 1 =N N o] o1 (=T (| TSRS 133
3.7.3 Organization in the StYIES Part.......c.eie ittt e e e e et e e e e raaa e e e st ae e e eannaeee s 134
R 3 -1 o o] o (=TSR 137

R T 1Yo ¢ & LYy f VL <L €= o = = ISP 149
R T B @ 1V <1 o V11 U UUPTUPRN 149
3.8.2 File Architecture — RelationShips........iiiiciiiiiiiiiie ettt e e e e s rae e e ssanaeee s 151
S 0 T - 11 0 o] L= USSR 151

3.9 Pivot Table, Pivot Cache, and COMMON TYPESvuiiiiiiiieeiiiieeeceitee e esttee e seree e s e sbeee e esbee e e ssabeeeessabeeeesnsens 164
3.0.1 FRATUIE OVEIVIEW covuueieiieieeeiiiiee ettt e e e e e et et b eee e e e e s eeesab e seeesasessbaaaaseeesssssssannseeesessssrnnnaseeesesssnen 164
e T A o1 LN Y ol Y1 =Tt (U1 <N 166
3.9.3 Example - Native With RANZE SOUICEuviiiiiciiiieeceee ettt e e e e e e srae e e ssnaeee s 167

3.10 Shared WoOrKDOOK REVISIONS......uuuuueiiiiiiiitiiiiiierertteeeresererereeereeeeeeereeeseaeeerererer—.—.—..—errereererrrr.rre.—... 184
0 0 T @ 1V7=Y V7 = Y R 184
0 0 T o MY VN | YA o T TR 184
I O IR T 3 - Yo] o L= 185

I A O LU 1= o - | o1 L= PR 194
0 Ot N @ 1T o VL RN 194
3.11.2 WeEb QUEIY EXAMPIE ittt e ettt e e et e e e ettt e e e et e e e e e ata e e e e asaeee e ssaeeeeansaseesnsaeeesanseneann 194
o 0 T = [Yoo Yl oY% [4 o [USSR 194
I O R 1 Vol ol T =Y o] [=T 0 Vo] LTSRS 195

N I =] o = I 0o Y Y [Tt 4[] o 196
0 0t R O 1Y T o V=L U 196
S0 77 @ 1 AN o 0] o] =To1 o o RN 197
3.12.3 PiVOL XIMIL fragmeNnt...cccceeiiee ittt ettt e e st e e ata e e e et e e e e et e e e sstbeeeessaaeesnsaeeesnnseeeenn 198
01 1072 S o oY =T o 1€ 1 | 198
N I V=T o I O [T YU 199
I A ST @ U= oV = o1 [USRS 200
20 7 A o] o] o T=Tot d o] 4 10 {1V | PPN 200
3.12.8 UNUSEA CONNECTION cueiiiiiiiiiiiiieeee e eeecirteee e e e e eeeetrer et e e eeesetabaeeeeeeeeeessbssasesesesesassraaseesesessssssreseeeeesans 201
3.02.9 ODBC .uuuiiiiiiieeeeeieiitttee et e e eeect et e e e e e e e e a et e e e e e e e a bbb a—aae e e e e e bbb ——aaaeeeaa bbb aatataeeeaaataraaraaaeeeeaaaaarrrraaaeeenn 201
70 700 0 I o] o] o =Tt f o 4 10 1Y/ PPN 201
N 1 Y © | OO URR U URU 201
0 7t A 0o o] o =Tt f o 4 10 1Y/ TP 203
00 107201 G T 1= 4 [Yoo o 203
0 700 A 0] oY o =Tt f [o] 4 1Y/ RN 204

3.0 EXEEINAI LINKS.uuttuiuiiereieiitiieiiietereeeeetererereeeeererererererererereaeeearsesrsraessnsenns 205

Vi

O 00 N O U A W N B

W W NN NNNNNNNNDRR R R B B B P B
B O VW 00 N O 1 B W N P O W B N O Ul A W N B O

32

34
35
36
37
38
39
40
41
42
43
44
45
46
47

4,

Table of Contents

00 T80 R O 17T V11 205
N I T A o T o 10| T o [4T o [P 205
0 1 . T o 1T A/ | S EU ST 205
3.13.4 WOrkbook REIQtiONSHIPS ..vviiiieiiiiiiiiie ettt s e e s e e e s sare e e e ssnbaeeesnnneee s 207
3.13.5 Supporting Workbook Cache (Cell C2) ..ottt tee et rae e sre e e aee s 208
I B e =] ¢ o Tl T | (=Y |) SRR 209
3.13.7 Supporting Workbook Cache (Cell B2)ccocuiieieiieee ettt e e e e e e et e e e ssaaaee s 209
3.13.8 EXEErNAl LINK (CRIIB2) ..ottt e ettt e e e e e e et e e e e e e seessbaeeeeseeeenssareseeeeeeenn 210
3.13.9 HYPEIIINK EXGMPIE....eeie ettt e et e e ettt e e e et a e e e e bt e e e e nsaeeeenseeeesnsaeeesnnsaneean 211
I T8 K BTV T o] T=T =1 0 41/ | U 211
I 700 I O 0= = T T o o U 211
I A o oY] Lol =Y o1 <Y g T F=T [l =PRSS 212
00 0 R O V7= Y11 212
3.14.2 File Architecture - Relationshipsooieiiiiiciiie e e e e s aaeee s 212
I T 3 - Yo] o L= 212
3.15 CUSTOM XIMIL IMIAPPINES . cttttiieiiiiititeeteeseiiitttteeeessssibtteeeeeesssaaatbteaeeeesssassssaaaeeessssassssseaaeeessssssnsssenaeesssnns 214
01 = 700 R O 17T V11 214
3.15.2 File Architecture - Relationshipsciieiiiiiiciiic et e e s saaeee s 215
N TR T 0o T (oY o (U= | 1Y, o o 1] U 216
N R0 A - T 0 o (=R 216
N S o V1= TSRO PPRPR 222
00 % R 1o f o Yo [o [SRR 222
0 0 A 010 o 1) =1 o | €T P PPPPTTPPPRN 222
0 TR T O o =T =1 o 222
N o S O | I < =T =T o Vol TSRS 224
00 T8 T T o Vot of [0 3 225
00 T8 T 1= [0 = 225
3.16.7 TYPES NG VAIUEBS.....viiiieiiiee ettt ettt e e ettt e e e et e e e s bt e e e e eetteeeesataee e e ssaeeeeassaeeeeanssseesnsaeeesanssneenn 225
N TR T 4 oY RV =Y (V1= 225
N L I B = T3 0T I T =TSRRI 226
3.16.10 XML REPreSENTATIONuuuuiiiiiititiiiiitititiittt s annnnansnnnnnnnnnnnnnnnn 228
Introduction to PresentationIVILcccuiiieiiiieiiiiiiiiiiiieireecnreeisrnesereesesensssensesensssnssssnessssnsssensessnnans 229
ot R = T] ol PP PP OP PSP PPPPPOPPPPNt 229
s 0t R Vo 1 o Yo ¥ Tt o o TSR 229
o N - 7= T ol U | 1 YU 230
4.1.3 The Presentation ODJECTccccciiiieeiiiie ettt e e e ere e e e e tte e e e et ee e s eabae e e enbaeeeeenteeeeenrens 232
A.1.4 Presentation PrOPerties ... i aan 238
4.2 Slides, Masters, Layouts, and Placenolders.........c..uiie ittt et e e e e vte e e e vae e e e 242
L R Vo 1 o Yo U Tt o o TR 242
A |V, = 3 (-] o 242
A B o ¢ 1Y =T o1 - 1 A o T 1T [SRR 245
A S \ V[0 = L3l o = 246
e T [o LN I 1Yo YU £ TSP UPP 247
N T o 1 40 =T] £ 247
e A 1 14 e Yo (¥ ot [o PSPPI 247
4.3.2 FUNCLIONAI OVEIVIEW....eiiiiiiiie ettt e et e e et e e e ae e e e s tbe e e e s abaeesansbaeeeensaeeeanteeeesnsens 248
e . T o 0 o1 o V=T oL YU oo gl X1 SR URP 248

Vi

O 00 N O U A W N B

e =
N B O

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Table of Contents

T S @Yo o120 1< o} o X £ U 249
L N o1 3 F=) 4 o o ST 249
O ' | o Yo [o o TN 249
Ly [Te T 1= 2 o] o TN 250
A.4.3 TIMEINE OVOIVIBW ...t ss s sasnsssannnssnnsnnnnnn 251
L S 1 0 =Y [T o V=R o o 1y { ¥ ot f o] o OO UTRRRROSP 252
445 ANIMAtION BERAVIOIS ..uveiiiiiiieciiieeeie ettt e e e e e e eeebabe e e e e e eeessnbaaereeeeeeeesssreeneens 254
I o] o To [A oY g ¥ | W 2 oY o 1T 4 [T PSR 256
L Ny N = 10 11 e I 0 11 o = o] o USROS 257
T [To [y Y g Tl o T g1 F= 1 4 o o PR 258
L% N 11 4 o Yo 8 ot o] o HP TSR TRRRROSP 258
N A [o [W o Yo =Y T) (o PR 258
Introduction t0 DrawinGIVILccceuiiiiieiiiiiceciireneeeireeeneesrennsesrenessssrenssssseensssssrensssssrensssssrennssssnennnes 261
L0 A - 7- 1] o3P 261
LS00 ¢ R 1Y f o Yo [T 1 o] o SR 261
L0 A @ 1Y T o V1= L RPN 261
L e T = 7= 1 Tl = [T 0 1=] £ 261
L I S 0o 1 Lo] SR 261
LT R S @0 o o o T= Y] o 11 L Y2 262
L ST o ol {=Te 071 4 V7= SR 262
S I YU o [To J=T g Ve VA Tc 1Yo TR 262
L3000 R 1Y f o Yo [T 1 o] o U 262
L R SV o T o o = M O Y= Vi =1 AU 262
5.2.3 DraWiNGML SYNTaX...uciiiiiiiiiiiiieieee ettt sttt e e e s s s sttt e e e e s s s ssabataeeeesssassbbtaaeeeesseananraaaeeeeeans 263
5.3 SEYIES wvoeeeeeeeeeeeeee e e ee et e ettt ettt ee et e et et e e et ee e e e e e et e e et en et eseee e e en e e e e ee e eeseesaeeeneereeenaees 264
Lo 70 SO 1Y 4 o Yo 1¥ o1 o o JPR R 264
5.3.2 Shared SEYIE SREEL.....coo e e e e e et e e e et b e e e eaaaaeae s 265
L | RSO PPTPR 278
Lo 50 R 12 o o Yo [[1 To] PSSP UUR ST 278
Lo A © VT V11 279
LR T = To o A WA I o o] o T=T o =TS 281
LT T I~] L= PP 289
Lo 00 A 12 f o Yo [[1 o] o USSR 289
LI T A -1 o (=T Y7 LU 289
LT T -1 o1 L= L= T Yoo o IR 296
Lo ST 1 0 o 1= 3PP 300
Lo 70 S 1Y 4 g Yo [¥ T o1 o] o JERRR 300
L . T B 300
LT T 1Y/ LTSRS 306
5.7 Coordinate Systems and TransformMationsccueiiicciie ittt e e e e ree e e e ebe e e e e 310
Lo 2% TR 1Y 4 o Yo [¥ o1 o o JERRR 310
Lo I 0o To o [T g = o VA =] o o USSR 310
I T o F-T o T I = [0 1y o o 4 = o o - U 310
I B €1 o 10T o B I - 101y o1 4 10 F= Y o 13 U UR 313
LI A T N 11 T = - T 1y o] g =] o LU 317
5.7.6 TransformMation IMatriCeS......uuueiiiiiiieciiiiieiee e eecciireeeeeeeeeeetrreeeeeeeeeseabaaeeeeeeeeessssraareeseeessnnssrrsreeeeeenn 318
5.8 Shape Properties and EffECESuiiiiiiiii et e e 319

viii

O 00 N O U A W N B

WN NN NNNRNNNDNERR R R B B B B p o
O VW ® N O U B W N B O VW W N O U1 M W N B O

31

Table of Contents

L3220 A 1o o e Yo ¥ ot o ISP 319
LTS 0 A 0o] Fo T ol Y o Yo 1] P SU 319
LTS 0 T 0o Fo T o = g 1) {0 o o - U SU 325
Lo S 1| C SRR SSUR 327
5.8.5 LINE PrOPEITIES «.eeeeeeieeiee ettt e e e s e ettt e e e e s s e s aababa e e e e e e sasnsrbeaeeeeeesaannraeaeeeeeans 332
TR I I i i ot £ PSPPSRI 334
5.9 Shape Definitions and ATtIIDULESeeei ittt e e et e e e e eba e e e e rae e e e eabeee e eennees 338
LT T8 A 1o o Yo [U1 4o [PPSR 338
R A I o TN @e o] e [T a T | (o V] T8 U 339
5.9.3 SPEeCifying @ PreSet SHAPE ..ccccuiiiiiciiie ettt e e et e e e tr e e e e ntba e e e aaeee s 340
5.9.4 Specifying @ CUSTOM SHAPEuuiiiiiiiiie ettt e e e e e e e et e e e e sataeeesnbaeeesannaeeen 342
o O I o T o <O PO P PP PPPPTPPPTON 347
LT 0 I8 A 1o o Yo [U1 4o IR 347
LT O Y o 1Yol | Y/ oY= I = 7=] (ol o ot U o < 347
5.10.3 Attaching Properties t0 this PICLUIEcc.ueiiiciiii ettt e e e e e eaaaee s 349
5.10.4 Transforming this PICLUIEccccuiiii ittt e e e are e e s aaa e e e sstbeeessnnaeee s 350
5.11 WordproCesSiNgIMIL DIaWiNEcccuueieiiiiieeeiiiieeeeeiteeeseiteeessteeessssteeeessssaeeesssseeessssseessssssessssssseeesssnsenssssnsens 352
Lo B 0 R @ o [Tt Y ol Vo T [VSRS 352
o A =Y ALV =T o o1 o = PP PP PPPRRPPTPPPTT 353
5.12 SPreadsh@etIML DIaWiNgciiiiciiieiiiiiee e sttt e e seitee sttt e s e stee e s esatee e e s sabaeeessabeeesesabeaeesssbeeeeesnseeesssnsensssnnsens 355
Lo 02 R 1o o e Yo ¥ ot o ISR 355
L0 1020 A © VT V11 355
LT A Vo T o [T=T=] DT 1V o =SS 355
LT I T o =T o PRSP 358
L0 I 700 R O 17T V11 358
5.13.2 XIMIL OVEIVIEW ...eeiieieiiiee ettt e ettt e e e e e ettt e e e e e e st bttt e e e e e e s anbe b teeeeeeaaaansraeeeeeeeeeannnnreeeeeasaann 368
LT TR T 3 - T] o L= USSR 369
LT A @ o =T ol T =1LV o Y- S PR 372
Lo 2 5t R 1o o o Yo W ot o [PPSR TOPR PP 372
5.14.2 OVEIVIEW .eiiieiiiiiiieteee ettt e e ettt e e e e e e e bttt e e e e e e e aa bbbttt eee s e e s s be e eeeeeeeaa e nsreeeeeeeeeeannsbeeeaeaeaann 373
LT S B o =T ol T =1LV oY= £ RO 373
L0 R T 1 =T~ = o 1P 374
LT 70 R 1o o o Yo [¥ ot o [PPSO PR OPPP 374
5.15.2 ElE@MENT PrOPEITY STneiiiiiceiieie ettt e ettt e e ettt e e e et e e e et e e e e eateeeeeasaeeeessaeeeeasaseeentaeeesanseneann 375
LT e T =1 = T 1Y/ LYo 1] R 377
5.15.4 COlOr TraNSTOIMS . ciiutiiiiiteetee ettt ettt et sttt et e st e e sab e e sabeesbteesabeeesbbeesabeesabaeesabeesabeesnsaeesaseesnssenn 381
LT T 0V (N D 1= T o o o ISR 387
I N I - 1Yo TV | O O OO O T O T OO TRTP RSP OPOTOTORUPPPIOP 390
INtroduCtion tO VIMIL......ciiieieeuiiiiiiiiiiiiiieeiiiiiiiinesneesssissinsesssssssssssnimnesssssssssssssnnesasssssssssssnsesnnssssssssssnns 416
L% A VoY o Yo [W ot i o 1R TSP OTPR 416
Lo Y T=T o TN = 1= o =Y o USSR 416
L0720 R G- o] o 0= 417
6.2.2 PlACBIMENT..ci ittt ettt sttt ettt e st e e et b e e s be e s b e e e s a b e e s bt e e sabe e s baeenabeesabaeebaeesabeeenaren 419
B.2.3 FOIMAtEiNG . eeeeiiiiiiiiiiit s 422
L3 © i o 1T S T TS PSS RSPPPOTOTORUPPROTN 422
(o3 T € o 1T o J1 =1 173 0 =T o PSR 424
(o Y o F= Y o L=l Y/ o T =1 =T 4 =T o | PSR 424

AW N R

O 0 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47

7.

8.

Table of Contents

6.5 VML Usage in the Office Open XIML FOrmMat......ccoociiiiiiiiiie et ecvtrre e e e e e e ree e e e e e 425
Lo T8 A 0 i To=Y A o) o F=1 o =SS 425
6.5.2 SpreadsheetML COMMENTSuiiiiiiiiiieciiee et ee ettt e s e et e e e s atr e e e e sabee e e ssabaeaeessseaeessseeeesannseeeen 427
6.5.3 WoOrdproCessSingIMIL TEXE BOXcceieeuiiiiriiieeeiiiieeeiiiteeesitteessssseeesssssseessssseeeesssssesssssssesssssseessnsseess 428
INtroduction t0 ShAared IVILSiveeiiiiiieiiiiiiiiiiieeein e nieseiesresesssnnensssssiesssssssenssssssensssssssnsssssssnssas 431

2% R Y/ - | ISR PPRPR 431
% T A - Yol ol =T o A] =Y o1 PO 431
2 A - 7= T ©]] =T SRS 432
% T T = To T o [Tl 2 o Y 0] =T o PSR 432
0 S = To) @] o =Y ot PR ST 432
% T T 1= 115 0 11 =T USSR 433
2 T S X TU - 1A o] T AN = 1A @ L o] 1T o PR SU 433
2 T A o - Vor i [o o I 0] o} [=Tot AU U 434
2% % - T SV o Tt d oY Y o] o] AV @] o T=T o U 434
2 e B € o 10 o N @ s F= T - Yot =T G @ o] [Tt (SRR 434
7.1.10 UpPPer and LOWET LIMIES ...ueeiiiiiiieiiiiiieeeciiee ettt e e et e e e ettt e e e eette e e e eataeeeensaeeesnsaeeeensaeeesanseeeesannsneens 435
% N R \V - 1 Q]] =T o U 435
2 B TV @ 1 o] 1T o U 436
% 8 R T o =T a1 o 0 @ oY1=t AU 436
% R Vo [Tor=1 @] o =Tt f U 437
7.1.15 Scripts (Superscript, Subscript, SubSuperscript, PreSubSuperscript)cccceevveeeeciieeeecieee e, 437

B A Y, 1= - T - | - SRS 438
A R \V oY = Yo o1 = Y ad o T o 1T 4 [T U 439
7.2.2 COTE PrOPEITIES .eueeieiieieiiieiiittte e e e ettt e e e e sttt e e e e s s s bt beeeeeesessassbataaeeesssasssrtaaaeeessssnsssraaaeeeesnns 440
A 2 T =T (o [Tl o) o 1T o A =TS 440
7. 2.4 CUSTOM PrOPEITIES. . ieeiiii ittt ettt e e e sttt e e e e e s st tbe e e e e e s s s sasabaraeeeesssasssrtaaaeeesssssssssaaaeeessnns 440
R T V- | G T 1o Y/ o 1= SO PP PP PRSPPI 440

7.3 CUSTOM XIML DATA ...ttt e e e e s s e et e e e e s e s rreeeeeeeeeas 440

2 = 11 o1 [ToY={ -1] 0 V7SR 441
N R 1Yo =T o Yo 1U] ol Y-SR 441
742 Child ElEmMENTS.c..eeiiiiiieieeeee ettt ettt ettt et e st e s bt e e s be e e bt eesabeesabeeesabeesabeesbaeesabeesnsnean 442
3 T YU 1 d o [o | O O O O T O O OO PRSP PPOTOPRROPPRTOP 444
7.4.4 LCID, GUid, Tag, aNd REFOITEN....ccccciiiiieiiie ettt ettt e e e e e e sare e e e sata e e e sntaeeessnnneeees 445
MiSCEIIANEOUS TOPICS ..iiiiiereeuniiiiiiiiierenuiiieiiiiieemsnmsiisisiireesssmsssseistirersssssssssssssssessssssssssssssssssassssssssssnns 447

8.1 AdditioNal CharaCteriSTiCS. . cceoueiiriiiiiieiieeriee ettt ettt et et e st e e sabeesabeessbbeesabeeesbbeesabeesabeeesareesases 447

S o 01 o Y=Y [L1 =3 PP 448
S A 1 0 Y Y=o [0 =To [- 1ol T U 448
<20 A 1 4 Y o T=To [0 [=To [@] o} Yot £ UPUU 448
8.2.3 Embeddings in a WordprocessingML DOCUMENTcccccuiiiiiiiiiieeciiiieeecieee e ecire e e ecree e etre e e esaaeee s 449
8.2.4 Embeddings in a SpreadsheetML DOCUMENTccccuiiiiiiiiie ettt ee e e rae e e s eareee s 451
8.2.5 Embeddings in a PresentatioNML DOCUMENT........uuiiiiiiiiiiiiiiiiiee ettt e e e e e e snnrre e e e e 452

8.3 FULUIE EXLENSIDIIITY . .ueeiiiieeee e e e e e e st e e e e e e e b e b e e e e e e e e e e nnrrraneeeaaeean 453
<0G 0t A =T ¢ oYV [0 -V USSR 453
8.3.2 What is Future EXteNSIDility?....ceee e a e 454
8.3.3 Future Extensibility REQUIFEMENTSuuiiiieei e e e e e e e e e re e e e e e e e an 454
8.3.4 Future Extensibility CONSLIUCES ...ccoiieiiiiiieee e e e e e e e e e e e b e e e e e e eean 455

Foreword

Foreword

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following
parts:

e Part 1: "Fundamentals"

e Part 2: "Open Packaging Conventions"

e Part 3: "Primer"(this document)

e Part 4: "Markup Language Reference"

e Part 5: "Markup Compatibility and Extensibility"

Xi

Introduction

Introduction

This Part is one piece of a specification that describes a family of XML schemas, collectively called Office Open
XML, which define the XML vocabularies for word-processing, spreadsheet, and presentation documents, as
well as the packaging of documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and
platforms, fostering interoperability across office productivity applications and line-of-business systems, as
well as to support and strengthen document archival and preservation, all in a way that is fully compatible with
the large existing investments in Microsoft Office documents.

Xii

10

Scope

1. Scope

This Part contains a detailed introduction to the following Office Open XML topics:

e WordprocessingML
e SpreadsheetML

e PresentationML

e DrawingML

e VML

e Various shared MLs

The organization of this Part is much the same as its corresponding reference Part, Part 4, and is intended as a
gentle introduction to Part 4.

10
11

12

13
14

15
16
17
18
19

20

21
22

23

24

Introduction to WordprocessingML

2. Introduction to WordprocessingML

This clause is informative.

This clause contains a detailed introduction to the structure of a WordprocessingML document.

2.1 Stories

A WordprocessingML document is composed of a collection of stories. Each story represents a distinct region
of text within the document. The following kinds of region exist: comment (§2.14.5), endnote (§2.12.2),
footer (§2.11.2), footnote (§2.12.1), frame, glossary document (§2.13), header (§2.11.1), main story (§2.2),
subdocument (§2.18.2), and text box (§2.18.1).

With one exception (a glossary document), all stories in a document utilize a common set of properties that
determine the presentation of the contents of each story. These properties include font information, style
definitions, numbering definitions, and document settings.

2.2 Basic Document Structure

The main document story of the simplest WordprocessingML document consists of the following XML
elements:

e document — The root element for a WordprocessingML's main document part, which defines the
main document story.

e body — The container for the collection of block-level structures that comprise the main story.

e p — Aparagraph.

e r—Arun.

e t— Arange of text.

A run is a region of text in a story with a common set of properties. The text in a WordprocessingML document
must be contained within one or more runs. A paragraph is a collection of one or more runs that is displayed
as a unit. A run must be contained within a paragraph.

Consider the following Main Document XML for a simple WordprocessingML document:

O 00 N OO s~ W N

=
o

11

12
13
14
15

16

17

18

19

20

21

22

23
24

25

26
27
28
29
30
31
32

33
34

Introduction to WordprocessingML

<?xml version="1.0"?>
<w:document xmlns:w="..">
<w:body>
<W:p>
<W:r>
<w:t>Hello, world.</w:t>
</wir>
</w:p>
</w:body>
</w:document>

2.3 Main Document Story

The contents of the main document story—the only story that is required in a valid WordprocessingML
document—are encapsulated within the body element. The content of the main document body is a collection
of block-level structures, which are those WordprocessingML elements that can contain and/or be sibling
elements with a WordprocessingML paragraph.

Within the document body, the valid set of block level content is:

e Paragraphs

e Tables

e Custom markup (custom XML, structured document tags)

e Section properties

e Annotations (comments, revision markers, range permission markers)
e Alternate format chunks

Each of these block-level content constructs (the 'building blocks' of WordprocessingML) is defined in the
following subclauses.

2.3.1 Document Backgrounds

As well as containing a body, a document element can also contain the definition of the document's
background via the background element and its contents. This background applies to all printed pages within
this document. A document background in WordprocessingML can have a single color, as well as the
application of various drawing effects such as color gradient or pattern, and a tiled or stretched image. All
background information in a WordprocessingML document is stored using the Vector Markup Language (VML)
syntax. The single exception to this is the background color, which is stored natively in WordprocessingML
using the bgColor attribute.

Consider a simple background in WordprocessingML, which consists of a single color with a gradient fill
applied:

N o o AwWwN

10

11

12
13
14
15

16
17

34
35
36
37

Introduction to WordprocessingML

<w:background w:bgColor="5C83B4">
<v:background id="_x0000_s1025" o:bwmode="white" fillcolor="#5c83b4
[3204] o:targetscreensize="800,600">
<v:fill color2="fill darken(118) method="linear sigma" focus="100%"
type="gradient"/>
</v:background>
</w:bgPict>

The background consists of two components: a background fill color of RGB value 5C83B4, and the background
gradient stored as a VML transformation.

2.4 Paragraphs and Rich Formatting

2.4.1 Paragraphs

The most basic unit of block-level content within a WordprocessingML document, paragraphs are stored using
the p element. A paragraph defines a distinct division of content that begins on a new line. A paragraph can
contain three pieces of information: optional paragraph properties, inline content (typically runs), and a set of
optional revision IDs used to compare the content of two documents.

Consider the paragraph fragment "The quick brown fox jumped ..." which is centered on a paragraph. As all the
text in the paragraph is emphasized using italics, in the XML, the contents of the paragraph will have the
justify-center property, and each run within the paragraph (as well as the run properties for the paragraph
mark) stores the italics property; for example:

<w:p>
<W:pPr>
<w:jc w:val="center"/>
<W:rPr>
<w:i/>
</w:rPr>
</w:pPr>
<w:ir>
<W:rPr>
<w:i/>
</wirPr>
<w:t>The quick brown fox jumped..</w:t>
</w:ir>
</wip>

Notice that each run specifies the character formatting information for its contents, and the paragraph
specifies the paragraph level formatting (the center-justification). It is also notable that since leading and
trailing whitespace is not normally significant in XML, some runs require a designating specifying that their
whitespace is significant via the xml:space element.

10

11
12
13
14
15
16
17

18

19
20
21
22
23
24
25

26
27

28
29

30
31

32
33

Introduction to WordprocessingML

A paragraph's properties are specified via the pPr element. Some examples of paragraph properties are
alignment, border, hyphenation override, indentation, line spacing, shading, text direction, and widow/orphan
control.

It should also be noted that a pPr element may contain a set of run properties within a rPr element — these
properties are applied to the run which contains the glyph which represents the paragraph mark and not the
entire paragraph.

2.4.2 Runs

The next level of the document hierarchy is the run, which defines a region of text with a common set of
properties, represented by the r element. An r element allows the producer to combine breaks, styles, or
formatting properties, applying the same information to all the parts of the run.

Just as a paragraph can have properties, so too can a run. All of the elements inside an r element have their
properties controlled by a corresponding optional rPr run properties element, which must be the first child of
the r element. In turn, the rPr element is a container for a set of property elements that are applied to the rest
of the children of the r element. The elements inside the rPr container element allow the consumer to control
whether the text in the following t elements is bold, underlined, or visible, for example. Some examples of run
properties are bold, border, character style, color, font, font size, italic, kerning, disable spelling/grammar
check, shading, small caps, strikethrough, text direction, and underline.

Consider the following run within a WordprocessingML document:

<W:r>
<W:rPr>
<w:b/>
<w:i/>
</w:rPr>
<w:t>quick</w:t>
</wir>

The run specifies two formatting properties in its run contents: bold and italic. These properties are therefore
applied to all content within this run.

A producer can break a run into an arbitrary number of smaller runs, provided each smaller run uses the same
set of properties, without changing the content of the document.

Consider the content "only one word is emphasized" in a WordprocessingML document. An efficient producer
could choose to output this content using two runs, as follows:

<wW:r>
<w:t xml:space="preserve">only one word is </w:t>
</w:r>

a U A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30
31

32

33
34
35

36
37

Introduction to WordprocessingML

<W:r>
<W:rPr>
<w:i/>
<w:rPr>
<w:t>emphasized</w:t>
</w:r>

However, a less efficient producer might use four runs, as follows:

<W:r>
<w:t>only one</w:t>
</w:r>
<W:ir>
<w:t xml:space="preserve"> word is </w:t>
</w:r>
<W:r>
<w:rPr>
<w:i/>
<W:rPr>
<w:t>empha</w:t>
</w:ir>
<W:r>
<W:rPr>
<w:i/>
<W:rPr>
<w:t>sized</w:t>
</w:ir>

Although the latter example uses four runs rather than two, the net run information applied to each region of
text is identical, and both are equally valid.

Of course, a run might need to be broken. For example, the properties of only some the text in that run are
changed, requiring the changed part to be put into its own run. Another example involves the insertion of
some sort of marker into the middle of an existing run. That requires the run be broken into two with the
marker inserted between them.

The following run contains two sentences:

<W:ir>
<w:t>Hello, world. How are you, today?</w:t>
</wir>

If the first two words are bolded in these sentences, the run will need to be broken into two runs in order to
store the formatting, as follows:

Jany

O 00 N OO s~ W N

10
11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30
31
32
33
34

35

36

37

<W:r>
<W:rPr>

<w:b/>

</W:rPr>

<w:t xml:space="preserve">Hello, world. </w:t>

</W:ir>
<W:pr>

<w:t>How are you, today?</w:t>

</W:r>

Introduction to WordprocessingML

Apart from text, a run can also contain numerous kinds of textual content (§2.4.3) A run can also contain a set

of revision IDs used for document "merge and compare".

2.4.3

Run Content

The lowest level of this hierarchy is run content, that content that can be stored within a single runin a

document. In WordprocessingML, the types of run content include:

2.4.3.1

Text

Deleted text

Soft line breaks
Field codes

Deleted field codes
Footnote/endnote reference marks
Simple fields

Page numbers

Tabs

Ruby text
DrawingML content
Embedded objects
Pictures

Text

The most common run content is the t element, which is the container for the text that makes up the

document's content. A t element can contain an arbitrary amount of text, up to and including the entire

document's contents. However, typically, long runs of text are broken up into paragraphs and strings of text

having different formats, or are interrupted by line breaks, graphics, tables, and other items. A t element must

be enclosed within an r element; i.e., a run of text. An r element can contain multiple t elements, interspersed

among other elements.

Aside from the t element, there are three types of text in WordprocessingML:

delText - Deleted text
instrText - Field codes

10
11

12

13

14

15
16
17
18
19
20

21

22
23
24

25
26
27
28
29

30
31
32

Introduction to WordprocessingML

e dellnstrText - Deleted field codes

These four types of text are defined using unique elements in WordprocessingML so that simple consumers
can determine the text of the document simply by grabbing the contents of the t node, without needing to
check where revisions start and end, etc. to determine the state of the text contents.

It is also notable that these are the only elements in a WordprocessingML document's main document part
that can contain a XML text node.

244 Formatting Property Values

Most of the children of an rPr or pPr element have a single val attribute that is limited to a specific set of
values. For example, the b (bold) element causes the text that follows it to be bold when the b element has a
val attribute with value on. If the val attribute isn't present for the b element, it defaults to "on". Therefore,
<w:b/> is equivalentto <w:b w:val="on"/>.

Aside from the default values, which are documented with each element, this is particularly important when
specifying the difference between omitting a formatting property and explicitly turning it off.

For example, consider the following run:

<W:ir>
<W:rPr>
<w:b w:val="off"/>
</W:rPr>
<w:t xml:space="preserve">Hello, world. </w:t>
</wir>

This run explicitly declares that the bold property is turned off for this text, as opposed to the following run:

<W:r>
<w:t xml:space="preserve">Hello, world. </w:t>
</wir>

This run says nothing about the bold property. This distinction is particularly important when dealing with
content that is formatting using styles - if the content was not contained in a styled paragraph, both would be
identical. However, in the case where the paragraph is styled, the former would never be bold regardless of
the style information, whereas the latter would express the bold property as set by the style, since it's
omission of the bold property means "whatever the underlying formatting is".

Some elements have val attributes that offer a richer set of choices than on and off; the u (underline) element
is one such element. In this case, the same rules apply, the omission of the property simply means use the
underlying properties.

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Introduction to WordprocessingML

2.5 Tables

Another type of block-level content in WordprocessingML, A table is a set of paragraphs (and other block-level
content) arranged in rows and columns.

2.5.1 Introduction
Tables in WordprocessingML are defined via the tbl element, which is analogous to the HTML <table> tag.

The table element specifies the location of a table present in the document.

A tbl element has two elements that define its properties: tblPr, which defines the set of table-wide properties
(such as style and width), and tblGrid, which defines the grid layout of the table. A tbl element can also
contain an arbitrary non-zero number of rows, where each row is specified with a tr element. Each tr element
can contain an arbitrary non-zero number of cells, where each cell is specified with a tc element.

Consider an empty one-cell table (i.e.,; a table with one row, one column) and 1 point borders on all sides:

This table is represented by the following WordprocessingML:

<w:tbl>
<w:tblPr>
<w:tblW w:w="5000" w:type="pct"/>
<w:tblBorders>
<w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:left w:val="single" w:sz="4 w:space="0" w:color="auto"/>
<w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/>
</w:tblBorders>
</w:tblPr>
<w:tblGrid>
<w:gridCol w:w="10296"/>
</w:tblGrid>
<w:tr>
<w:te>
<w:tcPr>
<w:tchW w:w="0" w:type="auto"/>
</w:tcPr>
<w:p/>
</w:te>
</witr>
</w:tbl>

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33
34
35

Introduction to WordprocessingML

This table specifies table-wide properties of 100% of page width (tbIW's type attribute specifies how the width

value in the w attribute shall be interpreted—pct specifies a measurement of fiftieths of a percent) and the
set of table borders (tblBorders), the table grid which defines a set of shared vertical edges within the table

(discussed later), and a single row.

2.5.2 Table Properties

The tblPr element defines table-wide properties, properties which are applied to each row and cell in the

table. The complete set of table-wide properties can be found on the definition for the tblPr element.

Consider the fo

llowing simple WordprocessingML table:

This table defin
properties. The

<w:tbl>

<w:tblP
<w:tb
<w:tb
<W:

<W:

<W:

<W:

<W:

<W:
</w:t
</w:tbl
<w:tblG

</w:tbl

<w:tr>

</witr>
</w:tbl>

In this example, the tbIW element defines the total width of the table, which, in this case, is set to a type of

es outside and inside table borders, etc; and is set to 100% of page width - both table-wide
resulting table is represented by the following WordprocessingML.:

r>
IN w:w="0" w:type="auto"/>
1Borders>

top w:val="single" w:sz="4" w:space="0" w:color="auto"/>
left w:val="single" w:sz="4 w:space="0" w:color="auto"/>
bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/>
right w:val="single" w:sz="4" w:space="0" w:color="auto"/>
insideH w:val="single" w:sz="4" w:space="0" w:color="auto"/>
insideV w:val="single" w:sz="4" w:space="0" w:color="auto"/>
blBorders>

Pr>

rid>

Grid>

auto, which specifies that the table should be sized to fit its contents. The tblBorders element specifies each

of the table's borders, and specifies a one point border on the top, left, bottom, right and inside horizontal and

vertical border. The table-wide properties can be overwritten on an individual row basis by specifying table

property overrides within the table row properties.

10

10
11

12
13
14

15

16

17
18

19

20
21

22
23
24
25

Introduction to WordprocessingML

2.5.3 Table Grid

The tblGrid element defines the grid for the table. All columns in the table (including the space before and
after a row) reference this grid. Each gridCol defines a single grid column within the table’s layout, which is
used to define the presence of a vertical line within the table. A tblGrid element can contain an arbitrary
number of gridCol elements, where each gridCol element represents one grid column in the table and defines
a single grid entry. When cells are laid out within this table, as discussed below, all cells will be forced to snap
the shared column edges defined by this grid.

Returning to the earlier 'one-cell empty table' example, the table has one column with a width of 10,296
twentieths of a point. This measurement (twentieths of a point, or twips) is frequently used in
WordprocessingML, and translates to 1/1440th of an inch (one-twentieth of a point, which is itself 1/72nd of
aninch):.

<w:tblGrid>
<w:gridCol w:w="10296"/>
</w:tblGrid>

Consider the following, more complex table that has two rows and two columns; the columns are not aligned:

This table is represented by laying out the cells on a table grid consisting of three table grid columns, each grid
column representing a logical vertical column in the table:

The dashed lines represent the virtual vertical continuations of each table grid column, and the resulting table
grid is represented as the following in WordprocessingML:

<w:tblGrid>
<w:gridCol w:w="2952"/>
<w:gridCol w:w="4416"/>
<w:gridCol w:w="1488"/>
</w:tblGrid>

11

O 00 N OO s~ W N

WON N NN NNNNNNR R P B R B P P B
O VW 00 N O U B W N B O VW 0 N O 1 B W N L, O

31
32
33
34

35

36
37

38
39
40

Introduction to WordprocessingML

<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="7368" w:type="dxa"/>
<w:gridSpan w:val="2"/>
</w:tcPr>
<w:p/>
</w:te>
<w:te>
<w:tcPr>
<w:tcW w:w="1488" w:type="dxa"/>
</w:tcPr>
<w:p/>
</w:tc>
</witr>
<w:tr>
<w:te>
<W:tcPr>
<w:tcW w:w="2952" w:type="dxa"/>
</w:tcPr>
<w:p/>
</w:ite>
<w:te>
<w:tcPr>
<w:tcW w:w="5904" w:type="dxa"/>
<w:gridSpan w:val="2"/>
</w:tcPr>
<w:p/>
</w:ite>
</witr>

Notice that each of the cells which do not span one grid column (i.e., span two adjacent vertical lines) must
specify this fact by supplying a gridSpan element with a value which determines how many grid columns this
cell will span. Each gridCol element represents a shared 'column' in a table (to which the cells will snap) even
if it doesn’t appear visually

2.5.4 Table Rows and Cells

A table row is defined using a tr element, which is analogous to the HTML <tr> tag. The tr element acts as a
container for a row of cells with the table’s content.

A tr element has one formatting child element, trPr, which defines the row properties (such as the row’s
width) and whether it can split across a page. Each property is defined by an individual child element under the
trPr element. The complete set of table row properties can be found on the definition for the trPr element. As

12

10
11

12
13
14
15
16
17
18
19

20

21

22

23

24
25
26
27
28
29
30
31
32
33
34
35

Introduction to WordprocessingML

well, a table row can contain two types of content: custom markup (custom XML or structured document
tags), and table cells.

The cells in a row contain the table’s content and are defined by tc elements, which are analogous to HTML
<td> tags.

A tc element has one formatting child element, tcPr, which defines the properties for the cell. Each unique
property is specified by a child element of this element. The complete set of table cell properties can be found
on the definition for the tcPr element. As well, a table cell can contain any valid block-level content, which
allows for the nesting of paragraphs and tables within table cells.

In the example below, the tcW element defines the width of the cell, where the attribute w is the value in
twips. Here the width of the cell is 8,856 units, where units are defined by the attribute type. In this case, dxa
represents twips.

<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="8856" w:type="dxa"/>
</w:tcPr>
<w:p/>
</w:tc>
</w:tr>

The tc element contains the cell's content, which, in this case, is an empty p element.

Consider a table having one cell, which contains the text “Hello, world”:

Hello, world

This table's content is represented by the following XML:

<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="1770" w:type="dxa"/>
</w:tcPr>
<W:p>
<W:r>
<w:t>Hello, World</w:t>
</wir>
</w:p>
</w:tc>
</w:tr>

13

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30

31
32
33

34

35

36

37

Introduction to WordprocessingML

At both the row and cell levels, the properties must also specify how the rows and cells will be placed on the
table grid.

The trPr element contains information about the number of grid units which should be omitted ('skipped')
before and after the row is complete using the gridBefore and gridAfter elements, allowing rows to start at
different columns on the grid, as well as a preferred width for that leading/trailing space using the wBefore
and wAfter elements. The tcPr element also contains grid information pertaining to how many grids a cell
spans using the gridSpan element, which determines how many grid units are consumed by the current cell,
as well as a preferred width for that cell using the tcW element.

In the earlier complex table having two rows of two differently sized cells, a consumer shall represent that
table containing three grid columns (one per distinct vertical line). Consider the following XML for the first row
of that table:

<w:tr>

<w:te>
<w:tcPr>
<w:tcW w:w="5145" w:type="dxa" />
<w:gridSpan w:val="2" />
</w:tcPr>
w:p />
</wite>
<w:te>
<w:tcPr>
<w:tcW w:w="2145" w:type="dxa" />
</w:tcPr>
w:p/>
</w:te>
</w:tr>

Again, the gridSpan element is the number of grid columns that cell spans when being laid out on the table
grid. In this example, the first cell of the first row contains two grid columns. As well, the cell specifies its
preferred width using the tcW element, which tells the consumer the width desired by that cell at layout time.

It is important to note that every width in a table is a preferred width - because the table must satisfy the grid
at all times, conflicting table properties must be resolved by overriding preferred widths in a specific manner,
shown below.

2.5.5 Table Layout

Given the information shown in the table shown above, the table is specified as a series of properties:

e Table-level properties (e.g., preferred width)
e Table column grid

14

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

28
29
30
31
32
33
34
35
36

Introduction to WordprocessingML

e Row-level properties (e.g., grid units before/after row start/end)
o Cell-level properties (e.g., number of grid units spanned)

In order to manipulate this set of properties into a table, the following logics are used, depending on the type
of table:

2.5.6 Fixed Width Tables

The first type of table is a fixed width table, a table that does not dynamically resize based on its contents. In a
fixed width table, the table information is used in the following manner:

e The table grid is used to create the set of shared columns in the table and their initial widths as defined
in the tblGrid element

e The table’s total width is defined based on the tbIW property — if it is set to auto or nil, then the
width is not yet determined and will be specified using the row and cell information.

e The first table row is read and the initial number of grid units before the row starts is skipped. The
width of the skipped grid columns is set using the wBefore property.

e The first cell is placed on the grid, and the width of the specified grid column span set by gridSpan is
set based on the tcW property.

e Each additional cell is placed on the grid.

e If at any stage, the preferred width requested for the cells exceeds the preferred width of the table,
then each grid column is proportionally reduced in size to fit the table width.

e If the grid is exceeded (e.g., tblGrid specifies three grid columns, but the second cell has a gridSpan of
three), the grid is dynamically increased with a default width for the new grid column.

e For each subsequent row, cells are placed on the grid, and each grid column is adjusted to be the
maximum value of the requested widths (if the widths do not agree) by adding width to the last cell
that ends with that grid column. Again, if at any point, the space requested for the cells exceeds the
width of the table, then each grid column is proportionally reduced in size to fit the table width.

2.5.7 AutoFit Tables

In an AutoFit table (one which specifies that it should “AutoFit to table contents”), the table information is
used in the following manner:

o Perform the steps above to lay out the fixed width version of the table.

e Calculate the minimum content width - the width of the cell's contents including all possible line
breaking locations (or the cell's width, if the width of the content is smaller), and the maximum
content width -the width of the cell's contents (assuming no line breaking not generated by explicit
line breaks).

e The minimum and maximum content width of all cells that span a single grid column is the minimum
and maximum content width of that column.

e For cells which span multiple grid columns, enlarge all cells which it spans as needed to meet that cell's
minimum width.

15

10

11

12

13
14
15
16
17

18

20
21
22

23
24
25
26
27
28
29

30
31
32

Introduction to WordprocessingML

e Ifany cell in a grid column has a preferred width, the first such width overrides the maximum width of
the column's contents.

e Place the text in the cells in the table, respecting the minimum content width of each cell's content. If
a cell's minimum content width exceeds the cell's current width, preferences are overridden as
follows:

e First, override the column widths by making all other grid columns proportionally smaller until each it
at its minimum width. This cell may then grow to any width between its own minimum and maximum
width.

o Next, override the preferred table width until the table reaches the page width.

e Finally, force a line break in each cell's contents as needed

2.5.8 Complex Table Example

The properties above are best illustrated by example:

As shown above, table cells can be merged horizontally. This is represented with a single table cell whose
gridSpan property defines the number of grid units consumed by that table cell for the current row. Consider
the following fixed width table, which makes extensive use of resized and merged cells on what is actually just
a seven-column grid. (The arrows point to each (invisible) vertical line of the grid and the numbers refer to the
grid columns):

[P A Y P T

Although the table is visually complex, the standard rules apply: the first cell in the table is simply a cell which
spans four grid units horizontally, as specified in the gridSpan element, and whose preferred with is 2952
twips, specified in the tcW element:

<w:tc>
<w:tcPr>
<w:tcW w:w="2952" w:type="dxa"/>
<w:gridSpan w:val="4"/>
</w:tcPr>
<w:p/>
</w:tc>

Similarly, all cells indented from the stand and end of the grid specify that indent using the gridBefore and
gridAfter elements. For example, the XML for the second row in the table shows that that row starts three
grid units into the table:

16

N o o AwWwN

(o]

10

11
12
13
14

15

16
17

18

19
20
21
22

Introduction to WordprocessingML

<w:tr>
<w:trPr>
<w:gridBefore w:val="3"/>
<w:wBefore w:w="2748" w:type="dxa"/>
</w:trPr>

</witr>

If we take this fixed width table and introduce a long string into the single cell in row 3, we see that the
presence of this text does not affect cell widths:

longte
xtstrin
gwithn
obreak
ingcha
racters

If we now turn on the AutoFit property and type into the cell in row three, which spans only grid column two,
we see that the algorithm for this AutoFit table causes all cells in grid column two to increase in size,
proportionally decreasing the other grid columns’ size to accommodate the long non-breaking string in the last
cell:

longtextstringwithnobreakingcharacters

Each of the other grid columns was reduced, but since all columns are not at their minimum size, the table
width is not increased even though the table is not yet at the page width.

2.5.9 Vertically Merged Cells

Although the previous examples may have implied that tables have strict definition of rows, table cells can also
be merged vertically. The tcPr element may contain the vimerge element that defines the extent of vertically
merged grid columns within a table. A vmerge element with its val attribute set to restart marks the start of
a vertically merged cell range. A vimerge element with the val attribute set to continue (the default value)

17

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Introduction to WordprocessingML

marks the continuation of a vertically merged grid column. Cells between the first and last merged cell that are
part of the vertical merge each must have a vmerge element to continue the vertical merge.

For example, consider a table with two rows and two columns:

First cell, first row Last cell, first row

First cell, second row Last cell, second row

Merging the two rows in the second column will result in the following table:

First cell, first row Last cell, first row
Last cell, second row

First cell, second row

The last cell in the first row starts a merge that is completed in the cell below it, resulting in the following
WordprocessingML:

<w:tr>
<w:te>
<W:p>
<W:r>
<w:t>First cell, first row</w:t>
</w:ir>
</w:p>
</w:tc>
<w:te>
<w:tcPr>
<w:vmerge w:val="restart"/>
</w:tcPr>
<wW:p>
<W:r>
<w:t>Last cell, first row</w:t>
</w:ir>
</w:p>
<W:p>
<W:r>
<w:t>Last cell, second row</w:t>
</wir>
</w:p>
</w:tc>
</w:tr>

18

O 00 N OO s~ W N

[T ~ T S = N S
u A W N LB O

16
17

18

19
20
21
22
23
24

25
26

27

28

29

30

31

32
33
34

35
36

Introduction to WordprocessingML

<w:tr>
<w:te>
<W:p>
<W:r>
<w:t>First cell, second row</w:t>
</wir>
</w:p>
</w:te>
<w:te>
<w:tcPr>
<w:vmerge/>
</w:tcPr>
<w:p/>
</w:tc>
</witr>

As shown, the vmerge with a value of restart begins (or restarts) a merged region, and the cell with no
value is merged with the one above.

2.6 Custom Markup

Within a WordprocessingML document, it is often necessary for specific documents to contain semantic
information beyond the presentation information specified by this Office Open XML specification. For example,
an invoice document may wish to specify that a particular sentence of text is a customer name, in order for
that information to be easily extracted from the document without the need to parse the text using regular
expression matching or similar. For those cases, multiple facilities are provided for the insertion and round-
tripping of customer defined semantics within a WordprocessingML document.

There are three distinct forms in which customer-defined semantics can be inserted into a WordprocessingML
document, each with their own specific intended usage:

e Smart tags
e Custom XML markup
e Structured document tags (content controls)

The usage and presentation of each of these forms is described in the following sections.

2.6.1 Smart Tags

The first example of customer-defined semantics which can be embedded in a WordprocessingML document
are smart tags. Smart tags allow semantic information to be added around an arbitrary run or set of runs
within a document to provide information about the type of data contained within.

Consider the following text in a WordprocessingML document, with a smart tag around the stock symbol
'CNTS' (where the smart tag is displayed using a purple dotted underline):

19

14
15

16
17

18
19
20
21

22
23
24

25

26
27

28
29
30

Introduction to WordprocessingML

This text would translate to the following WordprocessingML markup:

<w:p w:rsidR="00672474" w:rsidRDefault="00672474">
<W:r>
<w:t xml:space="preserve">This is a stock symbol: </w:t>
</wir>
<w:smartTag w:uri="http://schemas.openxmlformats.org/2006/smarttags"”
w:element="stockticker">
<W:r>
<W:TtO>MSFT</w:t>
</wir>
</w:smartTag>
</wip>

As shown above, the smart tag is delimited by the smartTag element, which surrounds the run (or runs) which
contain the text which is part of the smart tag.

The smart tag itself carries two required pieces of information, which together contain the customer semantics
for this smart tag.

The first of these is the namespace for this smart tag (contained in the uri attribute). This allows the smart tag
to specify a URI which should be round-tripped with this smart tag and be available to a consumer. It is
intended to be used to specify a family of smart tags to which this one belongs —for example, in the sample
above, the smart tag belongs to the http://schemas.openxmlformats.org/2006/smarttags namespace.

The second of these is the element name for this smart tag (contained in the element attribute). This allows
the smart tag to specify a name which should be round-tripped with this smart tag and again available to a
consumer. It is intended to be used to specify a unique name for this type of smart tag — for example, in the
sample above, the smart tag specifies that its data is of type stockticker.

As well as the required information specified above, a smart tag can also contain any number of additional
properties in namespace/name/value sets by adding them to the smart tag’s property bag.

Using the example above, adding a new property called fullCompanyName with no namespace and value
Microsoft Corporation to the smarttag would mean augmenting the output to add the smartTagPr
element with this new property as follows:

20

Jany

O 00 N OO s~ W N

10
11

12
13
14

15

16
17
18
19

20

21
22
23
24
25
26

27
28
29
30
31

32
33
34

Introduction to WordprocessingML

<w:smartTag w:uri="http://schemas.openxmlformats.org/2006/smarttags"
w:element="stockticker">

<w:smartTagPr>
<w:attr w:name="fullCompanyName" w:val="Microsoft Corporation"/>

</w:smartTagPr>

<w:ir>
<WitO>MSFT</w:t>

</wir>

</w:smartTag>

The resulting XML, as seen above, simply adds an attr element which specifies the property and value for the
property bag.

A producer can embed a smart tag around any run-level content in a WordprocessingML document in order to
embed additional information about the family and type of the data contained within. This allows ‘tagging’ of
specific regions of a document with these semantics without need to provide context beyond the information
provided in the uri and element attributes.

A consumer can read this smart tag data and provide additional functionality around these
namespace/element pairs, which may or may not be specific to that smart tag type in the document. Examples
of this functionality include: the ability to add/remove this markup via a user interface, ability to provide
actions to operating in the context of this data type, etc.

2.6.2 Custom XML Markup

The next example of customer-defined semantics which can be embedded in a WordprocessingML document
is custom XML markup. Custom XML markup allows the application of the XML elements defined in any valid
XML Schema file to be applied to the contents of a WordprocessingML document in one of two locations:
around a paragraph or set of paragraphs (at the block level); or around an arbitrary run or set of runs within a
document (at the inline level) to provide semantics to that content within the context and structures defined
by the associated XML Schema definition file.

The distinction between custom XML markup and smart tags is based on the fact that custom XML markup
corresponds with the contents of a custom XML schema; which means that as shown below, custom XML
markup can be used at the block-level to mark up the contents of a document on levels beyond that of one or
more runs as well as on the inline (run) level. It can also be validated against a custom XML schema by a
producer at run time.

Consider a simple XML Schema which defines two elements: a root element of invoice, and a child element of
customerName - the first defining that this file's contents are an invoice, and the second specifying that the
enclosed text as a customer's name:

21

O 00 N OO U A~ W

11
12
13
14
15
16
17
18
19
20

21
22

23

24
25
26

27
28
29

30
31
32

33

Introduction to WordprocessingML

(winvoice[This is an irvoi ce.
And thisis a customer nare: {_customerilame [Tristan Davis)) Jinvoice®)

This output would translate to the following WordprocessingML markup:

<w:customXml w:uri="http://www.contoso.com/2006/invoice" w:element="invoice">
<w:p>
<W:ir>
<w:t>This is an invoice.</w:t>
</wir>
</w:p>
<W:p>
<W:ir>
<w:t xml:space="preserve">And this is a customer name: </w:t>
</wir>
<w:customXml w:uri="http://www.contoso.com/2006/invoice"
w:element="customerName">
<W:ir>
<w:t>Tristan Davis</w:t>
</w:ir>
</w:customXml>
</w:p>
</w:customXml>

As shown above, each of the XML elements from the customer-supplied XML schema is represented within the

document output as a customXml element.
Similar to the smart tag example above, a custom XML element in a document has two required attributes.

The first is the uri attribute, whose contents specify the namespace of the custom XML element in the
document. In the example above, the elements each belong to the
http://www.contoso.com/2006/invoice namespace.

The second is the element attribute, whose contents specify the name of the custom XML element at this
location in the document. In the example above, the root element is called invoice and the child element is
called customerName.

As well as the required information specified above, custom XML elements can also specify any number of
attributes (as specified in the associated XML Schema) on the element. To add this information, the
customXmlPr (properties on the custom XML element) specify one or more attr elements.

Using the example above, we can add a type attribute to the customerName element as follows:

22

O 00 N OO s~ W N

=
o

I
N

13
14
15
16

17
18
19
20

21
22
23

24

25
26

27
28
29
30

31
32
33
34

Introduction to WordprocessingML

<w:customXml w:uri="http://www.contoso.com/2006/invoice"
w:element="customerName">
<w:customXmlPr>
<w:attr w:uri="http://www.contoso.com/2006/invoice" w:name="type"
w:val="individual"/>
</w:customXmlPr>
<W:r>
<w:t>Tristan Davis</w:t>
</wir>
</w:customXml>

The resulting XML, as seen above, simply adds an attr element which specifies the attribute for the custom
XML element.

A producer can embed a custom XML element around or with block-level or run-level content in a
WordprocessingML document in order to embed the structure of the customer-defined XML Schema within
the WordprocessingML content. This allows ‘tagging’ of specific regions of a document with the semantics
from this schema, while ensuring that the resulting file can be validated to the WordprocessingML schemas.

A consumer can read this custom XML markup and provide additional functionality around this customer-
defined XML markup, which may or may not be specific to that type of XML in the document. Examples of this
functionality include: the ability to add/remove this XML markup via a user interface, ability to provide actions
to operating in the context of this data type, etc.

Each custom XML element is analogous to an XML element in the specified XML schema, and can be nested
arbitrarily to any depth in the document. This facility is limited only by the XML Schema file itself, and the
contents of the current document.

2.6.3 Structured Document Tags

The final example of customer-defined semantics which can be embedded in a WordprocessingML document
is the structured document tag (SDT).

As shown above, smart tags and custom XML markup each provide a facility for embedding customer-defined
semantics into the document: smart tags, via the ability to provide a basic namespace/name for a run or set of
runs within a documents; and custom XML markup, via the ability to tag the document with XML elements and
attributes specified by any valid XML Schema file.

However, each of these techniques, while they each provide a way to add the desired semantic information,
does not provide a way to affect the presentation or interaction within the document. To bridge these two
worlds, structured document tags allow both the specification of customer semantics as well as the ability to
influence the presentation of that data in the document.

23

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

Introduction to WordprocessingML

This means that the customer can define the semantics and context of the tag, but can then use a rich set of
pre-defined properties to define its behavior and appearance within the WordprocessingML document's
presentation.

Consider a region which should be tagged with the semantic of "birthday", for the user to enter their date or
birth into the document. Ideally, this region would also utilize a date picker to allow the user to enter the date
from a calendar::

Birthiday
Click here to enter a date... j

This content would translate to the following WordprocessingML markup:

<w:sdt>
<w:sdtPr>
<w:alias w:val="Birthday"/>
<w:id w:val="8775518"/>
<w:placeholder>
<w:docPart w:val="DefaultPlaceholder_ 22479095"/>
</w:placeholder>
<w:showingPlcHdr/>
<w:date>
<w:dateFormat w:val="M/d/yyyy"/>
<w:1id w:val="EN-US"/>
</w:date>
</w:sdtPr>
<w:sdtContent>
<wW:p>
<W:ir>
<W:rPr>
<w:rStyle w:val="PlaceholderText"/>
</w:rPr>
<w:t>Click here to enter a date...</w:t>
</w:ir>
</w:p>
</w:sdtContent>
</w:sdt>

As shown above, each of the structured document tags in the WordprocessingML file is represented using the
sdt element.

24

10

11

12

13
14
15
16

17
18

19
20
21
22

23
24

25

26

27
28
29
30
31
32
33

Introduction to WordprocessingML

Within a structured document tag, there are two child elements which contain the definition and the content
of this SDT. The first of these is the sdtPr element, which contains the set of properties specified for this
structured document tag. The second is the sdtContent element, which contains all the content which is
contained within this structured document tag.

2.6.3.1 Structured Document Tag Properties

Within the SDT’s properties, various properties can be set which affect the appearance and behavior of this
content in the document. These properties can be divided into four groups:

e Shared properties

e Locking properties

e Structured document tag type
e Type-specific properties

The complete set of properties for a structured document tag are found on the sdtPr element.

The first group is properties shared by all types of SDTs. These include, but are not limited to, the semantic
name for the SDT, a unique ID (as an integer) that is round-tripped and allows the control to be uniquely
identified across sessions, and a reference to a document building block that should be displayed as
placeholder text.

The next group is the locking properties for the tag — these specify whether any consumer should allow the
contents of the SDT to be edited, or the SDT itself to be deleted from the document.

The next group, the structured document tag’s type, specifies how the content should be expressed in a
document. These types include: plain text (all contents are of one formatting), rich text, date picker, combo
box, drop-down list, and image. Each of the types provides user interface restrictions that restrict the contents
to only those specified by the type (e.g., the picture cannot contain text).

Finally, the type-specific properties contain properties that are sensible in the context of that type. For
example, the date format for a date picker or the drop-down list entries for a drop-down list/combo box. Type-
specific properties are stored as children of the type’s element.

Referring to the example above, the date properties are stored underneath the date element, as follows:
<w:sdtPr>
<w:date>
<w:dateFormat w:val="M/d/yyyy"/>
<w:1id w:val="EN-US"/>

</w:date>
</w:sdtPr>

This ensures that these properties are only available in the appropriate context(s).

25

10
11
12
13
14

15
16
17

18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34

Introduction to WordprocessingML

2.6.3.2 Structured Document Tag Content

The second child of the sdt element is the sdtContent element, which contains all the content which is
contained within this structured document tag.

2.6.3.3 XML Mapping

An additional property for SDTs allows their contents to be stored in another part (in particular, in the custom
XML data storage within the file). The presence of the dataBinding element specifies that the contents of this
SDT are simply a cache of the data stored at a particular XML element in a particular custom XML data storage
part.

2.7 Sections

Within the main document story, there is also often a need for groupings of content on a basis larger than a
paragraph (for example, ensuring that a specific set of paragraphs and tables are printed in landscape view,
while ensuring that the remainder of the document is printed in portrait view). In order to group this content,
a document can be divided into multiple sections, each of which defines a region of content in the document
and allows the application of a set of section-level properties.

Consider a WordprocessingML document with two paragraphs of content, the first of which should be
displayed on a page printed in portrait view, and the second of which should be displayed on a page printed in
landscape view (the page content should be rotated 90 degrees to the left on the underlying page).

In order to have each of these paragraphs on different pages having different page orientation characteristics,
this document would be split into two sections. Looking at the WordprocessingML for the example above:

<w:body>
<w:p>
<W:pPr>
<w:sectPr>
<w:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:1linePitch="360"/>
</w:sectPr>
</w:pPr>
<W:r>
<w:t>This is sentence one.</w:t>
</w:ir>
</w:p>

26

O 00 N OO s~ W N

S
N R, O

13

14
15
16

17

18
19

20
21
22
23
24

25
26
27

28
29

Introduction to WordprocessingML

<w:p>
<W:ir>
<w:t>This is sentence two.</w:t>
</wir>
</w:ip>
<w:sectPr>
<w:pgSz w:w="15840" w:h="12240" w:orient="landscape"/>
<w:pgMar w:top="1800" w:right="1440" w:bottom="1800"
w:left="1440" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:1linePitch="360"/>
</w:sectPr>
</w:body>

This syntax defines two sections using two distinct sectPr elements: the first has a page size of 12,240
twentieths of a point wide and 15,640 twentieths of a point tall; the second has a page size of 15,640
twentieths of a point wide and 12,240 twentieths of a point tall, and is oriented in landscape mode.

2.71 Section Properties

As shown above, the end of a section is defined as a set of properties applied to the last paragraph in that
section—converting that paragraph mark into a section break (i.e., a paragraph that closes a section).

Those properties are contained in a sectPr element, which is located within the paragraph properties (the
pPr element) for the final paragraph in that section. Within the definition of section properties, the properties
to be applied to that section (including, but not limited to, page size and orientation, line numbering settings,
margins, and columns) are specified. The complete set of section properties is located on the definition for the
sectPr element.

The only exception to this rule is the final set of section properties in this document. These are stored as the
last child of the body element. This is done because the document’s last paragraph must specify paragraph
properties, and this syntax enforces that the final set of section properties are specified.

Going back to our example, the first section break is defined within the last paragraph for that section, but the
last section properties are stored after the final paragraph.

27

O 00 N OO s~ W N

N N N N N N N N N B B B B R R R p 3,
0 N o U1 A W N B O O ® N O 1 B W N LB O

29

30
31

32
33
34
35
36
37
38
39

Introduction to WordprocessingML

<w:body>
<wW:p
<W:pPr>
<w:sectPr>
<W:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:linePitch="360"/>
</w:sectPr>
</w:pPr>
<W:r>
<w:t>This is sentence one.</w:t>
</w:ir>
</w:ip>
<wW:p>
<W:r>
<w:t>This is sentence two.</w:t>
</wir>
</w:p>
<w:sectPr>
<W:pgSz w:w="15840" w:h="12240" w:orient="landscape"/>
<w:pgMar w:top="1800" w:right="1440" w:bottom="1800"
w:left="1440" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:1linePitch="360"/>
</w:sectPr>
</w:body>

2.7.2 Section Breaks

As well as specifying the section's properties, the type of section break is specified using the type element.
WordprocessingML supports four distinct types of section breaks:

e Next page section breaks (the default if type is not specified), which begin the new section on the
following page.

e Odd page section breaks, which begin the new section on the next odd-numbered page.

e Even page section breaks, which begin the new section on the next even-numbered page.

e Continuous section breaks, which begin the new section on the following paragraph. This means that
continuous section breaks might not specify certain page-level section properties, since they must be
inherited from the following section. These breaks, however, can specify other section properties, such
as line numbering and footnote/endnote settings.

28

10
11
12

13

14
15
16
17

18

19

20

21

22
23
24
25
26

27

28

29

30
31
32

33

Introduction to WordprocessingML

2.8 Styles

After looking at the primary elements of block-level content in a WordprocessingML file, it is now necessary to
look at the information stored in the document that affects how this content is displayed.

The first such group of information is styles. Within a WordprocessingML file, styles are predefined sets of
paragraph and/or character properties which can be applied to text within the document. This allows the
formatting properties to be stored and managed independently from the content, allowing the look of
document content to be changed in a single location (e.g., the look of all first-level headings is changed by
changing the style with styleld Heading1 rather than looking for and changing each paragraph in the
document).

The Normal paragraph style in a word processing document can have any number of formatting properties,
e.g., font face = Times New Roman; font size = 12pt; paragraph justification = left). All paragraphs that
reference this paragraph style would automatically inherit these properties.

2.8.1 Styles Part

Style information in a WordprocessingML document is stored in the Styles part within the package, which is
stored via an implicit relationship from the Main Document or Glossary Document part of relationship type
http://schemas.openxmlformats.org/wordprocessingml/2006/styles and has a content type of
vnd-openxmlformats.officedocument.wordprocessingml-styles+xml.

The styles part stores two types of style information for the document:

e Style definitions
e Latent style information

2.8.2 Style Definitions

Each style defined within a WordprocessingML document requires a style definition. The style definition
contains all of the information needed by a consumer to store and display that style within a
WordprocessingML document, and is defined using the style element. The style definition for any style in
WordprocessingML can be divided into three segments (Note: the complete definition of style properties can
be found on the reference for the style element):

e Common style properties
e Style ‘types’
e Type specific properties

Common style properties refer to the set of properties which can be used regardless of the type of style; for
example, the style name, additional aliases for the style, a style ID (used by the document content to refer to
the style), if style is hidden, if style is locked, etc.

Consider a style called Heading 1 in a document as follows:

29

O 00 N OO s~ W N

=
o

I
N

13
14

15

16

17

18

19

20

21

22
23
24
25
26
27
28
29
30

32
33

34

35
36
37

Introduction to WordprocessingML

<w:style w:type="paragraph" w:styleId="Headingl">
<w:name w:val="heading 1"/>
<w:basedOn w:val="Normal"/>
<w:next w:val="Normal"/>
<w:link w:val="HeadinglChar"/>
<w:priority w:val="1"/>
<w:qformat/>
<w:rsid w:val="@0F303CE"/>

</w:style>

Above the formatting information specific to this style type are a set of common style properties which define
information shared by all style types.

Style types refer to the property on a style that defines the type of style created with this style definition.
WordprocessingML supports six types of style definitions:

e Paragraph styles

e Character styles

e Linked styles (paragraph + character)

e Table styles

e Numbering styles

e Default paragraph + character properties

Consider a style called Heading 1 in a document as follows:

<w:style w:type="paragraph" w:styleId="Headingl">
<w:name w:val="heading 1"/>
<w:basedOn w:val="Normal"/>
<w:next w:val="Normal"/>
<w:1link w:val="HeadinglChar"/>
<w:priority w:val="1"/>
<w:qformat/>
<w:rsid w:val="0@0F303CE"/>

</w:style>

The type attribute has a value of paragraph, which indicates that the following style definition is a paragraph
style.

2.8.3 Paragraph Styles

The first type of style definition, paragraph styles are styles that apply to the contents of an entire paragraph
as well as the paragraph mark. This definition implies that the style can define both character properties
(properties that apply to text within the document) as well as paragraph properties (properties which apply to

30

10
11

12

13

14
15
16

Introduction to WordprocessingML

the positioning and appearance of the paragraph). Paragraph styles cannot be referenced by runs within a
document, they must be referenced by the pStyle element within a paragraph’s paragraph properties (pPr)
element.

A paragraph style has three defining type-specific characteristics:

e The type attribute on the style has a value of paragraph, which indicates that the following style
definition is a paragraph style.

e The next element defines an editing behavior which supplies the paragraph style to be automatically
applied to the next paragraph when ENTER is pressed at the end of a paragraph of this style.

e The style specifies both paragraph-level and character-level properties using the pPr and rPr
elements, respectively. In this case, the run properties are the set of properties applied to each run in
the paragraph.

The paragraph style is then applied to paragraphs by referencing the styleld attribute value for this style in the
paragraph properties’ pStyle element.

Consider a paragraph style titled "Test Paragraph Style" which defines: paragraph spacing = double, paragraph
indent = 1” (first line only); font = Algerian, font color = red, font size = 20 points. The resulting style definition
would be:

<w:style w:type="paragraph" w:styleId="TestParagraphStyle">
<w:name w:val="Test Paragraph Style"/>
<w:qformat/>
<w:rsid w:val="00F85845"/>
<W:pPr>
<w:spacing w:1line="480" w:lineRule="auto"/>
<w:ind w:firstLine="1440"/>
</w:pPr>
<W:rPr>
<w:rFonts w:ascii="Algerian" w:hAnsi="Algerian"/>
<w:color w:val="ED1C24"/>
<W:sz w:val="40"/>
</wirPr>
</w:style>

Notice that the character properties for the style are under the rPr element, and the paragraph properties are
under the pPr element.

The document content for a paragraph of this style would be:

31

0 N o b~ W N

10

11
12
13
14

15

16

17
18
19
20

21
22

23
24

25
26
27
28
29
30
31
32
33
34
35

36

Introduction to WordprocessingML

<w:p>
<W:pPr>
<w:pStyle w:val="TestParagraphStyle"/>
</w:pPr>
<w:ir>
<w:t xml:space="preserve">Here is some fancy Text</w:t>
</wir>
</w:ip>

The pStyle element links the paragraph with the style definition.

2.8.4 Character Styles

The next type of style definition, character styles are styles which apply to the contents of one or more runs of
text within a document’s contents. This definition implies that the style can only define character properties
(properties which apply to text within a paragraph) because it cannot be applied to paragraphs. Character
styles can only be referenced by runs within a document, and they must be referenced by the rStyle element
within a run’s run properties element.

A character style has two defining type-specific characteristics:

e The type attribute on the style has a value of character, which indicates that the following style
definition is a character style.

o The style specifies only character-level properties using the rPr element. In this case, the run
properties are the set of properties applied to each run which is of this style.

The character style is then applied to runs by referencing the styleld attribute value for this style in the run
properties’ rStyle element.

Consider a character style titled "Test Character Style" which defines; font = Courier New, font color = yellow;
underline. The resulting style definition would be:

<w:style w:type="character" w:styleId="TestCharacterStyle">
<w:name w:val="Test Character Style"/>
<w:priority w:val="99"/>
<w:qformat/>
<w:rsid w:val="@OE77BF0"/>
<W:rPr>
<w:rFonts w:ascii="Courier New" w:hAnsi="Courier New"/>
<w:color w:val="FFF200"/>
<W:u w:val="single"/>
</W:rPr>
</w:style>

Notice that the character properties applied using this style are under the rPr element. The document content
for a paragraph with a run of this style would be:

32

O 00 N OO s~ W N

L e =
A W N L O

15
16

17

18
19
20
21
22

23

24
25
26
27

28
29
30

31

32
33
34
35
36

Introduction to WordprocessingML

<w:p>
<w:ir>
<w:t xml:space="preserve">The following text is in the </w:t>
</wir>
<w:ir>
<W:rPr>
<w:rStyle w:val="TestCharacterStyle"/>
</w:rPr>
<w:t>character style</w:t>
</wir>
<w:ir>
<wit>.</wit>
</wir>
</wip>

The rStyle element in the second run links that run with the style definition, inheriting the formatting
properties for that run.

2.8.5 Linked Styles

The next type of style definition, linked styles are actually a paired combination of styles which can be applied
to the contents of one or more runs of text within a document’s contents or the entire contents of one or
more paragraphs in a WordprocessingML document. This definition implies that the style can define both a set
of character properties (properties which apply to text within a paragraph) as well as a set of paragraph
properties (properties which apply to the positioning and appearance of the paragraph) because it must be
possible to apply the style to paragraphs as well as characters.

In order to accomplish these dual uses, a linked style is actually a pairing of a paragraph style and a character
style in the WordprocessingML document. Each style exists uniquely within the styles part, but are linked by
the link element, which specifies that these styles are each half of a linked style definition and should be
treated as one style at runtime.

A typical example of the use of a linked style is a quote style - if the style is applied to a paragraph, the quoted
text should be indented additionally to create a block quote effect, but if the style is applied to text in a
paragraph, only the character level effects should be applied.

Consider the following two styles which comprise a linked style pairing:

<w:style w:type="paragraph" w:styleId="TestLinkedStyle">
<w:name w:val="Test Linked Style"/>
<w:1link w:val="TestLinkedStyleChar"/>
<w:gqformat/>
<w:rsid w:val="009C1646"/>

33

O 00 N OO s~ W N

e e N e T T
0 N OO AW N R O

19
20
21

22
23
24
25
26
27

28
29

31
32
33
34
35
36
37
38
39

Introduction to WordprocessingML

<W:pPr>
<w:spacing w:1line="480" w:lineRule="auto"/>
<w:ind w:left="1440"/>
</w:pPr>
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</w:rPr>
</w:style>
<w:style w:type="character"” w:styleId="TestLinkedStyleChar">
<w:name w:val="Test Linked Style Char"/>
<w:link w:val="TestLinkedStyle"/>
<w:rsid w:val="009C1646"/>
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</W:rPr>
</w:style>

The link element in the paragraph style specifies TestLinkedStyleChar, the styleld of the paired character
style, and the link element in the character style specifies TestLinkedStyle, the styleld of the paired
paragraph style, creating a linked style combination.

Paragraph-level instances of linked styles can only be referenced by paragraphs within a document, and they
must be referenced by the pStyle element within the paragraph’s paragraph properties element (pPr), which
must referrence the paragraph version of the linked style. Character-level instances of linked styles can only be
referenced by a run's run properties element (rPr) within a document, and they must be referenced by the
rStyle element within the run properties element which must reference the character version of the linked
style.

Consider a linked style titled "Test Linked Style" which defines; font = Arial, font color = green; paragraph
spacing = double, indent = 1” left. The resulting style definitions would be:

<w:style w:type="paragraph” w:styleId="TestLinkedStyle">
<w:name w:val="Test Linked Style"/>
<w:link w:val="TestLinkedStyleChar"/>
<w:qformat/>
<w:rsid w:val="009C1646"/>
<W:pPr>
<w:pStyle w:val="TestLinkedStyle"/>
<w:spacing w:1line="480" w:lineRule="auto"/>
<w:ind w:left="1440"/>
</wW:pPr>

34

O 00 N OO s~ W N

L e =
A W N L O

15
16
17

18
19
20
21
22
23
24
25

26
27

28

29
30
31
32
33
34
35
36
37
38

Introduction to WordprocessingML

<w:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</W:rPr>
</w:style>
<w:style w:type="character” w:styleId="TestLinkedStyleChar">
<w:name w:val="Test Linked Style Char"/>
<w:link w:val="TestLinkedStyle"/>
<w:rsid w:val="009C1646"/>
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</wW:rPr>
</w:style>

Notice that the linked style definition is composed of the paragraph style, which specifies both the run and
paragraph properties, and the character style, which specifies only the run properties. The document content
for a paragraph with this linked style would be:

<W:p>
<W:pPr>
<w:pStyle w:val="TestLinkedStyle"/>
</W:pPr>
<W:ir>
<w:t xml:space="preserve">A para version of Test Linked Style.</w:t>
</w:ir>
</w:ip>

The pStyle element in the paragraph’s properties links the paragraph with the paragraph version of the linked
style definition.

The document content for a paragraph with a run of this linked style would be:

<wW:p>
<w:ir>
<w:t xml:space="preserve">Next run is character version of </w:t>
</wir>
<w:ir>
<W:rPr>
<w:rStyle w:val="TestLinkedStyleChar"/>
</w:rPr>
<w:t>Test Linked Style</w:t>
</wir>

35

Jany

A W N

10

11
12
13

14

15
16
17
18
19
20
21
22
23
24

25
26

27

28
29
30
31
32
33
34

Introduction to WordprocessingML

<W:r>
<w:t>.</wit>
</wir>
</w:ip>

The rStyle element in the second run’s properties links the run with the character version of the linked style
definition.

2.8.6 Numbering Styles

Numbering styles are style definitions which specify common style properties for a multi-level numbering
format within a document. This means that a numbering style defines only a single paragraph property: a
reference to a numbering definition stored in the document’s numbering part, using the numPr element.

Unlike paragraph and character styles, numbering styles are never directly referenced by content in the
document — instead, an abstract numbering definition (covered in the numbering topic of this section)
specifies that it is actually the underlying numbering information for a numbering style.

Consider a numbering style “Test Numbering Style”:

<w:style w:type="numbering" w:styleId="TestNumberingStyle">
<w:name w:val="Test Numbering Style" />
<w:priority w:val="99" />
<w:rsid w:val="0045009F" />
<W:pPr>
<W:numPr>
<w:numId w:val="1" />
</w:numPr>
</wW:pPr>
</w:style>

The only information specified in the numbering style definition is a reference to the numbering definition for
the numbering information which is defined by this numbering style.

2.8.7 Table Styles

The last conventional type of style definition, table styles are styles which apply to the contents of zero or
more tables within a document. This definition implies that the style can only define table properties
(properties which apply to the table and its constituent rows and cells), however a table style can also define
paragraph properties (properties which apply to the positioning and appearance of paragraphs) as well as
character properties (properties which apply to runs) for all of the paragraphs and runs within the specified
table in the document. Table styles can only be referenced by tables within a document, and they must be
referenced by the tblStyle element within a table’s table properties (tblPr) element.

36

Introduction to WordprocessingML

Like the style definitions discussed above, table styles specify all of the properties that can be applied to a
table, as well as paragraph and character properties for the table’s contents. However, unlike other style
definitions, table styles allow for the definition of conditional formats for different regions of the table.

These table conditional formats are applied to different regions of the table as follows:

Top left cell Header row Top right cell
First column Table body Last column
Bottom left cell Footer row Bottom right cell

All rows in the table can also have conditional formatting on an alternating row/column basis as well as

follows:

banded row

even row stripe
banded row

even row stripe

37

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Introduction to WordprocessingML

When specified, these conditional formats are applied in the following order (therefore subsequent formats
override properties on previous formats):

e Whole table

e Banded columns, even column banding

e Banded rows, even row banding

e First row, last row

e First column, last column

o Top left, top right, bottom left, bottom right

Consider a table style “Test Table Style” defined as follows: all cells with 1pt table borders on all sides, 0.1” cell
margins on left and right of cells, and 0” cell margins on top and bottom of cells, as well as header row specific
formatting of: red shading, bold text as follows:

<w:style w:type="table" w:styleld="TestTableStyle">
<w:name w:val="Test Table Style"/>
<w:basedOn w:val="TableNormal"/>
<w:priority w:val="99"/>
<w:rsid w:val="00340CC4"/>
<w:tblPr>
<w:tblBorders>
<w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:left w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:insideH w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:insideV w:val="single" w:sz="4" w:space="0" w:color="auto"/>
</w:tblBorders>
<w:tblCellMar>
<w:top w:w="0" w:type="dxa"/>
<w:left w:w="108" w:type="dxa"/>
<w:bottom w:w="0" w:type="dxa"/>
<w:right w:w="108" w:type="dxa"/>
</w:tblCellMar>
</w:tblPr>
<w:tblStylePr w:type="firstRow">
<W:rPr>
<w:b/>
</w:rPr>
<w:tcPr>
<w:shd w:val="clear" w:color="auto" w:fill="ED1C24"/>
</w:tcPr>
</w:tblStylePr>
</w:style>

38

10

11

12

13
14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

Introduction to WordprocessingML

The tbIPr element holds the formatting which is applied to the entire table, and the tblStylePr element with a
type attribute value of firstRow holds the formatting for the first table row, specifically the bold run
property and red cell shading.

An individual instance of a table defines an association with a table style using the tblStyle element in the
table’s properties (tblPr), as discussed above. However, individual tables can choose whether to apply the
following aspects of the table’s conditional formats individually:

e First row

e last row

e First column

e Last column

e Row banding

e Column banding

The use or omission conditional formats are specified using the tblLook element, which contains a bitmask
representing which properties are applied and omitted.

Consider two tables using the table style "Style2"; one which specifies that it should only use the header row
and footer row conditional formatting properties from the table style, and the other which specifies that it
should use the header row, footer row, and banded row conditional formatting:

<w:tbl>
<w:tblPr>
<w:tblStyle w:val="Style2"/>
<w:tblW w:w="0" w:type="auto"/>
<w:tblLook w:val="0660"/>
</w:tblPr>

</w:tbl>

<w:tbl>
<w:tblPr>
<w:tblStyle w:val="Style2"/>
<w:tbllW w:w="0" w:type="auto"/>
<w:tblLook w:val="0460"/>
</w:tblPr>

</w:tbl>

The tables each specify the appropriate set of conditional formats using the tblLook element, as seen by the
identical table styles in the tblStyle element, and different tblLook values.

39

10

11
12
13

14
15

16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to WordprocessingML

2.8.8 Default Document Paragraph and Character Properties

The final type of style in a WordprocessingML document is the default paragraph and character properties for
the document. Although this is not a style in the strict sense of the word (because this property set cannot
directly be applied to text) it defines the basic set of formatting properties which are inherited by paragraphs
and runs in the document.

The following section, entitled Style Inheritance, explains exactly how the default document paragraph and
character properties influence the appearance of all content in the document.

2.8.9 Style Inheritance

In order to compile the complete set of paragraph and character properties specified by any given style (as
appropriate), a consumer must follow the rule of style inheritance to determine each property in that set.

Style inheritance states that styles of any given type may inherit from other styles of that type, and therefore a
consumer must ‘build up’ the style information by following the inheritance tree. This inheritance is defined via
the basedOn element, which specifies the styleld of the parent style.

The “Tristan Test” paragraph style can inherit properties from the “Heading 1” paragraph style, which itself can
inherit properties from the “Normal” paragraph style.

To build up the resulting style, a consumer must trace the hierarchy (following each basedOn value) back to a
style which has no basedOn element (is not based on another style). The resulting style is then constructed by
following each level in the tree, applying the specified paragraph and/or character properties as appropriate.
When properties conflict, they are overridden by each subsequent level (this includes turning OFF a property
set at an earlier level). Properties which are not specified simply do not change those specified at earlier levels.

Consider a character style “Green” which specifies only that the text color is green, but inherits from another
character style “Base” which defines a font face of Arial, as well as bold:

<w:style w:type="character" w:styleId="Green">
<w:name w:val="Green" />
<w:basedOn w:val="Base" />
<w:rPr>
<w:color w:val="22B14C" />
</w:rPr>
</w:style>

../Local Settings/Temp/styles.xml<w:style w:type="character" w:styleId="Base">
<w:name w:val="Base" />
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial" />
<w:b />
</wW:rPr>
</w:style>

40

../Local%20Settings/Temp/styles.xml

00 N o v b~ W

10
11

12

13
14
15

16
17

18

Introduction to WordprocessingML

The definition of the Green character style has a basedOn element which specifies the Base style. This means
that any use of the Green style is defined as bold, green, Arial text.

Conversely, a producer should not output any property on a style which has already been set by a previous
level of the style hierarchy, as well as those which match the document defaults. This means that if the
document defaults or any previous level in a style’s hierarchy specify a property which is unchanged at this
level, that property should not be part of the style definition in the resulting WordprocessingML. Adding a
property at multiple levels in the style hierarchy is not invalid, but unnecessarily duplicative as the setting is
already applied to the text, resulting in an unnecessary increase to file size.

If the document default font is Bauhaus 93 and the Heading 1 style also specifies the Bauhaus 93 font, then
a producer should not output any rFonts element for the Heading 1 style definition, because that formatting
is inherited from the document defaults.

2.8.10 Style Application

With the various flavors of styles available, multiple style types can be applied to the same content within a
file, which means that properties must be applied in a specific deterministic order. As with inheritance, the
resulting formatting properties set by one type can be unchanged, removed, or altered by following types.

The following table illustrates the order of application of these defaults, and which properties are impacted by
each:

Table Characters Paragraph List ltem

Application order

w N

w

10

11
12

13
14
15
16
17
18
19
20

21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36

Introduction to WordprocessingML

This process can be described as follows: First, the document defaults are applied to all runs and paragraphs in
the document. Next, the table style properties are applied to each table in the document, following the
conditional formatting inclusions and exclusions specified per table. Next, numbered item and paragraph
properties are applied to each paragraph formatted with a numbering style. Next, paragraph and run
properties are applied to each paragraph as defined by the paragraph style. Next, run properties are applied to
each run with a specific character style applied. Finally, we apply direct formatting (paragraph or run
properties not from styles).

2.8.11 Latent Styles

The final piece of information stored in the styles part in the document, aside from style definition
information, is latent style information.

Latent styles are all styles contained in a document’s template which have not yet been instantiated (used) in
the current instance of the document.

In WordprocessingML, there are often properties which must be set on all styles in a document template
regardless of whether they are being used: for example, whether or not the style can be applied in the current
document (locked state), Ul sorting priority, whether the style should be shown in the user interface, etc. In
order for the document to function correctly, it is essential that this information is stored within the
document, so that a consumer can determine the necessary style information from the document alone
(without access to the template). However, it would be grossly inefficient for the document to store all style
information for all styles simply to store this information, so latent styles are used to store just the necessary
style properties without caching all style information in the document.

In order to do this efficiently, the document declares a latentStyles element in the styles part which defines
the default properties applied to all latent styles in the document. All styles whose properties do not match the
default for the set of style properties which must be defined for all styles are explicitly defined using the
IsdException element.

Consider the following latent style information stored in a document’s styles part:

<w:latentStyles w:deflLockedState="off" w:defPriority="99"

w:defSemiHidden="on" w:defUnhidelWhenUsed="on" w:defQFormat="off"

w:count="180">

<w:1lsdException w:name="Normal" w:unhideWhenUsed="off"
w:gformat="on"/>

<w:1lsdException w:name="heading 1" w:semiHidden="off" w:priority="1"/>

<w:1lsdException w:name="heading 2" w:priority="1"
w:unhideWhenUsed="on"/>

<w:1lsdException w:name="heading 3"

<w:1lsdException w:name="heading 4"

<w:1lsdException w:name="heading 5"

=

:semiHidden="off/>
:priority="1" w:qformat="on"/>
:priority="1" w:qformat="on"/>

= =

42

10

11

12
13
14

15

16
17

18
19
20
21
22
23

24
25

26

27
28
29

30

31

32

33

34

Introduction to WordprocessingML

<w:1sdException
<w:1lsdException
<w:1lsdException
<w:1lsdException
<w:1lsdException
</w:latentStyles>

:name="heading 6" w:priority="1" w:gformat="on"/>
:name="heading 7" w:priority="1" w:qgqformat="on"/>
:name="heading 8" w:priority="1" w:qformat="on"/>
:name="heading 9" w:priority="1" w:qformat="on"/>
:name="Normal Indent" w:priority="6" w:qformat="on"/>

£ £ £ £ =

The attributes on the latentStyles element define the properties applied to all latent styles for this document.
All styles whose properties do not match the default latent styles properties are explicitly defined using the
values on the IsdException elements.

2.9 Fonts

2.9.1 Font References

Within a WordprocessingML document, font face information can be referenced by any set of run properties,
both as part of a style definition or direct formatting on one or more runs in the document's contents. This
reference is established by referencing the primary name of the font face that is used in the rFonts element of
the run properties, linking that run with the desired font face.

For example, consider a run of text that has been directly formatted to use the Arial Black font face. This
setting would be specified as follows on the run's properties:

<W:r>
<W:rPr>
<w:rFonts w:ascii="Arial Black" w:hAnsi="Arial Black" />
</W:rPr>
<w:t>This run of text uses the Arial Black font face.</w:t>
</w:r>

The rFonts element specifies that the run should be formatted using the Arial Black font face.
Applications can then look up and use the font with primary name of Arial Black when formatting this run.

2.9.2 Font Reference Types

In the example above, two attributes were present, both referring to the font face with primary name Arial
Black. This simple case illustrates the ability for a WordprocessingML document to store up to four fonts
which may be used on the contents of a run, as follows:

e ASCll font

e High ANSI font

e East Asian font

e Complex Script font

Each of these font faces is used to format the characters in the run that fall under their purview:

43

10
11
12
13
14
15
16

17

18

19

20

21

22
23
24

25
26
27

28
29

30

31

32
33

Introduction to WordprocessingML

The ASCII font formats all characters in the ASCII range (character values 0—127). This font is specified using the
ascii attribute on the rFonts element.

The East Asian font formats all characters that belong to Unicode sub ranges for East Asian languages. This font
is specified using the eastAsia attribute on the rFonts element.

The complex script font formats all characters that belong to Unicode sub ranges for complex script languages.
This font is specified using the cs attribute on the rFonts element.

The high ANSI font formats all characters that belong to Unicode sub ranges other than those explicitly
included by one of the groups above. This font is specified using the hAnsi attribute on the rFonts element.

For example, consider a run of text defined as follows:

<W:r>
<wW:rPr>
<w:rFonts w:ascii="Arial Black" w:hAnsi="Arial Black" w:cs="Arial"
w:eastAsia="SimSun"/>
</W:rPr>

</wir>
The rFonts element specifies that the contents of this run are formatted as follows:

e Complex script characters used the Arial font
e East Asian characters used the SimSun font
e All other characters used the Arial Black font

2.9.3 Ambiguous Characters

When classifying characters into one of the four slots defined above, it is likely that the classification of some
characters will be ambiguous (the resulting classification would be equally applicable for one or more font
slots).

To handle this, the font face information can also include a hint, which specifies how ambiguous mappings are
resolved into a font slot. This information is stored on the hint attribute on the rFonts element, and specifies
the bucket into which these ambiguous characters fall.

For example, if the hint attribute has a value of eastAsia, then all ambiguous characters shall be formatted
using the East Asian font face.

2.9.4 Font Table

Within a document, the font table contains information about the fonts used in the document to allow:

e Applications to perform substitution with the most appropriate possible font when the desired font
face is not available on the system. Since some fonts are commercially distributed, it is possible for a

44

10
11
12
13

14

15
16
17
18
19
20
21
22

23

25

26

27

28

29

30

31
32
33
34
35

36

Introduction to WordprocessingML

document to be formatted with one or more fonts that are not available depending on the machine
opening the current system. This information allows the application that cannot locate the desired
font to perform the most appropriate possible match.

e Embedding of fonts in the document to prevent the need for font substitution

The font table part is stored via an implicit relationship from either the main document part or the glossary
document part, and has a relationship type of
http://schemas.openxmlformats.org/wordprocessingml/2006 /fontTable, and a content type of vnd-
openxmlformats.officedocument.wordprocessingml-fontTable+xml.

2.9.5 Font Substitution Data

The first classification of data stored in the font table are an optional set of font metrics which are queried
from the font and stored in the document such that future applications can utilize them when the desired font
is not available. If a particular font face cannot be located on the current system, then this data is used to
substitute a font that most appropriately matches its characteristics.

For example, consider the font substitution data stored for the Arial Black font:

<w:font w:name="Arial Black">

<w:panosel w:val="020B0A04020102020204" />

<w:charset w:val="00" />

<w:family w:val="swiss" />

<w:pitch w:val="variable" />

<w:sig w:usb@="00000287" w:usbl="00000000" w:usb2="00000000"

w:usb3="00000000" w:csbo="0000009F" w:csbl="00000000" />

</w:font>

This data is linked to the font face with a name of Arial Black via the name attribute, and stores the
following information about the font (see the reference material on fonts for more details):

e The font's Panose-1 number

e The character set of the font

e The font's family

e The font's pitch

e The code pages and Unicode sub ranges supported by the font

2.9.6 Font Embedding

As well as providing information about the font's metrics, applications may be directed to embed the contents
of a font (partially or as a whole) into a document, a process known as font embedding. Font embedding
literally embeds an obfuscated version of the font into the file so that it may be retrieved and used to view the
contents of this document - but the obfuscation ensures that the font cannot be extracted and used for any
other document (as it may have a commercial license).

Within the font table, when a font is embedded there are explicit relationships to each font form needed:

45

http://schemas.openxmlformats.org/wordprocessingml/2006/fontTable

10
11
12

13
14

15

16
17
18
19
20
21

22
23

24
25
26

27

28
29

30
31

32

33

Introduction to WordprocessingML

e Regular
e Bold
e Italic

e Bold + Italic
Each form is obfuscated using the mechanism described in the reference material on this subject.

2.9.7 Theme Fonts

As well as storing standard font face information, run properties may store an abstraction for font face
information known as theme fonts. Theme fonts are values that specify that the font face information for a run
is not stored in the attribute value using the appropriate font face name, but is rather a reference into the
document's theme part, allowing font face information to be stored and managed centrally as part of the
theme data. It is appropriate to think of theme fonts as a "style for fonts" in the same way in which a style is a
reference to the formatting that is stored centrally in another part.

Theme fonts are specified using the theme attribute variants in the rFonts element, rather than storing the
actual font face name.

For example, consider a run of text defined as follows:

<W:r>
<W:rPr>
<w:rFonts w:asciiTheme="minorHAnsi" w:hAnsiTheme="minorHAnsi" />
</wW:rPr>

</wWir>

The rFonts element's attribute values of asciiTheme and hAnsiTheme both store a reference to a theme font
stored in the document's theme part (i.e., there is no font with the primary name minorHAnsi).

Once this information has been established, it is combined with the theme language data stored in the
document's settings to resolve the appropriate theme fonts from the theme part. The syntax and format of the
theme part are stored in the DrawingML syntax and discussed in that section.

2.10 Numbering

Numbering in WordprocessingML refers to symbols—Arabic numerals, Roman numerals, symbol characters
("bullets"), text strings, etc.—that are used to label individual paragraphs of text.

The following two paragraphs each contain numbering as defined by WordprocessingML: the first uses an
Arabic numeral, the second a symbol character:

1. Thisis a paragraph with numbering information.

e Thisis also a paragraph with numbering information.

46

10

11

12

13
14
15
16
17

18

19

20

21
22

23
24
25
26
27

28

30
31
32
33
34

Introduction to WordprocessingML

2.10.1 Numbering Part

Numbering information in a WordprocessingML document is stored in the Numbering part within the package,
which is stored via an implicit relationship from the Main Document part or Glossary Document part of
relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/numbering and
has a content type of vnd-openxmlformats.officedocument.wordprocessingml-numbering+xml.

2.10.2 Numbering Definitions

The specification of a specific set of numbering information is called a numbering definition. Numbering
definitions are stored in two components:

e Abstract numbering definitions
o Numbering definition instances

As shown below, their relationship is (essentially) that of an abstract and an inherited class.

2.10.3 Abstract Numbering Definitions

An abstract numbering definition is the basis for all numbering information in a WordprocessingML document,
as it defines the appearance and behavior of a specific set of numbered paragraphs in a document, and is
defined using the abstractNum element. Although abstract numbering definitions contain all of the numbering
information for one type of numbering, they cannot be directly referenced by content (hence their abstract
designation), they must be inherited by a numbering definition instance, which itself can be referenced by
content. A specific abstract numbering definition in WordprocessingML can be divided into two parts:

e Common numbering properties
e Numbering levels

The complete definition of all abstract numbering properties can be found in the reference for the
abstractNum element.

Common numbering properties refer to the properties that can be specified by all abstract numbering
definitions regardless of their contents. Examples of common numbering properties include: a numbering ID
(which uniquely identifies a numbering definition), the numbering definition type (single level, multi-level,
multi-level hybrid), the numbering name, and optional numbering style references, as discussed in detail later
in this subclause.

Consider the following example of an abstract numbering definition in a WordprocessingML document:

<w:abstractNum w:abstractNumId="4">
<w:nsid w:val="1DE@4504" />
<w:multilevelType w:val="hybridMultilevel” />
<w:lvl w:ilvl="0" w:tplc="0409000F">

</w:lvl>

47

O 00 N OO s~ W N

=
L O

P e
A W N

15
16

17
18

19

20
21
22

23
24

25

26
27

28

Introduction to WordprocessingML

<w:lvl w:ilvl="1" w:tplc="04090019">

</w:lvl>
<w:1lvl w:ilvl="2" w:tplc="04090019">

</w:lvl>
<w:lvl w:ilvl="3" w:tplc="0409000F" >

</w:lvl>
</w:abstractNum>

This numbering definition specifies two common properties: a numbering ID (using the nsid element) of
1DE@4504, and a list type (using the multiLevelType element) of hybridMultilevel, which specifies that this
abstract numbering definition is more than one level and contains multiple numbering formats.

The other part of an abstract numbering definition is the specification of one or more numbering levels, each
of which defines a unique set of formatting properties for one level in this numbering definition.

Consider three numbered paragraphs that reference the same numbering definition, but each, in turn,
reference a different level within that list:

1. One
a. Twao
i. Three

Although the paragraphs each reference the same abstract numbering definition (which is discussed later),
each refers to a separate level within that abstract numbering definition, and therefore each has a unique set
of paragraph and numbering properties.

It is important to note that the concept of levels in an abstract numbering definition refers to the levels as
defined in the file format, and in no way the logical indentation of numbered paragraphs within a
WordprocessingML document.

Consider another set of numbered paragraphs in WordprocessingML, where each subsequent paragraph is a
different level but references the same abstract numbering definition:

1} Levelaore
a) Leveltwo
il Levelthree
{1} Level four
fa) Level five

48

10

11
12
13
14
15
16
17
18
19
20
21
22
23

25

26

27

28

29

30
31

32
33

34
35
36
37

Introduction to WordprocessingML

In this example, the properties of each level of the numbering definition is such that the paragraphs for each
level are indented arbitrarily. However, this is still a completely valid numbering definition, and the paragraphs
each represent subsequent levels of the same numbering definition.

Within an abstract numbering level definition, each numbering level is represented by an lvl element that
defines a single level of numbering information. Numbering levels specify the following properties: starting
number value, a number format presentation code (e.g., 1 vs. the string literal One), an associated paragraph
style, which previous level should cause this numbering level to restart, the numbering text, number
justification, a paragraph properties indentation for this level, etc. The complete definition of all numbering
level properties can be found on the reference for the 1vl element.

Consider the following numbering level definition in WordprocessingML:

<w:1lvl w:ilvl="1">
<w:start w:val="4"/>
<w:nfc w:val="3"/>
<w:pStyle w:val="Headingl"/>
<w:1v1lText w:val="BEFORE %2 AFTER %1 END"/>
<w:1v1lJc w:val="1left"/>
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="2880"/>
</w:tabs>
<w:ind w:left="288" w:firstlLine="1152"/>
</W:pPr>
</w:lvl>

This particular numbering level defines the following information:

e Thisis level 1 (the second level) for this numbering definition

e Start at number 4

e Use number format 3 (which translates to 1, 2, 3, and so on)

e When this level is used, apply the Heading1 style

e Use the following level text for the number: BEFORE %2 AFTER %1 END

e Left justify the number

e Set a left indent of 288 twentieths of a point, and a first line indent of 1152 twentieths of a point

This information is used to display the number for paragraphs of level 1 the reference this numbering
definition.

Of particular significance is the lviText element, which defines the content of the number text for each
numbering level. Its syntax allows any string literal to be placed in the number (e.g., the ARTICLE in ARTICLE I,
ARTICLE II, ARTICLE Ill, and so on), as well as the current value of the number for this or any previous level in
the list.

49

O 00 N O

11
12
13

14

15

16
17
18

19

20

21
22

23
24
25

26
27

29
30
31
32
33
34
35

Introduction to WordprocessingML

Referring to the numbering level definition above, the IvliText is defined as follows:
<w:1vlText w:val="BEFORE %2 AFTER %1 END"/>

This level text specifies three literal strings (BEFORE, AFTER, END) mixed with the current numbering value
from level 1 and level 0 in the document. Therefore, assuming level 0 is just a simple number, when inserted it
would read:

1
BEFORE 1 AFTER 1 END
BEFORE 2 AFTER 1 END
BEFORE 3 AFTER 1 END

BEFORE 1 AFTER 2 END
BEFORE 2 AFTER 2 END

The %1 and %2 values correspond to the value for level 0 and 1 of this list, respectively.

2.10.4 Numbering Definition Instances

A numbering definition instance is a specific instantiation of numbering information that can be referenced by
zero or more paragraphs within the document. A numbering definition instance is defined using the
num element. A specific numbering definition instance in WordprocessingML can be divided into two parts:

e An abstract numbering reference
o (Optional) level overrides

The definition of all numbering definition instance properties can be found on the reference for the num
element.

The required piece of information in a numbering definition instance, the instance must reference an abstract
numbering definition using the abstractNumld element. This element specifies the value of the
abstractNumld attribute for the inherited abstract numbering definition information.

Consider the WordprocessingML for a document with four numbering definition instances, two of which
reference the same underlying abstract numbering definition:

<W:numbering>

<w:num w:numId="2">
<w:abstractNumId w:val="0" />

</w:num>

<w:num w:numId="3">
<w:abstractNumId w:val="1" />

</w:num>

50

N o o AwWwN

10
11
12

13
14

15

16
17
18
19
20
21
22
23
24
25
26
27

29
30

31

32
33

34
35
36

37

Introduction to WordprocessingML

<w:num w:numId="4">
<w:abstractNumId w:val="4" />
</w:num>
<wW:num w:numId="5">
<w:abstractNumId w:val="4" />
</w:num>
</w:numbering>

As shown above, the first two numbering definition instances reference abstractNumld values of 0 and 1
respectively, and the last two both reference the abstract numbering definition with an abstractNumld of 4.

The second (and optional) piece of information for a numbering definition instance is one or more numbering
level overrides using the IvlOverride element. This element specifies a set of optional overrides applied to
zero or more levels from the abstract numbering definition inherited by this instance.

Consider a numbering definition instance that inherits its information from the abstract numbering definition
with abstractNumld of 4, but wishes to use a different set of properties for level 0 of the numbering
definition. The resulting WordprocessingML would look like:

<w:num w:numId="6">
<w:abstractNumId w:val="4" />
<w:1lvlOverride w:ilvl="0">
<w:1vl w:ilvl="0">
<w:start w:val="4" />
<w:lvlText w:val="%1)" />
<w:1v1lJc w:val="1left" />
<w:pPr>
<w:ind w:left="360" w:hanging="360" />
</w:pPr>
</w:lvl>
</w:1lvlOverride>
</w:inum>

This level overrides level 0 of the list with the specified set of numbering properties, replacing those in the
abtract numbering definition.

2.10.5 Applying Numbering to Paragraphs

Once numbering information is defined in the numbering part, this information must be associated with
paragraphs within the document in order to display numbering on one or more paragraphs of content.

To accomplish this, numbered paragraphs are identified by the numPr element within the paragraph's
properties element (the pPr element). The numbering properties within a paragraph are specified using two
specific elements that specify the numbering definition information to use:

e A numbering definition instance reference

51

10

11
12

13
14
15
16
17
18
19
20
21
22
23

Introduction to WordprocessingML

e A numbering level reference

The numbering definition instance reference is specified using the numld element. This element contains a
reference to the numld attribute in a specific numbering definition instance within the numbering part, which
links this paragraph to that numbering definition instance.

The numbering level reference is specified using the ilvl element. This element contains a reference to the ilvl
attribute in the specified numbering definition instance's level information, which specifies the numbering
level within the referenced numbering definition instance to be used by this numbered paragraph.

Consider the following numbered paragraphs in a WordprocessingML document:

1. Level oneitem one

a. Level two item one
2. Level oneitem two

a. Level two item one

These four numbered paragraphs, all referencing the same numbering definition, produce the following
WordprocessingML:

<W:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="0" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>Level one item one</w:t>
</wir>
</w:p>

52

O 00 N OO s~ W N

W W W W NN NNNNIRNRNNNNDNDRR R B P B B opop o
W N B O ©W 00 N O U1 B W N P O W ®® N O U B W N LB O

34
35
36

37
38

39

40

Introduction to WordprocessingML

<w:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="1" />
<w:numId w:val="5" />
</w:numPr>
</W:pPr>
<W:r>
<w:t>Level two item one</w:t>
</wir>
</w:ip>
<w:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="0" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>Level one item two</w:t>
</wir>
</w:ip>
<W:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="1" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>Level two item one</w:t>
</wir>
</w:p>

In these numbered paragraphs, level 0 and 1 of the numbering definition are referenced through the ilvl
element with a val attribute of 0 or 1, respectively, however, the numld element always references the
numbering definition instance with a val of 5.

The numbering at any particular numbering level is restarted when a paragraph in the current document from
the same numbering definition uses the level specified in the lvIRestart element for this numbering level.

Consider a set of numbered paragraphs in a WordprocessingML document where:

e Level 1is set to restart after each level O (IvlRestart of 1)

53

O 00 N O

10

11
12
13
14
15
16
17
18
19
20
21

22

Introduction to WordprocessingML
e level 2 is set to never restart (IvlRestart of 0)

1) Levelone
a) Level two —restarts after eachlevel one
il Level three —newver restarts
b} Level two —restarts after each level one
i) |Leve|three——neverrEStan5
2) Levelone
a) Level two —restarts after eachlevel one
i} Level three —never restarts
b} Level two —restarts after each level one
iv) Level three —never restarts

As the example shows, the numbering at level 1 (a, b, ¢, and so on) restarts after each level 0 is used, but
level 2 (i, ii, iii, and so on) never restarts.

2.10.6 The Complete Story

To summarize the use of numbering information in a document, the paragraph properties specify a numPr
element, which references a numbering definition instance via the numld element. The numbering definition
instance specifies an inherited abstract numbering definition via the abstractNumlId element. The paragraph
then also specifies the list level from the numbering definition instance using the ilvl element.

Consider the following WordprocessingML for a numbered paragraph:

<wW:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="0" />
<w:numId w:val="5" />
</w:numPr>
</wW:pPr>
<W:r>
<w:t>Numbered paragraph</w:t>
</wir>
</wip>

Based on the numld of 5, the paragraph uses the numbering definition instance with a numlId of 5:

54

a U A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

29

30
31
32
33
34
35
36

37
38

Introduction to WordprocessingML

<w:numbering>

<w:num w:numId="5">
<w:abstractNumId w:val="4" />
</w:num>
</w:numbering>

Based on the abstractNumld of 4, this instance inherits the abstract numbering definition with an
abstractNumld of 4:

<W:numbering>
<w:abstractNum w:abstractNumId="4">
<w:nsid w:val="FFFFFF7F" />
<w:multilLevelType w:val="singlelLevel" />
<w:lvl w:ilvl="0">
<w:start w:val="1" />
<w:1lvlText w:val="2%1." />
<w:1v1lJc w:val="1left" />
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="720" />
</w:tabs>
<w:ind w:left="720" w:hanging="360" />
</wW:pPr>
</w:lvl>
</w:abstractNum>

</w:numbering>

Since the numbering definition instance does not specify an override for ilvl 0, the definition for the
corresponding level from the abstract numbering definition is applied to the text.

2.10.7 Numbering Styles

As stated earlier in the styles subclause (§2.8), numbering styles are style definitions which specify common
formatting properties for a multi-level numbering format within a document. This means that a numbering
style definition in the styles part defines only a single property: a reference to a numbering definition instance
stored in the document’s numbering part, using the numlId element within the numPr element. That
numbering definition instance specifies an abstract numbering style, which contains the numbering level
information for the numbering style. It also specifies that it is the basis for the numbering style by back-
referencing the numbering style's styleld attribute via the styleLink element.

Unlike paragraph and character styles, numbering styles are never directly referenced by content in the
document—instead, an abstract numbering definition specifies that it contains the underlying numbering

55

10
11
12
13
14

15

16
17

18

19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34

35
36

Introduction to WordprocessingML

information for a numbering style, and one or more numbering definition instances reference that abstract
numbering definition.

2.10.8 Referencing Numbering Styles

To use a numbering style in a document, the paragraph properties for one or more paragraphs again specify a
numPr element, which references a numbering definition instance via the numlId element. The numbering
definition instance itself again specifies an inherited abstract numbering definition via the abstractNumlId
element.

At this stage, the abstract numbering definition specifies that it is based on a numbering style via either of the
following:

e The abstract numbering style contains no level data, and simply specifies a reference to the numbering
style's styleld attribute via the numStyleLink element.

e The abstract numbering style contains the numbering level information for the numbering style, and
specifies that it is the basis for the numbering style by referencing the numbering style's styleld
attribute via the styleLink element.

Although the result of each method is identical, the following two examples illustrate each of the syntaxes:

Consider the first numbering style syntax, in which the numbering on a paragraph is based on an abstract
numbering definition which simply references the numbering style via numStyleLink. The contents of the
paragraph would consist of the following:

<W:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="@" />
<w:numId w:val="6" />
</w:numPr>
</wW:pPr>
<W:ir>
<w:t>This paragraph references a numbering style via numStylelink.</w:t>
</w:r>
</wip>

The numld element references a numbering definition instance with a value of 6, located in the numbering
part:

<w:num w:numId="6">
<w:abstractNumId w:val="0" />
</W:num>

Based on the abstractNumld of 9, this instance inherits the abstract numbering definition with an
abstractNumld of e:

56

10
11
12
13
14
15
16
17
18

19

20
21
22

23
24

Introduction to WordprocessingML

<w:abstractNum w:abstractNumId="0">
<w:nsid w:val="38901FA4" />
<w:multilevelType w:val="multilevel" />
<w:numStylelLink w:val="TestNumberingStyle" />
</w:abstractNum>

This abstract numbering definition contains no numbering information - it simply notes that it inherits the
numbering information from the numbering style TestNumberingStyle by referencing the styleld
attribute on that style:

<w:style w:type="numbering" w:styleId="TestNumberingStyle">
<w:name w:val="Test Numbering Style" />
<wW:uiPriority w:val="99" />
<w:rsid w:val="0@0DB3C4B" />
<W:pPr>
<W:numPr>
<w:numId w:val="4" />
</w:numPr>
</W:pPr>
</w:style>

The style references a numbering definition instance, again via the numld element:

<W:num w:numId="4">
<w:abstractNumId w:val="2" />
</w:num>

Based on the abstractNumld of 2, this instance inherits the abstract numbering definition with an
abstractNumld of 2:

57

O 00 N OO s~ W N

e e L e o =
o U A~ W N =B O

17
18
19
20

21
22
23

24
25
26
27
28
29
30
31
32
33
34

35
36

37
38
39

Introduction to WordprocessingML

<w:abstractNum w:abstractNumId="2">
<w:nsid w:val="46364EB7" />
<w:multilevelType w:val="multilevel" />
<w:stylelink w:val="TestNumberingStyle" />
<w:lvl w:ilvl="0">
<w:1lvlText w:val="%1 %1 %1" />
<w:1v1lJc w:val="1left" />
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="360" />
</w:tabs>
<w:ind w:left="0" w:firstLine="0" />
</w:pPr>
</w:lvl>

</w:abstractNum>

This abstract numbering definition defines the properties for each level of the numbering format (levels 1
through 9 omitted for brevity). Since neither of the numbering definition instances specified overrides for
level 0, the properties from abstract numbering format 2 are applied to level 0 in the resulting numbering
definition instance and are applied to the text via the ilvl element.

Consider the second numbering style syntax, in which the numbering on a paragraph is based on an abstract
numbering definition which defines the numbering information and references the numbering style via
styleLink. The contents of the paragraph would consist of the following:

<w:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="@" />
<w:numId w:val="4" />
</w:numPr>
</w:pPr>
<w:ir>
<w:t>This paragraph references a numbering style via stylelLink.</w:t>
</wir>
</w:p>

The numld element references a numbering definition instance with a value of 4, located in the numbering
part:

<w:num w:numId="4">
<w:abstractNumId w:val="2" />
</w:num>

58

1

O 00 N o U A~ W

10
11
12
13
14
15
16
17

19
20
21
22
23
24

25

26
27

28
29

30

Introduction to WordprocessingML

Based on the abstractNumld of 2, this instance inherits the abstract numbering definition with an
abstractNumld of 2:

<w:abstractNum w:abstractNumId="2">
<w:nsid w:val="46364EB7" />
<w:multilevelType w:val="multilevel"” />
<w:stylelLink w:val="TestNumberingStyle" />
<w:lvl w:ilvl="0">
<w:lvlText w:val="%1 %1 %1" />
<w:1v1lJc w:val="1left" />
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="360" />
</w:tabs>
<w:ind w:left="0" w:firstLine="0" />
</w:pPr>
</w:lvl>

</w:abstractNum>

This abstract numbering definition defines the properties for each level of the numbering format (levels 1
through 9 omitted for brevity) and specifies that it is the underlying numbering information for a numbering
format by referencing the styleld of that numbering style via the styleLink element. Since the numbering
definition instances specified no override for level 0, the properties from abstract numbering format 2 are
applied to level 0 in the resulting numbering definition instance and are applied to the text via the ilvl
element.

2.11 Headers and Footers

Headers and footers refer to text, graphics, or data (such as page number, date, document title, and so on)
that can appear at the top or bottom of each page in a WordprocessingML document.

A header appears in the top margin (above the main document content on the page), while a footer appears in
the bottom margin of a document page (below the main document content on the page); for example:

Header

Footer

59

10
11
12
13

14

15
16

17
18
19
20
21

22

23

24

25

26
27
28
29

30

Introduction to WordprocessingML

Since WordprocessingML is a flow-based format, headers and footers are applied by specifying the headers
and footers for all pages in a particular section of a document.

2.11.1 Header Part

Header information in a WordprocessingML document is stored in a header part within the package, which is
stored via an implicit relationship from the Main Document part or the Glossary Document part of relationship
type http://schemas.openxmlformats.org/wordprocessingml/2006/header and has a content
type of vnd-openxmlformats.officedocument.wordprocessingml-header+xml.

2.11.2 Footer Part

Footer information in a WordprocessingML document is stored in a footer part within the package, which is
stored via an implicit relationship from the Main Document part or the Glossary Document part of relationship
type http://schemas.openxmlformats.org/wordprocessingml/2006/footer and has a content
type of vnd-openxmlformats.officedocument.wordprocessingml-footer+xml.

2.11.3 Headers and Footers

As described above, header and footer information is stored in one or more header or footer parts within the
package.

The hdr element defines a single header for the document, while the ftr element defines a single footer for
the document. Headers and footers are just another document story in WordprocessingML. Within the root
element of the header or footer, the content of the element is similar to the content of the body element, and
contains what is referred to as block-level markup —markup that can exist as a sibling element to paragraphs
in a WordprocessingML document.

Within each section of a document there can be up to three different types of headers and footers:

e First page header/footer
e 0dd page header/footer
e Even page header/footer

First page headers and footers specify a unique header or footer that shall appear on the first page of a
section. Odd page headers and footers specify a unique header and footer that shall appear on all odd
numbered pages for a given section. Even page headers and footers specify a unique header and footer that
shall appear on all even numbered pages in a given section.

Different headers or footers can be useful for bounded documents like books, as shown in the figure below.

60

O 00 N O

11
12

13
14

15

Introduction to WordprocessingML

e
P‘Luth[]r Tit -

ve 3
Page 2 Page

Consider the following simple one-page document with one header:

Header

This document defines one header with the text Header. The header's content is stored in a unique Header
part. The resulting header is represented by the following WordprocessingML:

<w:hdr>
<w:p>
NH
<w:t>Header</w:t>
</wir>
</w:p>
</w:hdr>

Since headers are containers of block level contents, all block level contents can be used within them. In this
particular example, the content is a single paragraph.

Consider a more complex three-page document with different first, odd, and even page headers defined:

61

O 00 N O wun

11

12

13
14
15
16
17
18
19

20

21
22
23
24
25
26
27

Introduction to WordprocessingML

First Even Odd

Page 1 Page 2 Page 3

This document defines three headers stored in three different header parts. The resulting headers are
represented by the following WordprocessingML:

First page header part:

<w:hdr>
<W:p>
<W:r>
<W:t>First</w:t>
</wir>
</w:ip>
</w:hdr>

Even page header part:

<w:hdr>
<w:p>
NH
<w:t>Even</w:t>
</wir>
</w:p>
</w:hdr>

Odd page header part:

<W:hdr>
<w:p>
<W:r>
<w:t>0dd</w:t>
</wir>
</w:p>
</w:hdr>

62

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

Introduction to WordprocessingML

2.11.4 Multiple Sections

Documents are capable of having multiple sections, where each section can define up to three headers and
footers. By default, sections other than the first section inherit the previous header and footer references,
unless that section specifies header and footer references.

1
— .

| Chaptet 2
L
1

Chapter 1

Page 1 | Page 2

Consider a two-page, two-section document with only the first section header defined. This document defines

one header that is referenced in the first section. The document is represented by the following
WordprocessingML:

<w:body>
<W:p>
<W:pPr>
<w:sectPr>

<w:headerReference r:id="rId6" />

</w:sectPr>
</w:pPr>

</w:p>
<w:sectPr>

</w:sectPr>
</w:body>

The second section does not explicitly reference a header. Instead, the second section inherits the header from

the previous section.

63

10
11

12
13
14

15

16
17
18

19

20

21

22

Introduction to WordprocessingML

2.11.5 Empty Header or Footer

Not specifying a header and footer reference in a section, other than the first section, causes the document to
inherit the previous section's header and footer references. In order to declare an empty header or footer, a
header or footer reference must be made to a null header or footer relationship, as follows:

<Relationship Id="rId2" Type="http:// ../header" Target="null" />

The null attribute value specifies that the header or footer shall not be inherited from the previous section,
and a blank header or footer shall explicitly be used.

2.12 Footnotes and Endnotes

Footnotes and endnotes are separate text stories used in documents and books to show the source of
borrowed material or to enter explanatory or supplementary information that does not interrupt the normal
reading flow of the document.

Footnotes are typically located at the bottom of a page or beneath text being referenced, and endnotes are
typically placed at the end of a document or at the end of a section. If document has been divided up into one
or more sections, each section of a document can contain endnotes.

Both footnotes and endnotes consist of two parts:

e A note reference mark in the body text to indicate that additional information is in a footnote or
endnote, with a numbering system used for each to tell readers whether to look for the note at the
end of the page or the end of the document or section.

e The actual footnote or endnote story content.

Here's an example of a footnote applied to text in a document:

Some referenced text,

64

1
2

3

10
11
12

13

14
15

Introduction to WordprocessingML

The note reference mark follows the noted text and specifies that there is associated footnote information; the
footnote itself is at the bottom of the current page.

Consider the following example of an endnote applied to text in a document:

©

The note reference mark follows the noted text and specifies that there is associated endnote information; the
endnote itself is at the end of the current section.

2.12.1 Footnote Part

Footnote information in a WordprocessingML document is stored in the footnotes part within the package,
which is stored via an implicit relationship from the Main Document part or Glossary Document part of
relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/footnotes and
has a content type of vnd-openxmlformats.officedocument.wordprocessingml-footnotes+xml.

2.12.2 Endnote Part

Endnote information in a WordprocessingML document is stored in the Endnotes part within the package,
which is stored via an implicit relationship from the Main Document part or Glossary Document part of

65

11

Introduction to WordprocessingML

relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/endnotes and
has a content type of vnd-openxmlformats.officedocument.wordprocessingml-endnotes+xml.

2.12.3 Footnotes and Endnotes

As described above, footnote and endnote information is stored in the corresponding footnotes and endnotes
part within the package. The footnotes element below specifies three or more footnotes, each identified by
the footnote element, for the document. The endnotes element specifies three or more endnotes, each
identified by the endnote element, for the document. Each footnote or endnote element is associated with a
unique ID, specified by the attribute id.

Consider three different types of footnotes, each identified by a footnote element, defined in the Footnotes
part. The use of each type of footnote is defined in the next subclause:

<w:footnotes ...>
<w:footnote w:type="separator" w:id="0">

</w:footnote>
<w:footnote w:type="continuationSeparator" w:id="1">

</w:footnote>
<w:footnote w:id="2">

</w:footnote>
</w:footnotes>

Similarly consider three different types of endnotes, each identified by an endnote element, defined in the
Endnotes part. The use of each type of endnote is defined in the next subclause:

<w:endnotes ...>
<w:endnote w:type="separator" w:id="0">

</w:endnote>
<w:endnote w:type="continuationSeparator” w:id="1">

</w:endnote>
<w:endnote w:id="2">

</w:endnote>
</w:endnotes>

Footnotes and endnotes are just another kind of paragraph in WordprocessingML. Within the footnote or
endnote element, the footnote or endnote may contain any valid block-level content.

66

10
11
12

13

14

15
16

17
18
19
20
21

Introduction to WordprocessingML

2.12.4 Footnote and Endnote Types

There are four different types of footnotes and endnotes:

e Normal - contain the text of any footnote (or endnote) in the document.

e Separator — define the separator used to separate the footnote (or endnote) from the document text.

e Continuation separator — define the separator used to separate the footnote (or endnote) from the
document text when the footnote or endnote is a continuation from the previous page.

e Continuation notice — define the notice text to let readers know that the footnote (or endnote) has
continued on the next page.

The attribute type specifies the type of footnote or endnote. Normal footnotes or endnotes are specified by a
type of normal or by omitting type. In conjunction to a normal type, a footnote reference mark, specified by
footnoteRef element, or endnote reference mark, specified by endnoteRef element, must be present within
the footnote or endnote definition.

Some referenced text)”

r
Lot eeference

Consider the following page in a document, where some text is referenced by a footnote at the end of a page:

The footnote text at the bottom of the page is a normal type footnote represented by the following
WordprocessingML:

<w:footnote w:id="2">
<w:p>
<w:pPr>
<w:pStyle w:val="FootnoteText" />
</w:pPr>

67

O 00 N OO s~ W N

=
L O

12
13
14
15
16

17
18
19
20

21

22

23

24

Introduction to WordprocessingML

<w:r>
<W:rPr>
<w:rStyle w:val="FootnoteReference" />
</w:rPr>
<w:footnoteRef />
</w:r>
<W:r>
<w:t>Cool reference</w:t>
</w:r>
</w:p>
</w:footnote>

Not specifying any type attribute in the footnote element defaults to being a normal type of footnote. In this
example, the footnote has a unique ID of 2. The text of the footnote is contained in the text run. Like any
paragraph, footnotes can be associated with a particular style, and, in this example, the paragraph uses the
FootnoteText paragraph style. Similarly, like any run, footnotes can be associated with a particular style,
and, in this example, the run uses the FootnoteReference run style.

Separator footnotes or endnotes are specified by separator. These types of footnotes or endnotes define the
look of the separator used to separate document text from footnotes or endnotes. In conjunction to
separator type, a footnote or endnote separator reference mark, specified by a separator element must be
present within the footnote or endnote definition.

Consider the following page in a document, where some text is referenced by a footnote at the end of a page:

Somme referenced text,”

Ll coforence

The line separating the document text from the footnote is represented by the following WordprocessingML:

68

O 00 N OO s~ W N

=
o

I
N

13
14
15
16
17

18
19

20

21

22
23
24

Introduction to WordprocessingML

<w:footnote w:type="separator" w:id="0">
<w:p>
<W:pPr>
<w:spacing w:after="0" w:line="240" w:lineRule="auto" />
</w:pPr>
<W:ir>
<w:separator />
</wir>
</w:p>
</w:footnote>

In this example, the footnote has a unique ID of @. The vertical spacing after the line separator is 0 twentieths
of a point. The vertical spacing between the line separator and text is 240 twentieths of a point.

Continuation separator footnotes or endnotes are specified by continuationSeparator. These types of
footnotes or endnotes define the look of the separator used to separate document text from footnotes or
endnotes when the footnote or endnote continues the next page. In conjunction to a
continuationSeparator type, a footnote or endnote continuation separator reference mark, specified by
continuationSeparator element must be present within the footnote or endnote definition.

Consider the following two pages in a document, where some text is referenced by a footnote that extends to
the next page:

e
Page 1 Page 2

The line separating the document text from the footnote that is continued on the next page (circled in red in
the image above) is the continuation separator footnote, and is represented by the following
WordprocessingML:

69

O 00 N OO s~ W N

=
o

I
N

13
14

15
16

17

18
19
20

21
22
23
24
25

Introduction to WordprocessingML

<w:footnote w:type="continuationSeparator" w:id="1">
<Kw:p >
<W:pPr>
<w:spacing w:after="0" w:line="240" w:lineRule="auto" />
</w:pPr>
<W:ir>
<w:continuationSeparator />
</wir>
</w:p>
</w:footnote>

In this example, the footnote has a unique ID of 1. The vertical spacing after the line separator is 0 twentieths
of a point. The vertical spacing between the line separator and text is 240 twentieths of a point.

Continuation notice footnotes or endnotes are specified by continuationNotice. These types of footnotes or
endnotes specify the text to let readers know that the footnote or endnote is continued on the next page.

Consider the following two pages in a document, where some text is referenced by a footnote that extends to
the next page. A continuation notice is given to readers to indicate that the footnote extends to the next page:

[continued on next page)

Page 1 Page 2

The continuation notice text is at the bottom of the footnote indicating that the footnote is continued to the
next page (which reads continued on next page above)and isrepresented by the following
WordprocessingML:

<w:footnote w:type="continuationNotice" w:id="3">
w:p >
<w:pPr>
<w:spacing w:after="0" w:line="240" w:lineRule="auto" />
</w:pPr>

70

v A W N

10
11
12
13
14

15
16

17

18

19

20
21
22
23

Introduction to WordprocessingML

<W:r>
<w:t>(continued on next page)</w:t>
</wir>
</w:ip>
</w:footnote>

In this example, the footnote has a unique ID of 3. The text that shows up after the footnote text is
(continued on next page).

2.12.5 Footnote and Endnote Reference

Once footnote or endnote information is defined in the footnotes or endnotes part, this information must be
associated with document text within the document in order to display the footnotes or endnotes. Each
footnote or endnote is identified by a unique ID that references footnote or endnote definitions specified in
the footnotes or endnotes part. Footnote or endnote references are identified by the footnoteReference or
endnoteReference element within the text run's element (the r element). The footnoteReference or
endnoteReference element points to the footnote or endnote ID defined in the footnotes or endnotes part.

Consider the following one-page document, where some text is referenced by a footnote at the end of the
document page:

Some referenced text.”

r
Yot eeferene

The footnote references text and is represented by the following WordprocessingML.:

<w:p>
<W:r>
<w:t>Some referenced text</w:t>
</wir>

71

Jany

N o o AwWwN

10

11

12
13
14
15

16

17

18
19

20

21
22
23

24
25
26

27
28
29
30

31
32
33
34

Introduction to WordprocessingML

<KW:r>
<W:rPr>
<w:rStyle w:val="FootnoteReference" />
</w:rPr>
<w:footnoteReference w:id="2" />
</wir>
</wip>

The footnote references the footnote in the footnotes part with ID equals to 2. Like any run, footnotes can be
associated with a particular style, and, in this example, the run uses the FootnoteReference run style. The
style of the footnote defines the look and numbering of the footnote.

2.13 Glossary Document

The introduction to a WordprocessingML document formally introduced the concept of stories, individual
ranges of a word-processing document containing block-level content like paragraphs and tables. Some
examples of stories in a WordprocessingML document include the following: the main document, headers,
footers, comments, footnotes, and endnotes.

At that time, a story was defined by two characteristics:

e Itis a unique region containing block-level content
e All document stories shared the same set of properties (e.g., style definitions, numbering definitions,
and settings)

The glossary document, although it follows the first rule, actually defies the second.

Within a WordprocessingML file, the glossary document is a supplemental storage location for additional
document content which shall travel with the document, but which shall not be displayed for printed as part of
the main document until it is explicitly added to that document by deliberate action.

The glossary document shall also be afforded a separate instance of all of the relationships that are provided
on the main document part - this means that the glossary document shall have its own style definitions,
numbering definitions, comments, headers, footers, etc. within the WordprocessingML document.

Consider a document that shall include ten optional clauses that may be inserted through a user interface. It is
clearly not desirable to have these ten clauses appear in the main document story's contents before they are
explicitly inserted, therefore each of them may be stored in the glossary document and inserted via the user
interface as needed.

Within the glossary document, each distinct region of document content is referred to as a glossary document
entry, and is defined via the docPart element. These document parts may contain any block-level
WordprocessingML element, and may also have a set of classifications and behaviors applied to them via the
glossary document entry's properties.

72

O 00 N o U A~ W

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26

27

28

29
30

31

32

33
34
35
36

37

Introduction to WordprocessingML

Consider the following definition for the contents of a glossary document part within a WordprocessingML
document:

<w:glossaryDocument>
<w:docParts>
<w:docPart>
<w:docPartPr>

</w:docPartPr>
<w:docPartBody>
<W:p>
<w:r>
<w:t>Sample entry.</w:t>
</wir>
</w:p>
</w:docPartBody>
</w:docPart>
<w:docPart>

</w:docPart>
</w:docParts>
</w:glossaryDocument>

The glossaryDocument element defines the contents of the glossary document part. Within the glossary
document, each docPart element contains the definition for one glossary document entry: in this case, there
are two entries in the glossary document, the first of which contains a single paragraph with a single run of
text.

Each glossary document entry consists of two components:

e The entry's properties, specified using the docPartPr element
e The entry's contents, specified using the docPartBody element

The first specifies information about the entry (e.g., its classification) for when it is inserted, the latter stores
the block level content which constitutes the entry.

2.14 Annotations

2.14.1 Introduction

An annotation is one of various kinds of supplementary markup, which may be stored inside or around a
region of text within the document's contents. The kinds of supplementary information stored within a
document can include comments (§2.14.5), revisions (§2.14.7), spelling and/or grammatical errors (§2.14.10),
bookmark information (§2.14.8), and optional editing permissions (§2.14.9).

Within a document's contents, annotations are stored in one of three different forms:

73

10
11

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34

35

36
37
38

Introduction to WordprocessingML

e |Inline
e Cross-Structure
e Properties

These three forms are needed in order to maintain compatibility with both the legacy annotations
functionality of current word-processing applications and the requirements of an XML-based format (i.e., well-
formedness of the resulting XML markup). These three forms are referenced within the individual annotation
types described in subclauses §2.14.2 through §2.14.4.

2.14.2 Inline Annotations

An inline annotation is a form of annotation that does not require special handling in order to maintain the
XML well-formedness requirements of the resulting WordprocessingML output. In these cases, a single XML
element shall encapsulate the entire contents of the document content which is being annotated.

Consider the following WordprocessingML markup for a paragraph that reads The quick brown fox
jumps over the jet lagged dog., where jet lagged replaced the previous text 1azy when the
editing application was tracking revisions:

<w:p>
<w:ir>
<w:t xml:space="preserve">The quick brown fox jumps over the </w:t>
</wir>
<w:del .. >
<W:r>
<w:delText>lazy</w:delText>
</wir>
</w:del>
Kw:ins .. >
<W:r>
<w:t>jet lagged</w:t>
</wir>
</w:ins>
<w:ir>
<w:t xml:space="preserve"> dog.</w:t>
</wir>
</w:ip>

The del and ins elements each fully encapsulate the extent of their respective annotations (a marked deletion
and insertion, respectively), as they are inline annotations.

2.14.3 Cross-Structure Annotations

A cross-structure annotation is a form of annotation that can span portions of WordprocessingML markup.
(Cross-structure annotations may span parts of multiple paragraphs, one half of a custom XML markup
element's contents, and so on.) In these cases, the annotation's region is delimited by two elements, a start

74

23
24
25

26

27
28
29

30
31

Introduction to WordprocessingML

element and an end element, which mark the start and end points of the annotated content, respectively, but
do not contain it. Matching start and end markers have the same id attribute value.

Consider the following WordprocessingML markup for two paragraphs, each reading Example Text, where a
bookmark has been added spanning the second word in paragraph one, and the first word in paragraph two:

<wW:p>
<W:r>
<w:t>Example</w:t>
</wir>
<w:bookmarkStart w:id="0" w:name="sampleBookmark" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>
<w:p>
<w:ir>
<w:t>Example</w:t>
</wir>
<w:bookmarkEnd w:id="0" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</w:ip>

The bookmarkStart and bookmarkEnd elements specify the location where the bookmark starts and ends,
but cannot contain that bookmark because it spans parts of two paragraphs. They are part of one group
because the id attribute value specifies @ for both.

2.14.4 Property Annotations

A property annotation is a form of annotation that is stored as a property on an object (Property annotations
may appear on paragraph properties, run properties, table rows, and so on.) In these cases, the annotation's
semantics are defined by the property, as they can affect content and/or formatting.

Consider the following WordprocessingML markup for a paragraph reading Example Text, where the first
word had the bold property applied when the editing application was tracking revisions:

75

O 00 N OO s~ W N

L e =
A W N L O

15
16

17

18
19
20

21

22

23

24
25

26

27

28
29

31
32
33

Introduction to WordprocessingML

<w:p>
<w:ir>
<W:rPr>
<w:b/>
<w:rPrChange .. >
<w:rPr/>
</w:rPrChange>
</w:rPr>
<w:t>Example</w:t>
</wir>
<w:ir>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>

The rPrChange element contains the set of previously applied revision properties associated with a particular
author at a particular time. It is stored itself as a property on the parent run which was modified.

2.14.5 Comments

A comment is an annotation that is anchored to a region of document content, but which contains an arbitrary
amount of block-level content stored in its own separate document story. Within a WordprocessingML
document, comments are stored in a separate comments part within the document package.

A comment in a WordprocessingML document is divided into two components:

e The comment anchor (the text to which the comment applies)
e The comment content (the contents of the comment)

The comment anchor is the cross-structure annotation that defines the region of text on which the comment in
anchored. The comment content is the text of the comment.

Consider a paragraph in a WordprocessingML document whose second word is annotated with a comment:

Some ﬂ:exﬁ _____________ ;_,a-{Canmtent [Userl]: comment]

The first component to this comment is the document content, which defines the extents of the comment and
references the specific comment in the comments part:

<wW:p>
<W:ir>
<w:t xml:space="preserve">Some </w:t>
</wir>

76

Jany

O 00 N OO s~ W N

10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37

Introduction to WordprocessingML

<w:commentRangeStart w:id="0" />
<W:r>

<w:t>text.</w:t>
</wir>
<w:commentRangeEnd w:id="0" />
<W:r>

<w:commentReference w:id="0" />
</wir>

</wip>

The commentRangeStart and commentRangeEnd elements delimit the run content to which the comment
with an id of @ applies (in this case, the single run of text). The commentReference element that follows links
the preceding run content with a comment in the comments part having an id of 8. Without all three of these
elements, the range and comment cannot be linked (although the first two elements are optional, in which
case the comment shall be anchored at the comment reference mark)

The second component to this comment is the comment content, which defines the text in the comment:

<w:comment w:id="0" w:author="Joe Smith"
w:date="2006-04-06T13:50:00Z" w:initials="User">
<W:p>
<W:pPr>
<w:pStyle w:val="CommentText" />
</w:pPr>
<W:r>
<W:rPr>
<w:rStyle w:val="CommentReference" />
</W:rPr>
<w:annotationRef />
</w:r>
<W:r>
<w:t>comment</w:t>
</w:r>
</w:p>
</w:comment>

In this example, the comment specifies that it was inserted by author Joe Smith with the initials User via the
author and date attributes. It is linked to the run content via the id attribute, which matches the value of @
specified using the commentReference element above. The block-level content of the comment specifies that
its text is comment and the style of the comment content is based off of the character style with the name
CommentReference.

77

10

11
12
13
14

15

16

17

18

19

20

21

22
23

24

25
26

28
29
30
31
32
33

Introduction to WordprocessingML

2.14.6 Comments Part

Comment information in a WordprocessingML document is stored in the Comments part within the package,
which is stored via an implicit relationship from the Main Document or Glossary Document part of relationship
type http://../comments and has a content type of vnd-
openxmlformats.officedocument.wordprocessingml-comments+xml.

2.14.7 Revisions

A revision provides a mechanism for storing information about the evolution of the document (i.e., the set of
modifications made to a document by one of more authors). When an application adds revisions to the
content of a WordprocessingML document, depending on the revision type they are specifying this by storing
either:

e The current state of the document (a deletion stores the current state of the text as deleted, and
implies that its original state was the content that used to exist)

e Theinitial state of the document (a run's initial properties are explicitly stored in a previous run
properties block, as the current run properties are always those that are the child of the rPr element

A revision consists of two required pieces of information:

e The revision type (specified via the name of the revision element)
e A unique revision identifier (used to uniquely identify revisions)

As well as optional information:

e The author of the revision
e The date and time of the revision

A revision is stored using the inline annotation format or the property annotation format.

Consider a paragraph of text in a WordprocessingML document in which one word has been inserted, as
follows:

Some fext

This paragraph has the word text marked inserted as a revision, and is represented as the following
WordprocessingML:

<W:p>
<w:ir>
<w:t>Some</w:t>
</wir>
<w:ins w:id="0" w:author="Joe Smith" w:date="2006-03-31T12:50:00Z">
NH
<w:t>text</w:t>

78

w N

10
11

12

13

14

15

16

17

18

19
20
21

22

23

24
25
26
27
28
29
30
31
32

Introduction to WordprocessingML

</wWir>
</w:ins>
</wip>

The ins element contains all of the content that shall be treated as revision marked as inserted (i.e., the word
text).

This means that it contains both required pieces of information: the revision type, specified by the name of the
revision element (ins); and a unique revision identifier of @.

The element also stores the optional information about the revision: the word text was inserted by Joe
Smith on March 31, 2006 at 12:50 pm.

Within a WordprocessingML document, the following types of revisions can be used to track the changes to a
document (each annotation's form in parentheses):

e Insertions (inline annotations for run content, property annotations for tables and paragraphs)
e Deletions (inline annotations for run content, property annotations for tables and paragraphs)
e Moves (inline annotations)

e Changes to run/paragraph/table/numbering/section properties (property annotations)

e Changes to custom XML markup (property annotations)

2.14.8 Bookmarks

A bookmark refers to an arbitrary region of content that is bounded and has a unique name associated with it.

Because bookmarks are a legacy word-processing function that predates the concepts of XML and well-
formedness, they can start and end at any location within a document's contents and, therefore, must use the
cross-structure annotation format described in §2.14.3.

Consider the following WordprocessingML markup for two paragraphs, each reading Example Text, where a
bookmark has been added spanning the second word in paragraph one and the first word in paragraph two:

<W:p>
<W:r>
<w:t>Example</w:t>
</wir>
<w:bookmarkStart w:id="0" w:name="sampleBookmark" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>

79

Jany

O 00 N OO s~ W N

10
11
12

13

14
15
16
17

18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34

Introduction to WordprocessingML

<W:p>
<W:r>
<w:t>Example</w:t>
</wir>
<w:bookmarkEnd w:id="e" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>

The bookmarkStart and bookmarkEnd elements specify the location where the bookmark starts and ends,
but cannot contain it using a single tag because it spans parts of two paragraphs. However, the two tags are
part of one group because the id attribute value specifies @ for both.

2.14.9 Range Permissions

A range permission refers to a special type of bookmark used to control which subset(s) of users may edit a
particular region of a document. Range permissions specify the user, or set of users, that are allowed to edit all
content between them whenever the document protection specified by the documentProtection element is
enabled and set to readOnly or comments

Like bookmarks, range permissions are a legacy word-processing function that predates the concepts of XML
and well-formedness, so they can start and end at any location within a document's contents and, therefore,
must use the cross-structure annotation format described in §2.14.3.

Consider the following WordprocessingML markup for a single paragraph, where a range permission has been
added spanning the words range permission:

<W:p>
<W:r>
<w:t xml:space="preserve">This is a </w:t>
</wir>
<w:permStart w:id="0" w:edGrp="everyone"/>
<w:ir>
<w:t>range permission</w:t>
</wir>
<w:permEnd w:id="0"/>
<w:ir>
<wit>.</wit>
</wir>
</wip>

The permStart and permEnd elements specify the location where the range permission starts and ends. The
two tags are part of one group because the id attribute value specifies @ for both.

80

10
11
12

13

14
15
16

17
18
19
20
21
22
23
24
25
26

27
28
29

30

31
32
33
34
35
36

Introduction to WordprocessingML

If document protection was enabled, then no content in this document shall be editable except for this range
permission, which is editable by all users that open the document (specified using an editor group of
everyone).

2.14.10 Spelling and Grammar

A spelling and grammar error is an annotation used to specify the locations of an existing spelling and/or
grammatical error within the contents of a document. Spelling and grammar errors use the cross-structure
annotation format.

Rationale: When a WordprocessingML document is saved, applications may choose to save currently flagged
spelling and grammar errors, for two reasons:

e In order to increase the performance subsequent loads of the document (as those load operations can
rely on the persisted proofing state of the document)

e |norder to store words which shall not be marked as proofing errors regardless of how they would
normally be flagged by the proofing tools engine (i.e., to store spelling and grammar exceptions).

Consider the following paragraph consisting of two misspelled words, where the second word has been
explicitly flagged as not being a spelling error. This paragraph would consist of the following
WordprocessingML markup:

<w:p>
<w:proofErr w:val="spellStart"/>
<w:ir>
<w:t>ergwt</w:t>
</wir>
<w:proofErr w:val="spellEnd"/>
w:ir>
<w:t xml:space="preserve"> werewr</w:t>
</wir>
</w:ip>

The proofErr elements, with a val attribute value of spellStart and spellEnd, respectively, delimit the start
and end of the content in this paragraph that is stored as a spelling error. Since the second word is not
included in that range, it is not stored as a spelling error.

2.15 Mail Merge

Mail merge refers to a process by which a WordprocessingML document is connected to and populated with
external data by a conforming hosting application and/or data source access application. A WordprocessingML
document that contains the necessary data to connect to an external data source during a Mail Merge is
known as a source document. In other words, a source document is a WordprocessingML document containing
the elements and attributes necessary to enable the document to connect to an external data source, but not
yet merged with any data.

81

10

11
12
13

14

15

16

17

18

19

20
21
22
23
24

25

26

27

28
29

Introduction to WordprocessingML

Applications leverage source documents to generate new documents containing the static content contained
in the merged document as well as data from the specified external data source. The documents that result
from importing external data into a source document are known as merged documents. How source
documents and merged documents are specified is explained in the following sections.

2.15.1 Mail Merge, WordprocessingML, and Hosting Applications

The two key parts of the mail merge process are:

1. Connecting to an external data source
2. Populating mail merge fields with external data

It is important to note that aspects of the mail merge process outside of connecting to an external data source
and populating mail merge fields with external data, are at the discretion of the hosting application.

As an additional example, WordprocessingML provides an element to be used as a flag by hosting applications
to specify action to be taken on the merged documents that are generated by a mail merge. In other words,
performing actions such as:

e creating a new document for each merged document
e generating and sending emails containing merged document
e printing merged documents

may be specified through WordprocessingML, but what if any specific action is taken on merged documents is
determined by the application.

2.15.2 Connecting Documents to an External Data Source

As mentioned, a source document is the single WordprocessingML document that contains the data necessary
to be connected to an external data source by a conforming hosting application and/or data source access
application. The presence and parameters of this connection are specified within the mailMerge element. This
element enables WordprocessingML documents to be connected to an external data source by specifying the
following data:

e Where the external data is located (e.g., file path)
e What type of data the external data source contains (e.g., database and spreadsheet)
e How the data will be accessed

Consider a document containing static WordprocessingML constructs such as paragraphs in addition to two
WordprocessingML mail merge fields calling for Courtesy Title and Last Name data.

82

O 00 N O

11
12

13
14
15
16

17

18
19
20

Introduction to WordprocessingML

Dear {MERGEFIELD "Courtesy Title" \m}
{MERGEFIELD "Last Name" \m},

Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text.

Sincerely,

If the following WordprocessingML was added to this document, this document would become a source
document rather than just a standard WordprocessingML document, as the mailMerge element specifies the
elements and attributes necessary to enable the hosting applications and/or data source access applications to
connect the document to an external data source.

<w:mailMerge>

<w:dataType w:val="database" />
<w:query w:val="SELECT * FROM Tablel" />
<w:dataSource r:id="rId1" />

</w:mailMerge>

Here, the dataType and dataSource elements specify that the given document shall be connected to the
external data source referenced by the r:id attribute's value of rId1. While connected to the external data
source, the merged document together with the hosting application and/or data source access application may
extract data from the external data source as specified by the connectString and query elements.

2.15.3 Populating Merged Documents with External Data

Before the hosting application can populate merged documents with external data, mail merge fields must be
inserted into the merged document and mapped to the external data. How external data is mapped to given
mail merge fields is determined by the WordprocessingML element fieldMapData.

83

16
17
18
19
20
21

22
23

24
25
26
27
28
29

30
31
32
33

Introduction to WordprocessingML

Consider the example merged document from the previous example which contained the two mail merge
fields calling for Courtesy Title and Last Name. The WordprocessingML below demonstrates how
mapping of the external data to the merged document's mail merge fields occurs:

<w:fieldMapData>
<w:type w:val="dbColumn" />
<w:name w:val="Customer Title" />
<w:mappedName w:val="Courtesy Title" />
<w:column w:val="9" />
</w:fieldMapData>
<w:fieldMapData>
<w:type w:val="dbColumn" />
<w:name w:val="Customer Last Name" />
<w:mappedName w:val="Last Name" />
<w:column w:val="10" />
</w:fieldMapData>

Within the first fieldMapData element, the child elements column, name, type, and mappedName specify
that the data contained within tenth column titled 'Customer Title', in the specified external database, is to be
mapped to the mail merge field calling for 'Courtesy Title' data, respectively. Within the second fieldMapData
element, the child elements column, name, type, and mappedName specify that the data contained within
eleventh column in the specified external database is to be mapped to the merge field titled Customer Last
Name or the predefined merge field name Last Name.

Once a merged document's mail merge fields have been mapped to external data, the hosting application
and/or data source access application may populate the respective fields with applicable external data.

Consider a conforming hosting application and/or data source access application that wishes to populate the
mail merge fields within the merged document from the previous example with applicable external data. In
addition, consider that the specified external data source contains two records--one for Mr. John Doe and one
for Ms. Jane Smith. With external data from the Customer Title column mapped to the Mail Merge field
calling for Courtesy Title data, and the Customer Last Name column mapped to the Mail Merge field
calling for Last Name data to populate the fields within this merged document with external data.

The mail merge process will then run through the specified external database and populate the mail merge
fields with the data from the Customer Title and Customer Last Name columns in the specified
database, and generate two of merged documents containing the specified external data as well as the static
contents of the source document (illustrated in the table below):

Source Document Merged document populated with | Merged document populated with
first external data source entry second external data source entry

84

10
11

12

13

14
15
16

17
18
19
20

21

22

Introduction to WordprocessingML

Source Document

Merged document populated with
first external data source entry

Merged document populated with
second external data source entry

Dear{MERGEFIELD "Courtesy Title"
\m} {MERGEFIELD "Last Name"
\m},

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

Dear Mr. Doe:

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

Dear Ms. Smith:

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

2.16 Settings

A setting specifies a stored preference that shall be used when processing the contents of the document. In

other words, settings refer to specified behaviors that shall be applied to WordprocessingML documents on a

document by document basis. Just like paragraphs and text runs have properties specified that apply to their

contents, entire WordprocessingML documents leverage settings to specify properties and behaviors that

apply to the entire document.

These settings are typically divided into three categories:

e Document Settings — Settings that influence the appearance and behavior of the current document,
as well as storing document-level state.

o Compatibility Settings — Settings that tell applications to perform behaviors which are designed to
maintain visual output of previous word-processing applications.

o Web Settings — Settings that affect how a document shall be handled when it is saved as HTML.

2.16.1

Document Settings

A document setting specifies a document-level property that affects the handling of a given document, and

influences the appearance and behavior of the current document, as well as the stored document-level state.

All document settings are found in the Document Settings part.

Consider a document in which the document setting doNotHyphenateCaps is applied. As a document setting

this element specifies whether words comprised of all capitalized letters shall be hyphenated or not
throughout the given document.. Specifically, if words in ALL CAPITAL LETTERS shall not be hyphenated, this
requirement would be specified by adding the following WordprocessingML to the settings part:

<w:doNotHyphenateCaps w:val="true"/>

Specifying that words comprised of ALL CAPITAL LETTERS shall be hyphenated, as illustrated below:

85

10
11
12

13

14
15
16

17
18

22

Introduction to WordprocessingML

THIS IS A HYPHEMATION EXAMPLE. THIS 15 A SHORT HYPHEMATION EXAMPLE. THIS IS A SHORT
HYPHEMNATION EXAMPLE.

If this element is omitted, then words in ALL CAPITAL LETTERS shall be hyphenated when the document is
hyphenated, as illustrated below:

THISZ 15 & HYPHEMATION EXAMPLE. THIS IS5 A SHORT HYPHEMATIOMN EXAMPLE. THIS 15 ASHORT HYPHE-
MATION EXAMPLE.

2.16.2 Compatibility Settings

A compatibility setting is an optional setting used to mimic behavior of documents created in earlier word-
processing applications. It is recommended that new WordprocessingML documents contain no compatibility
settings. If compatibility settings are needed, they are stored in the Document Settings part (§2.16.1).

Consider a document in which the compatibility setting ww11IndentRules is applied. As a compatibility
setting, this element specifies an indentation behavior to be applied throughout the given document to
preserve visual fidelity with an earlier word processing application. Specifically, if the indentation applied to
numbering when positioned next to a wrapped object shall not be suppressed, this requirement would be
specified by adding the following WordprocessingML to the settings part

<w:compat>
<w:wwllIndentRules />
</w:compat>

Specifying that indentation applied to numbering when positioned next to a wrapped object shall not be
suppressed, as illustrated below:

1. Example

2. Example
3. Example
4. Example
5. Example

If this element is omitted, then indentation applied to numbering when positioned next to a wrapped object
shall be suppressed, as illustrated below:

1. Example

2. Example
3. Example
4. Example
5. Example

86

10

11
12
13

14

15

16

17

18
19
20
21
22
23

24
25
26
27
28

29
30
31
32
33

Introduction to WordprocessingML

2.16.3 Web Settings

A web setting is a setting used to specify a document-level property that is applicable when saving a web page
as a WordprocessingML document, or when saving a WordprocessingML document as a webpage. Thus, if a
given WordprocessingML document was not created from a web page, and will never become a web page, no
web settings are needed within the document. If they are needed, web settings are stored in the Web Settings
part.

Consider a document in which the web setting allowPNG is applied. As a web setting this element specifies if
the PNG graphics format will be used for persisting images when saving the document as a web page.
Specifically, if the PNG graphics format will be used when saving a document as a web page, this requirement
would be specified by adding the following WordprocessingML to the settings part:

<w:webSettings>
<w:allowPNG />
</w:webSettings>

If this element is omitted, then the JPEG graphics format will be used for persisting images when saving the
document as a web page.

2.17 Fields and Hyperlinks

2.17.1 Fields

Most text in a word processing document is static; that is, unless it is directly changed as the result of editing,
its contents remain the same, no matter how the rest of the document might change. However, certain useful
pieces of information can change value over the life of a document. Consider the case of a reference to a page
number, as in "For more information on this topic, see page 56." Clearly, hard coding the page number as 56
means that that number will need to be manually replaced as the document's size or layout is changed. Even a
simple change to any margin, line spacing, or font size can invalid such references.

Fields provide a mechanism for placeholders, such as page reference numbers, that can be added to a
document such that those placeholders are replaced by their corresponding values when the document is
rendered for display or print. Other applications for fields include, but are not limited to, automatic numbering
of tables and figures, document creation and current date and time, document author information, and the
computation of totals for a table column.

A field is a set of codes that instructs a WordprocessingML consumer to insert text, graphics, page numbers,
and other material into a document automatically. (The DATE field causes the current date to be inserted.) The
text or graphics inserted into a document when a consumer carries out a field's codes is referred to as the field
result for that field. The act of carrying out a field's codes is referred to as a field update. As to how or when
any field is updated is outside the scope of this standard.

87

10

11

12
13
14

15
16
17

18

19

20
21
22

23
24

25

26
27

28
29
30
31

32

Introduction to WordprocessingML

2.17.2 Hyperlinks

As well as allowing for dynamic run content using fields, a WordprocessingML document may contain one or
more hyperlinks, which allow for the linking of two disparate regions of WordprocessingML content (analogous
to hyperlinks in HTML pages). WordprocessingML hyperlinks can be any of the following:

e Intradocument: A hyperlink can target any bookmark contained within the current WordprocessingML
document.

e Interdocument: A hyperlink can target another WordprocessingML package, as well as specify a
bookmark within that package.

e Other destinations: A hyperlink can target any other valid URI location.

2.18 Miscellaneous Topics

2.18.1 Text Boxes

All VML-based drawing objects (except for connectors) support the addition of rich WordprocessingML content
within their extents. When WordprocessingML contents have been added to a VML drawing object, the
resulting text is contained within a text box.

When WordprocessingML content is contained within a text box, it is represented within the object by
specifying the VML textbox element, which contains within it a single txbxContent element that contains all of
the desired WordprocessingML content. Text box content cannot contain references to other document
stories, nor can it contain other txbxContent elements. That is, nested shapes cannot have rich content.

2.18.2 Subdocuments

Within a WordprocessingML document, it is sometimes necessary to break a large document into two or more
separate WordprocessingML document files, allowing each of these files to be distributed, edited, and handled
independently.

A book might consist of five chapters, each edited by a separate author. The editor for the book would
therefore desire to create six WordprocessingML documents - one for each author to work on their chapter,
and a main document which collates the content of the five chapters appropriately.

When a WordprocessingML document is composed of other WordprocessingML documents in this way, the
resulting documents are a master document and its subdocuments.

e A master document is a document which incorporates one or more subdocuments (as well as optional
WordprocessingML content) to create a larger document

e A subdocument is a WordprocessingML document—there is no specific information in a document
which classifies it as such

Consider a WordprocessingML document, which is being used to write a book:

88

2
3

10
11

Introduction to WordprocessingML

My Book

Once upon atime...

Chapter One
It was a cold, stormy night...

Chapter Two
still cald...

To allow this document to be written by multiple authors, each chapter in the book is placed in a separate file
(the sections highlighted in red below):

My Book

Once upon a time....

Chapter One

It was a cold, stormy night...

Chapter Two
5till cold...

The result is three WordprocessingML documents:

o A master document (containing the title of the book, the first paragraph, and references to the
subdocuments for each chapter)
e Two subdocuments (one for each chapter)

2.18.3 Importing External Content

When generating WordprocessingML documents, it is sometimes necessary to include existing document
content (henceforth called external content) within the document. External content in a document is typically

89

10

11
12
13
14
15
16
17
18

19
20
21
22
23
24

25

26
27
28
29

30
31
32
33

Introduction to WordprocessingML

included because it was stored in a format other than the WordprocessingML format defined by this Office
Open XML specification.

In order to facilitate the inclusion of such content without requiring its conversion as a prerequisite to its
inclusion in a document, WordprocessingML includes the facility for applications to implement the import of
external content in any format as part of a WordprocessingML document. This functionality, called external
content import, allows the inclusion of content of an arbitrary content type within the WordprocessingML
package, which can then be opened and merged into the main document when the package is consumed by
applications which understand that content type.

Consider a WordprocessingML document which is being created based on the following existing HTML
content:

<html .. >
<body style="margin-left:200px;margin-top:50px">
<p>Paragraph one.</p>
<blockquote style="border:5px solid #@OFFFF">Paragraph in a
blockquote.</blockquote>
<p>Paragraph two.</p>
</body>
</html>

This content can be converted to its WordprocessingML equivalents using the XML syntax defined by this
Office Open XML specification, or a more basic tool can use the external content import to include the HTML
document within a WordprocessingML package, allowing a subsequent consumer of that content to import the
resulting HTML. When the resulting WordprocessingML package is opened, the HTML document it could be
read (if it is an alternate format understood by the consuming application) and migrated into the appropriate
location in the main WordprocessingML document.

2.18.4 Roundtripping Alternate Content

Office Open XML defines a mechanism for the storage of content which is not defined by this Office Open XML
specification, for example extensions developed by future software applications which leverage the Open XML
formats. This mechanism allows for the storage of a series of alternative representations of content, of which
the consuming application may use the first alternative whose requirements are met.

Consider an application which creates a new paragraph property intended to make the colors of its text change
randomly when it is displayed. This functionality is not defined in this Office Open XML specification, and so
the application might choose to create an alternative representation setting a different manual color on each
character for clients which do not understand this extension using an AlternateContent block as follows:

90

O 00 N OO s~ W N

N N N RN NN NN NN R B P B R B P B B
© 0 N O U1 B W N B O VW 0 N OO U B W N B O

30
31
32

33
34

35
36

37
38

Introduction to WordprocessingML

<ve:AlternateContent xmlns:ve=".">
<ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">
<W:p>
<W:pPr>
<colors:random colors:val="true" />
</wW:pPr>
<W:r>
<w:t>Random colors!</w:t>
</wir>
</w:p>

</ve:Choice>
<ve:Fallback>
<W:p>
<W:r>
<W:rPr>
<w:color w:val="FFoe0e" />
</wW:rPr>
<w:t>R</w:t>
</wir>
<W:r>
<W:rPr>
<w:color w:val="00FF00" />
</wW:rPr>
<w:t>a</w:t>
</wir>

</w:p>
</ve:Fallback>
</ve:AlternateContent>

The Choice element that requires the new color extensions uses the random element in its namespace, and
the Fallback element allows clients that do not support this namespace to see an appropriate alternative
representation.

These alternate content blocks may occur at any location within a WordprocessingML document, and
applications shall handle and process them appropriately (taking the appropriate choice).

However, WordprocessingML does not explicitly define a set of locations where applications shall attempt to
store and roundtrip all non-taken choices whenever possible.

If an application does not understand the colors extension, the resulting file (if alternate choices are to be
preserved would appear as follows:

91

Jany

O 00 N OO s~ W N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Introduction to WordprocessingML

<ve:AlternateContent xmlns:ve=".">
<ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">

</ve:Choice>
<ve:Fallback>

</ve:Fallback>
</ve:AlternateContent>

The file would then appear as follows after the choice is processed:

<w:p>
<W:r>
<W:rPr>
<w:color w:val="FFeeee" />
</w:rPr>
<W:t>R</w:t>
</wir>
<W:r>
<W:rPr>
<w:color w:val="00FF00" />
</W:rPr>
<w:t>a</w:t>
</wir>

</w:p>

End of informative text.

92

10
11

12

13
14

15

16

17

18

19
20
21
22
23

24

25

Introduction to SpreadsheetML

3. Introduction to SpreadsheetML

This clause is informative.

This clause contains a detailed introduction to the structure of a SpreadsheetML document.

3.1 Workbook

3.1.1 Overview

A workbook is composed of book-level properties and a collection of one or more sheets. The sheets are the
central working surface for a spreadsheet application. The workbook part and corresponding properties
comprise data used to set application- and workbook-level operational state. The workbook also serves to bind
all the sheets and child objects into an organized single file. The workbook properties include information
about what application last saved the file, where and how the windows of the workbook were positioned, and
an enumeration of the worksheets in the workbook.

3.1.2 Minimum Workbook Scenario

For the sake of simplicity, it is important to minimize the required set of workbook properties that must be
present to compose a valid workbook. The smallest possible (blank) workbook must contain the following:

e Asingle sheet
e AsheetID
e Arelationship Id that points to the location of the sheet definition

For example:

<workbook>
<sheets>
<sheet name="Sheetl" sheetId="1" r:id="rId1l"/>
</sheets>
</workbook>

3.1.3 Example Workbook Properties

Consider the following graphical representation of a workbook:

93

© 00 N o u b

11
12
13
14
15
16
17
18

19

Introduction to SpreadsheetML

. FMLA e

fe| =B2+1

ra

A B C
1

2 External Link: 1

EIFurmula: I 2!
4

B Workbook And Sheet Properties.xlsx

D E F G

Category | = | Numl |* Num2 |~ Num3

A 0.18607 0.934631 | 1.705714922
A 0.504252 0.251189 0.269182 1.024622503
A 0.600602 0.183192 0.122543 0.906337605
A 0.78015 0.7816 0.067448 1.629198103
B
5

0.636081 0.356358 1.663660400
0.333273 0.22565 1.138321964

= | Total -

Merged Cells

The above example will have the following workbook properties definition:

<workbook>

<fileVersion lastEdited="4" lowestEdited="4" rupBuild="3814"/>

<workbookPr backupFile="1

saveExternallLinkValues="0

updatelinks="never"/>

<calcPr calcId="122211" calcMode="manual" iterate="1"/>

<bookViews>

<workbookView showHorizontalScroll="0"

showVerticalScroll="0"

showSheetTabs="0" xWindow="45" yWindow="15" windowWidth="9420"
windowHeight="5460" tabRatio="701"/>

</bookViews>
<sheets>

<sheet name="Sheetl" sheetId="1" sh:id="rId1"/>
<sheet name="Sheet2" sheetId="2" sh:id="rId2"/>
<sheet name="Sheet3" sheetId="3" sh:id="rId3"/>

</sheets>
</workbook>

The elements and attributes used here are discussed in more detail in the following subclauses.

94

2

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24
25
26

27

28

29

30
31
32
33
34
35
36

37

3.1.4

Introduction to SpreadsheetML

fileVersion

This contains file versioning properties, as follows.

3.1.5

lastEdited — The version of the application that last saved the file.

lowestEdited — The earliest version of the application that saved the file. This value is reset any time an
application that understands all data in the file saves the file.

rupBuild — An incremental public release of the application (e.g., RTM version or SP1 version).
workbookPr — A group of various workbook properties.

backupFile - A flag that indicates whether the application should create a backup of the file in
guestion during a save operation.

saveExternalLinkValues — A flag that indicates whether the application should cache values retrieved
from other workbooks via an externally linking formula during save. If yes, a supporting part is written
out containing a cached cell table from the external workbook.

updatelinks — A flag that dictates how external links are handled upon opening the file. In this
example, never means don't ask the user if they want to refresh the cached values from an external
workbook, and in fact, don't ever do it until the user initiates the action.

calcPr — Various calculation properties grouped together.

calcld — The version of the calculation engine used to calculate values in the workbook. When a newer
version of the application opens a file with an older calcld value, the application performs a full
calculation of all formulas immediately after opening the workbook, to ensure proper calculation
results.

calcMode — A flag that indicates when the application should calculate formulas:

e Manual means to wait for the user to initate the action.
e Automatic means to perform only the needed calculations whenever a cell value changes.

Iterate — When formula references are circular (i.e., they refer back on themselves for required input),
the iterate flag specifies that this is an intended and valid state. Further properties not discussed
here control the number of iterative calculations to perform before stopping calculation.

bookViews — A collection of views.

workbookView

A single view definition represented using the following flags:

showHorizontalScroll — Controls visibility of the horizontal scroll bar of the application. In the example
above, it is set to not being visible.

showVerticalScroll — Controls visibility of the vertical scroll bar of the application. In the example
above, it is set to not being visible.

showSheetTabs — Controls visibility of the worksheet tabs in the application. In the example above,
they are set to not being visible.

xWindow — Specifies the x coordinate (in twips) of the upper right corner of the workbook window.
yWindow — Specifies the y coordinate (in twips) of the upper right corner of the workbook window.

95

10
11
12
13
14
15
16

17

18

19

20

21
22

23
24
25
26

27

28

Introduction to SpreadsheetML

e windowWidth — Specifies the width of the workbook window.

e windowHeight — Specifies the height of the workbook window.

e tabRatio — Specifies the ratio between the workbook tabs bar and the horizontal scroll bar.
e Sheets — A collection of worksheets in the workbook.

e Sheet — A single sheet definition (book-level).

e Name — The name of the worksheet. These must be unique within the workbook.

o sheetld — The internal Id of the sheet. These must be unique within the workbook.

e |d - The relationship Id that points to the sheet part definition.

3.2 Sheets

Sheets are the central structures within a workbook, and are where a user does most of his spreadsheet work.
The most common type of sheet is the worksheet, which is represented as a grid of cells. Worksheet cells can
contain text, numbers, dates, and formulas. Cells can also be formatted. A workbook usually contains more
than one sheet. To aid in the analysis of data and the making of informed decisions, spreadsheet applications
often implement features and objects which help calculate, sort, filter, organize, and graphically display
information. Since these features are often connected very tightly with the spreadsheet grid, these are also
included in the sheet definition on disk.

Other types of sheets include chart sheets and dialog sheets.

3.2.1 Minimum Worksheet Scenario
The smallest possible (blank) sheet is as follows:
<worksheet>

<sheetData/>
</worksheet>

The empty sheetData collection represents an empty grid; this element is required. As defined in the schema,
some optional sheet property collections can appear before sheetData, and some can appear after. To simplify
the logic required to insert a new sheetData collection into an existing (but empty) sheet, the sheetData
collection is required, even when empty.

3.2.2 Example Sheet

Consider the following graphical representation of a worksheet:

96

10

11
12
13

14

15

16
17
18

Introduction to SpreadsheetML

. FMLA - fe| =B2+1
B Workbook And Sheet Properties.xls) - B X
A B C D E F G H
1
2 |External Link: 1
EIFormula:
a
= Ve Catomapy | v Numil | ¥ |Num2 |*|Num3 |~ Total v
=C:\[ExternalBook.xIsx]Sheet1’!SAS1 0.184607 0.934631 || 1.705714922
7 A 0.504252 0.251189 0.2659182 1.024622503
2 A 0.600602 0.183192 0.122543 0.9063327605
9 A 0.78015 0.7816 0.067448 1.629198103
10 B 0.636081 0.356358 1.663660406
11 B 0.333273 0.22565 1.138321964
12

” Merged Cells

15

b I

Notice that cells A2 and A3 contain text. Cell B1 contains a formula linking to another workbook, whose value
is 1. Cell B2 contains a formula as well; this formula appears in the formula bar (top of picture) because it is the
active cell. Cells D5:H5 contain bold-faced text that serves as headers for the table of data residing in D6:H11.
The table of data has a filter feature applied to it (evidenced by drop down arrows in the header row), and
columns G and H have different types of conditional formatting applied. Finally, cells D13:H14 are part of a
merged cell feature, where a series of cells behave together as a single, larger cell.

When saved, the above example will have the syntax below written out in the corresponding sheet part. Sheet
information is organized into three main sections:

1. Top-level sheet properties (everything before sheetData)
2. The cell table (sheetData)
3. Supporting sheet features (everything after sheetData)

Therefore, the XML for the above example would look like this, broken into three sections:

3.2.3 Sheet Properties

<worksheet>
<sheetPr filterMode="1"/>
<dimension ref="A2:H14"/>

97

O 00 N OO s~ W N

S
N R, O

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Introduction to SpreadsheetML

<sheetViews>
<sheetView tabSelected="1" workbookViewId="0">
<selection activeCell="B3" sqref="B3"/>
</sheetView>
</sheetViews>
<sheetFormatPr defaultRowHeight="15"/>
<cols>
<col min="1" max="1" width="12.85546875" bestFit="1" customWidth="1"/>
<col min="3" max="3" width="3.28515625" customWidth="1"/>
<col min="4" max="4" width="11.140625" bestFit="1" customWidth="1"/>
<col min="8" max="8" width="17.140625" style="1" customWidth="1"/>
</cols>

3.2.4 Sheet Data

sheetData, which represents the cell table, directly after the cols collection:

<sheetData>
<row r="2" spans="1:2" customFormat="1">
<C r‘=IIA2II S="1“ t=llsll>

<V>0</v>
</c>
<c r="B2">
<f>[1]Sheetl!A1</F>
v>1</v>
</c>
</row>

<row r="3" spans="1:8" customFormat="1">

<c r="A3" s="1" t="s">

v>1</v>
</c>
<c r="B3">
<f>B2+1</F>
V>2</v>
</c>
<Cc r="H3" s="1"/>
</row>
<row r="4" spans="1:8">
<c r="H4"/>
</row>

<row r="5" spans="4:8">
<c |"="D5" S:"l" t=llsll>
v>4</v>

</c>

98

O 00 N OO s~ W N

BODA W W W OW W W W W W WNNNDNNNNRNRNNNNDNRR R R P B R
B O ©W 00 N O O B W N P O © ©® N O U B W N B O O 0O N O U B W N KL O

<C r.\=IIE5ll S=ll1|l t="S">

<v>5</v>
</c>
<C r="F5" s="1" t="s">
<V>6</Vv>
</c>
<c r="G5" s="1" t="s">
V>7</v>
</c>
<c r="H5" s="1" t="s">
<V>8</v>
</c>
</row>
<row r="6" spans="4:8">

<C r.\=IID6II t="S“>

<V>2</v>

</c>

<c r="E6">
<v>0.18460660235998017</v>

</c>

<c r="F6">
<v>0.93463071023892952</v>

</c>

<c r="G6">
<v>0.58647760893211043</v>

</c>

<c r="H6" s="1">
<f ce="1">SUM(E6:G6)</f>
<v>1.7057149215310201</v>
</c>

</row>
<row r="7

spans="4:8">
<c r="D7" t="s">

<V>2</v>
</c>
<c r="E7">
<v>0.50425224796279555</v>
</c>
<c r="F7">

<v>0.25118866081991786</v>
</c>

Introduction to SpreadsheetML

99

O 00 N OO s~ W N

w W W W W W W W W W N N N N N N NN NN NN PP PR R, R R, R R
O 00 N OO U A~ W N P O L 0 NoO Ul WN R O L O N WN -, O

Introduction to SpreadsheetML

<c r="G7">
<v>0.26918159410869791</v>
</c>

<C r="H7" s="1">
<f t="shared" ref="H7:H11" ce="1" si="@">SUM(E7:G7)</f>
<v>1.0246225028914113</v>
</c>
</row>
<row r="8" spans="4:8">
<c r="D8" t="s">

V>2</v>

</c>

<c r="E8">
<V>0.6006019062877066</Vv>

</c>

<c r="F8">
<v>0.18319235857964333</v>

</c>

<c r="G8">
<v>0.12254334000604317</v>

</c>

<c r="H8" s="1">
<f t="shared" ce="1" si="0">SUM(E8:G8)</f>
<v>0.9063376048733931</v>
</c>
</row>
<row r="9" spans="4:8" hidden="1">
<c r="D9" t="s">

V>2</v>

</c>

<c r="E9">
<v>0.78015011938458589</v>

</c>

<c r="F9">
<v>0.78159963723670689</v>

</c>

<c r="G9">
<v>6.7448346870105036E-2</v>

</c>

100

O 00 N OO s~ W N

BODA W W W OW W W W W W WNNNDNNNNRNRNNNNDNRR R R P B R
B O ©W 00 N O O B W N P O © ©® N O U B W N B O O 0O N O U B W N KL O

<c r="H9" s="1">
<f t="shared" ce="1" si="0">SUM(E9:G9)</f>
<v>1.6291981034913978</v>
</c>
</row>
<row r="10" spans="4:8" hidden="1">
<c r="D10" t="s">

<v>3</v>

</c>

<c r="E10">
<v>0.63608141933645479</v>

</c>

<c r="F10">
<v>0.35635845012920608</v>

</c>

<c r="G1O0">
<v>0.67122053637107193</v>

</c>

<c r="H1@" s="1">
<f t="shared" ce="1" si="0">SUM(E10:G10)</f>
<v>1.6636604058367328</v>
</c>
</row>
<row r="11" spans="4:8" hidden="1">
<c r="D11" t="s">

<v>3</v>

</c>

<c r="E11">
<v>0.33327331908137214</v>

</c>

<c r="F11">
<v>0.2256497329592122</v>

</c>

<c r="G11">
<v>0.5793989116090501</v>

</c>

<c r="H11" s="1">
<f t="shared" ce="1" si="©">SUM(E11:G11)</f>
<v>1.1383219636496344</v>
</c>
</row>

Introduction to SpreadsheetML

101

O 00 N OO s~ W N

S N s T
N oo A W N B O

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

<row r="13" spans="4:8">
<c r\=IID13II S=ll2ll ,t=llsll>

<V>9</v>
</c>
<c r="E13" s="3"/>
<c r="F13" s="3"/>
<c r="G13" s="3"/>
<c r="H13" s="4"/>
</row>

<row r="14" spans="4:8">
<c r="D14" s="5"/>

<c r="E14" s="6"/>
<c r="F14" s="6"/>
<c r="G14" s="6"/>
<c r="H14" s="7"/>
</row>
</sheetData>
3.2.5 Supporting Features

The supporting feature definitions follow the cell table data:

<sheetProtection objects="0" scenarios="0"/>
<autoFilter ref="D5:H11">
<filterColumn colId="0">
<filters>
<filter val="A"/>
</filters>
</filterColumn>
<filterColumn colId="1">
<customFilters and="1">
<customFilter operator="greaterThan" val="0"/>
<customFilter operator="lessThan" val="0.7"/>
</customFilters>
</filterColumn>
</autoFilter>
<mergeCells>
<mergeCell ref="D13:H14"/>
</mergeCells>
<conditionalFormatting sqref="H6:H11">
<cfRule type="dataBar" priority="3" stopIfTrue="0">

Introduction to SpreadsheetML

<formula>MAX(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "",

H6:H11)))</formula>

<formula>MIN(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), ",

H6:H11)))</formula>

102

O 00 N OO s~ W N

e e N e T T
0 N OO AW N R O

19

20

21
22

23
24

25

26

27

28

29

30

31
32
33
34

Introduction to SpreadsheetML

<dataBar minLength="10" maxLength="90" showValue="1">
<cfvo type="min" val="@"/>
<cfvo type="max" val="@"/>
<color rgb="FF63C384"/>
</dataBar>
</cfRule>
</conditionalFormatting>
<conditionalFormatting sqref="G6:G11">
<cfRule type="cellIs" dxfId="0" priority="1" stopIfTrue="0"
operator="greaterThan">
<formula>@.5</formula>
</cfRule>
</conditionalFormatting>
<printOptions/>
<pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75"
header="0.3" footer="0.3"/>
<pageSetup orientation="portrait" horizontalDpi="300" verticalDpi="300"/>
<headerFooter/>

These elements are discussed in more detail in the following subclauses.

3.2.6 Sheet Properties
Referring back to §3.2.3, note that several sheet-level properties are expressed before the sheetData cell table

is encountered.

sheetPr indicates that an AutoFilter has been applied on this sheet. Dimension indicates the used range on
this sheet. There should be no data or formulas outside this range. The sheetViews collection indicates which
cell is active on the sheet, and indicates whether this particular sheet is the active sheet in the workbook.

A collection of column-level settings appears in the cols collection.

Finally, within sheetFormatPr, a default row height is set.

3.2.7 sheetData Cell Table

The cell table is the core structure of a worksheet. It consists of all the text, numbers, and formulas in the grid.

3.2.8 Row

<row r="2" spans="1:2" customFormat="1">
<c r="A2" s="1" t="s">
<V>0</v>
</c>

103

Jany

v A W N

10
11
12
13

14
15
16
17

18

19
20

21
22
23
24
25
26

27

28
29
30

31

Introduction to SpreadsheetML

<c r="B2">
<f>[1]Sheetl!A1</F>
v>1</v>
</c>
</row>

The cells in the cell table are organized by row. Each row has an index (attribute r) so that empty rows need
not be written out. Each row indicates the number of cells defined for it, as well as their relative position in the
sheet. In this example, the first row of data is row 2.

3.2.9 Cell
<c r="B3">
<f>B2+1</f>

<V>2</Vv>
</c>

The cell itself is expressed by the ¢ collection. Each cell indicates it's location in the grid using Al-style
reference notation. A cell can also indicate a style identifier (attribute s) and a data type (attribute t). The cell
types include string, number, and Boolean. In order to optimize load/save operations, default data values are
not written out.

3.2.9.1 Cell Values

Cells contain values, whether the values were directly typed in (e.g., cell A2 in our example has the value
External Link:) orare the result of a calculation (e.g., cell B3 in our example has the formula B2+1).

String values in a cell are not stored in the cell table unless they are the result of a calculation. Therefore,
instead of seeing External Link: asthe content of the cell's v node, instead you see a zero-based index
into the shared string table where that string is stored uniquely. This is done to optimize load/save
performance and to reduce duplication of information. To determine whether the @ in v is a number or an
index to a string, the cell's data type must be examined. When the data type indicates string, then it is an index
and not a numeric value.

3.2.9.2 Formulas

Cells can contain formulas, which calculate results. Formulas are expressed in the file the same way the user
sees them at runtime of the application. This is specifically a design choice meant to aid in creation and
processing of workbook contents.

A formula can have attributes on it indicating how to handle calculation of the cell.

104

14
15
16
17
18
19
20
21

22
23
24

25

26
27
28
29

30
31
32

33
34
35
36
37

Introduction to SpreadsheetML

3.29.2.1 Shared Formulas

<row r="7" spans="4:8">
<c r="H7" s="1">
<f t="shared" ref="H7:H11" ce="1" si="©@">SUM(E7:G7)</f>
<v>1.0246225028914113</v>
</c>
</row>
<row r="8" spans="4:8">
<c r="H8" s="1">
<f t="shared" ce="1" si="0">SUM(E8:G8)</f>
<v>0.9063376048733931</v>
</c>
</row>

Just as strings in cells can be extremely pervasive and redundant in a sheet (and therefore must be optimized),
formulas are also extremely pervasive in a sheet, and often can be optimized. Consider the table in the above
example, where column H contains a formula that sums the numbers in columns E through G, for each row.
The only difference between the formulas in H6:H12 is that the reference increases by 1 row from one row to
the next. Therefore, an optimization is created where only the formula in H6 needs to be written out, with
some additional information indicating how far to propagate the formula once loaded. This enables the loading
application to load and parse only the first of the shared formulas, and then more quickly apply the necessary
transforms to produce the additional related formulas in subsequent cells.

Note that while formulas can be shared, it is desirable to enable easy access to the contents of a cell.
Therefore, it is allowed that all formulas may be written out, but only the primary formula in a shared formula
need be loaded and parsed.

3.29.2.2 External Referencing Formulas
<c r="B2">
<f>[1]Sheetl!A1</F>
<v>1</v>
</c>

In the above example, cell B2 contains a formula that references a cell in another workbook, namely
‘C:\[ExternalBook.x1lsx]Sheet1’ | A1. This formula is referencing ExternalBook.x1sx located
at c:\. Furthermore, the formula is requesting the value of cell A1 on Sheet1 of that particular workbook.

Instead of writing ‘C:\[ExternalBook.x1lsx]Sheetl1’ | A1 directly in the formula, it is desirable to
make all external references much more accessible, especially given the potentially enormous size of a cell
table. Therefore, the URL and file location is persisted using the relationships semantic, in a relationship file,
and then referenced inline with the formula: [1]Sheet1!A1. In this way, external resource files can more
easily be determined and updated if needed.

105

10
11

12
13
14

15
16
17
18

19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37

Introduction to SpreadsheetML

Note that whenever a workbook contains a formula referencing another workbook, some values from that
external workbook are also cached with the referencing workbook. This is done so that if a recalculation of the
workbook is needed and the workbook isn't accessible, a cached value may be used to complete the
calculation.

3.2.10 Supporting Sheet Features

3.2.11 Defined Names

<definedNames>
<definedName name="FMLA">Sheetl!B3</definedName>
<definedName name="SheetlLevelName" comment="This name is scoped to Sheetl"
localSheetId="0">Sheet1!B3</definedName>
</definedNames>

Defined names can be used in place of cell references in formulas. For example, instead of using B3+1 to add 1
to the value that's in B3, one could define a name, as in FMLA, and assign it to B3. Then FMLA+1 can be used to
perform the calculation.

Names can be defined and assigned to a cell location or range or to a formula or constant value. Names can be
referenced in formulas. Names can be scoped to either the entire workbook (default) or just the local sheet.
Names scoped to the local sheet cannot be referenced from other sheets. Names scoped to the workbook can
be referenced from any sheet.

Defined names are actually stored in the workbook part, but are discussed here in the context of the sheet
because they are so closely related to cells and formulas.

3.2.12 AutoFilter

<autoFilter ref="D5:H11">
<filterColumn colId="0">
<filters>
<filter val="A"/>
</filters>
</filterColumn>
<filterColumn colId="1">
<customFilters and="1">
<customFilter operator="greaterThan" val="0"/>
<customFilter operator="lessThan" val="0.7"/>
</customFilters>
</filterColumn>
</autoFilter>

AutofFilters specify criteria for which cells in a table should be displayed. In this example, the first column (zero-
based index colld) in the table (cells D5:D11), has a criteria specifying that only rows in the table whose value
in column D are equal to A will be shown. The rest of the rows are hidden.

106

10
11

12

13
14
15
16
17
18

Introduction to SpreadsheetML

A second criterion is specified as well, on the 2nd column, E: only rows whose values in column E are greater

than 0 and less than 0.7.

The resulting grid could be rendered like this:

. FMLA - | =821
B Workbook And Sheet Properties.xlsx - =
A | B | C D E F G H
1
2 |External Link: 1
3 |Formula: I 2!
a
5 Category |=7| Num1 |=¥| Num2 |~ | Num3 | ~ | Total -
6 A 0.184607 0.934631 || N 1.705714922
7 A 0.504252 0.251189 0.209182 1.024622503
g A, 0.600602 0.183192 0.122543 0.906337605
12
13
" Merged Cells
15
16
17
18
3.2.13 Merged Cells
<mergeCells>

<mergeCell ref="D13:H14"/>
</mergeCells>

In the example, cells D13:H14 have been merged into a single, larger cell. Note that the cell table itself doesn't
reflect this merge, but it does reflect the data content and formatting. Specifically, the top-left cell in a merged
collection of cells contains the value, and all the cells reflect the various border formatting.

3.2.14 Conditional Formatting

<conditionalFormatting sqref="H6:H11">
<cfRule type="dataBar" priority="3" stopIfTrue="0">
<formula>MAX(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "",

H6:H11)))</formula>

<formula>MIN(IF(ISBLANK(H6:H11), "", IF(ISERROR(H6:H11), "",

H6:H11)))</formula>

107

O 00 N OO s~ W N

e e e
w N Rk O

14

15

16
17
18

19
20

21

22

23
24
25
26

27
28
29

Introduction to SpreadsheetML

<dataBar minLength="10" maxLength="90" showValue="1">
<cfvo type="min" val="0"/>
<cfvo type="max" val="@"/>
<color rgb="FF63C384"/>
</dataBar>
</cfRule>
</conditionalFormatting>
<conditionalFormatting sqref="G6:G11">
<cfRule type="cellIs" dxfId="0" priority="1" stopIfTrue="0"
operator="greaterThan">
<formula>@.5</formula>
</cfRule>
</conditionalFormatting>

There are two conditional formats applied: one to the table of data in column H and the other to the table of
data in column G.

In column G, a red fill is applied to any cell whose value is greater than 0.5. Notice that sqref specifies the
range to which the rule applies. The formatting is specified by dxfld, which is a reference to a formatting
expression in the central styles part.

In column H there is a dataBar formatting rule, which applies a variable length bar to the cell background,
where the length of the bar depends on the relative value of the cell.

3.3 Shared String Table

3.3.1 Overview

A workbook may contain thousands of cells containing string (non-numeric) data. Furthermore, this data is
very likely to be repeated across many rows or columns. The goal of implementing a single string table that is
shared across the workbook is to improve performance in opening and saving the file by only reading and
writing the repetitive information once.

For example, consider a workbook summarizing information for cities within various countries. There may be a
column for the name of the country, a column for the name of each city in that country, and a column
containing the data for each city:

108

o

Introduction to SpreadsheetML

il B C D

1

2 Country City Data

3 United States Seattle 45983
4 United 5tates Denver 36.16
5 United States Mew York 114.38
6 United States Philadelphia 540.95
7 United States Houton 643.07
8 United States 5San Diego 258.4
3 United States San Francisco 686.05
10 Argentina Buenos Aires 14.08
11 Argentina San Juan 28.17
12 Argentina Salta 757.31
13 Argentina Rosario 246,23
14 Argentina La Plata 947.63
15 Japan Tokyo 597.55
16 Japan Magoya 619.01
17 Japan Yokohama 525.14
18 Japan Sendai 611.74
19

In this case, the country name is repetitive, being duplicated in many cells. In many cases, the repetition is
extensive, and a tremendous savings is realized by making use of a shared string table when saving the
workbook.

3.3.2 File Architecture

Workbook

Shared
Strings

- -

il

There is a single shared strings part for all the strings in a workbook. This part is related to the workbook. Each
cell (in sheetl.xml, for example) containing a string value refers by index to a string expressed in the shared

109

10

11

12
13
14
15
16

17

18

Introduction to SpreadsheetML

strings part. The solid arrows represent relationships among the parts and the dotted arrows represent
references by index to a string in the shared strings part.

3.3.3 Example: Plain Text

This first example demonstrates plain text in cells. Note that in this example, some of the cells are formatted
(e.g., the column headers "Country", "City", and "Data" are bold faced). Since the formatting is applied at the
cell level, cell styles and formatting is used to describe the formatting, rather than using text formatting on the
text itself.

A later example demonstrates how to handle a variety of text formatting (rich text) within a single cell.

3.3.4 Illustration

Consider the example in the introduction:

A B C D

1

2 Country City Data

3 United States Seattle 469.83
4 United 5tates Denwver 36.16
5 United States Mew York 114.38
6 United States Philadelphia 540.95
7 United States Houton 649.07
a8 United States San Diego 258.4
9 United States San Francisco 686.05
10 Argentina Buenos Aires 14.08
11 Argentina San Juan 28.17
12 Argentina Salta 757.31
13 Argentina Rosario 246.23
14 Argentina La Plata 947.63
15 Japan Tokyo 597.55
16 Japan Magoya 619.01
17 Japan Yokohama 525.14
18 Japan Sendai 611.74
15

In this example, the country names in the column titled 'Country'—"United States", "Argentina", and "Japan"—
would appear a single time in the shared strings part. Additionally, all the city names (in the column titled
'City') would appear a single time in the shared strings part, as would the column titles themselves in B2:D2.
The numeric values in the 'Data' column would be expressed inline with the cell table definition (e.g., in
Sheetl.xml).

3.3.5 The XML

The shared string table XML for this example looks like this:

110

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

<sst .. count="35" uniqueCount="22">

<si>
<t>United States</t>
</si>
<si>
<t>Seattle</t>
</si>
<si>
<t>Denver</t>
</si>
<si>
<t>New York</t>
</si>
<si>
<t>Philadelphia</t>
</si>
<si>
<t>Houton</t>
</si>
<si>
<t>San Diego</t>
</si>
<si>
<t>San Francisco</t>
</si>
<si>
<t>Argentina</t>
</si>
<si>
<t>Buenos Aires</t>
</si>
<si>
<t>San Juan</t>
</si>
<si>
<t>Salta</t>
</si>
<si>
<t>Rosario</t>
</si>
<si>
<t>La Plata</t>
</si>

Introduction to SpreadsheetML

111

O 00 N OO s~ W N

N N N N N N B B R B R R R s,
U B W N B O © 0O N O 1 B W N KL O

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

<si>
<t>Japan</t>

</si>

<si>
<t>Tokyo</t>

</si>

<si>
<t>Nagoya</t>

</si>

<si>
<t>Yokohama</t>

</si>

<si>
<t>Sendai</t>

</si>

<si>
<t>Country</t>

</si>

<si>
<t>City</t>

</si>

<si>
<t>Data</t>

</si>

</sst>

The cell table for this example looks like this:

<sheetData>
<row r="2" spans="2:4" customFormat="1">
<c r.‘=IIBZII s=ll]-ll t:"s">

<v>19</v>
</c>
<c r="C2" s="1" t="s">
<V>20</v>
</c>
<c r="D2" s="1" t="s">
<v>21</v>
</c>
</row>

<row r="3" spans="2:4" customFormat="1">
<c r="B3" t="s">
<Vv>0</v>
</c>

Introduction to SpreadsheetML

112

O 00 N OO s~ W N

w W W W W W W W W W N N N N N N NN NN NN PP PR R, R R, R R
O 00 N OO U A~ W N P O L 0 NoO Ul WN R O L O N WN -, O

<c r="C3" t="s">

v>1</v>
</c>
<c r="D3">
<f t="shared" ref="D3:D18" ca="
<v>374.9</v>
</c>
</row>

<row r="4" spans="2:4" customFormat="1">

<c r="B4" t="s">

<V>0</v>

</c>

<c r="C4" t="s">
<V>2</v>

</c>

<c r="D4">
<f t="shared" ca="1" si="0"/>
<v>452.82</v>

</c>

</row>

<row r="5" spans="2:4" customFormat="1">

<C r.\=IIBSII t="S“>

<V>0</v>

</c>

<c r="C5" t="s">
<v>3</v>

</c>

<c r="D5">
<f t="shared" ca="1" si="0"/>
<v>632.1</v>

</c>

</row>

<row r="6" spans="2:4" customFormat="1">

<c r="B6" t="s">
<V>0</v>

</c>

<c r="C6" t="s">
V>4</v>

</c>

Introduction to SpreadsheetML

1" si="0">ROUND(RAND()*1000,2)</f>

113

O 00 N OO s~ W N

BODA W W W OW W W W W W WNNNDNNNNRNRNNNNDNRR R R P B R
B O ©W 00 N O O B W N P O © ©® N O U B W N B O O 0O N O U B W N KL O

<C r="D6">
<f t="shared" ca="1" si="0"/>
<v>886.37</v>
</c>
</row>
<row r="7" spans="2:4" customFormat="1">
<c r="B7" t="s">

<V>0</v>

</c>

<c r="C7" t="s">
<V>5</v>

</c>

<c r="D7">
<f t="shared" ca="1" si="0"/>
<v>291.14</v>

</c>

</row>

<row r="8" spans="2:4" customFormat="1">
<c r="B8" t="s">

<V>0</v>

</c>

<C r="C8" t="s">
<V>6</Vv>

</c>

<c r="D8">
<f t="shared" ca="1" si="0"/>
<v>114.97</v>

</c>

</row>

<row r="9" spans="2:4" customFormat="1">
<c r\=llBgll t=llsll>

<V>0</v>

</c>

<c r="C9" t="s">
V>7</v>

</c>

<c r="D9">
<f t="shared" ca="1" si="0"/>
<v>291.99</v>

</c>

</row>

Introduction to SpreadsheetML

114

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

<row r="10" spans="2:4" customFormat="1">

<c r="B10" t="s">

<v>8</v>

</c>

<c r="Cl1l0" t="s">
<V>9</v>

</c>

<c r="D10">
<f t="shared" ca="1" si="0"/>
<v>335.42</v>

</c>

</row>

<row r="11" spans="2:4" customFormat="1">

<c r="B11" t="s">

<V>8</v>

</c>

<c pr="C11" t="s">
v>l1o</v>

</c>

<c r="D11">
<f t="shared" ca="1" si="0"/>
<V>664.72</v>

</c>

</row>

<row r="12" spans="2:4" customFormat="1">

<c r="B12" t="s">

<Vv>8</v>

</c>

<c pr="C12" t="s">
v>11</v>

</c>

<c r="D12">
<f t="shared" ca="1" si="0"/>
<v>992.62</v>

</c>

</row>

<row r="13" spans="2:4" customFormat="1">

<c r="B13" t="s"»>
<v>8</v>

</c>

<c r="C13" t="s">
v>12</v>

</c>

Introduction to SpreadsheetML

115

O 00 N OO s~ W N

BODA W W W OW W W W W W WNNNDNNNNRNRNNNNDNRR R R P B R
B O ©W 00 N O O B W N P O © ©® N O U B W N B O O 0O N O U B W N KL O

<c r="D13">
<f t="shared" ca="1" si="0"/>
<v>148.5</v>
</c>
</row>
<row r="14" spans="2:4" customFormat="1">
<c r="B14" t="s">

<V>8</v>

</c>

<c r="C14" t="s">
<v>13</v>

</c>

<c r="D14">
<f t="shared" ca="1" si="0"/>
<v>193.53</v>

</c>

</row>

<row r="15" spans="2:4" customFormat="1">
<c r="B15" t="s">

v>14</v>

</c>

<c r="C15" t="s">
<v>15</v>

</c>

<c r="D15">
<f t="shared" ca="1" si="0"/>
<v>849.36</v>

</c>

</row>

<row r="16" spans="2:4" customFormat="1">
<c r="B16" t="s">

v>14</v>

</c>

<c r="C1l6" t="s">
v>16</v>

</c>

<c r="D16">
<f t="shared" ca="1" si="0"/>
<v>765.46</v>

</c>

</row>

Introduction to SpreadsheetML

116

O 00 N OO s~ W N

N N N N N N B B R B R R R s,
U B W N B O © 0O N O 1 B W N KL O

26

27
28
29
30
31
32
33
34
35
36

37
38
39

Introduction to SpreadsheetML

<row r="17" spans="2:4" customFormat="1">
<c r="B17" t="s">

<v>14</v>

</c>

<c r="C17" t="s">
v>17</v>

</c>

<c r="D17">
<f t="shared" ca="1" si="0"/>
<v>350.26</v>

</c>

</row>

<row r="18" spans="2:4" customFormat="1">
<c r="B18" t="s">
v>14</v>
</c>
<c r="C18" t="s">
<v>18</v>
</c>
<c r="D18">
<f t="shared" ca="1" si="0"/>
<v>979.22</v>
</c>
</row>
</sheetData>

3.3.6 Shared String Table

<sst .. count="35" uniqueCount="22">
<si>
<t>United States</t>
</si>
<si>
<t>Seattle</t>
</si>
<si>
<t>Denver</t>
</si>

Examining the XML for the shared string part, it can be found that the first entry in the string table is "United

States", residing in position 0. The value "Seattle" can be found in position 1 and "Denver" can be found in
position 2.

117

[y

O 00 N OO s~ W N

S
N L, O

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33

34
35
36
37
38
39
40

Introduction to SpreadsheetML

3.3.7 Cell Table

<row r="2" spans="2:4" customFormat="1">
<c r\=IIBZII S="1" t=llsll>

<v>19</v>
</c>
<c r="C2" s="1" t="s">
<v>20</v>
</c>
<c r="D2" s="1" t="s">
<v>21</v>
</c>
</row>

The first cell in our spreadsheet that contains data is B2. The XML indicates that it is of type 'string' (t="s").
This indicates that the numeric value found inside the <v> element is an index to a string in the string table
rather than an actual number in the spreadsheet. The value for cell B2 is '19'. The 19th entry in the shared
string table (counting the first entry as 0) has a value of "Country". Therefore, cell B2 contains the word

"Country".
<row r="3" spans="2:4" customFormat="1">
<c r="B3" t="s">
<V>0</v>
</c>
<c r="C3" t="s">
<v>1</v>
</c>
<c r="D3">
<f t="shared" ref="D3:D18" ca="1" si="@">ROUND(RAND()*1000,2)</f>
<v>374.9</v>
</c>
</row>

Cell B3 (<c @r="B3"..>) is also of type string, and the '0' inside the v element refers to the Oth item in the
string table, which corresponds to the string value "United States". Cell C3 is a string type of cell and
references the shared string found in position 1 in the string table, corresponding to the value "Seattle".

Cell D3 contains an f element, indicating a formula.

<row r="4" spans="2:4" customFormat="1">
<c r="B4" t="s">
<V>0</v>
</c>
<c r="C4" t="s">
<V>2</v>
</c>

118

10

11
12

13

14

15

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Introduction to SpreadsheetML

<c r="D4">
<f t="shared" ca="1" si="0"/>
<v>452.82</v>
</c>
</row>

Examining the cell table entries for the data in row 4 of the spreadsheet, we see that cell B4 also contains the
string value "United States". This is the 2nd occurrence of the value "United States" in this example. Since this
value only occurs once in the string table, again the cell is using an index of 0 to reference the string item in the
string table. Cell C4 is of type string and an index value of '2' indicates that "Denver" is the value of this cell.

3.3.8 Example: Rich Text

In this example, a single string cell value has multiple types of text formatting applied to various parts of the
text.

3.3.9 Illustration

F

This string has a variety of formatting applied

3.3.10 Shared String Table

The main difference between plain text and rich text is seen in the string table itself. The si element is capable
of containing rich text expressions:

<si>
<r>
<t xml:space="preserve">This </t>
</r>
<r>
<rPr>

<sz val="11"/>
<color theme="1"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve">string </t>
</r>

119

O 00 N OO s~ W N

e e e O e T e T e
© 0 N O U1 A W N L O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

<r>
<rPr>
<sz val="11"/>
<color rgb="FFFFo000"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t>has</t>
</r>
<r>
<rPr>
<sz val="11"/>
<color theme="1"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve"> a </t>
</r>
<r>
<rPr>
<i/>
<sz val="11"/>
<color rgb="FF0OBO50"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t>variety</t>
</r>
<r>
<rPr>
<sz val="11"/>
<color theme="1"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve"> of </t>
</r>
<r>

Introduction to SpreadsheetML

120

O 00 N OO s~ W N

[N S T e T e e O e e T =
R O VW 0 N O uu A W N = O

22
23
24
25

26
27

28
29
30
31

32
33
34

35
36
37

Introduction to SpreadsheetML

<rPr>
u/>
<sz val="11"/>
<color theme="1"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t>formatting</t>
</r>
<r>
<rPr>
<sz val="11"/>
<color theme="1"/>
<rFont val="Calibri"/>
<family val="2"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve"> applied</t>
</r>
</si>

Reading the string from left to right as it appears in the cell, each word represents a change in formatting. This
change in formatting corresponds to separate run elements r to separate the text with different formatting.
Every word is expressed using a run element r, which expresses the properties of the text rPr and the text
itself t.

Since there are no properties associated with the first word "This", the text inherits the default formatting for
the cell.

The rich text expression for the second string "string" contains a bold faced font element indicator b in the run
properties rPr, therefore this text will have bold face applied. While other text formatting properties are
expressed, they are the same as the cell formatting. This additional information is expressed for the sake of
clarity and completeness of expression.

The rich text expression for the third string "has" contains a color element indicator color in the run
properties rPr. Therefore, the color of the text associated with this set of run properties will be red, according
to the color value expressed.

The formatting for the remaining words in this rich text string can be deduced in a similar manner, such that
"a" has default formatting applied, "variety" is both italicized and green, "of" has default formatting applied,
"formatting" is underlined, and "applied" has default formatting applied.

121

10

11
12
13
14
15
16
17

18
19
20

21

22

23

24

25

Introduction to SpreadsheetML

3.4 Tables

3.4.1 Overview

A table helps organize and provide structure to lists of information in a worksheet. Tables have clearly labeled
columns, rows, and data regions. Tables enable users to sort, analyze, format, manage, add, and delete
information. Here's an example of what a table can look like:

A B = D

Seattle
Seattle

Portland
OR Portland
1D Post Falls

== = T TN
=

Notice that this table has column headings "State", "City", and "Zipcode". There is a row summarizing the data,
in this case a count of zip codes. The formatting helps make clear where the column headings are (Bold faced,
bordered on top and bottom all the way across), where the data region is (banded row stripes), and where the
totals row is (double border separating data from totals, bold face totals label).

Because the table feature has been applied to this data, special behaviors can be applied which help the user
perform useful actions. For example, if the user types additional data in row 10, the table can expand and
automatically add that data to the data region of the table. Similarly, adding a column is as easy as typing a
new column heading to the right or left of the current column headings. Filter and sort abilities are
automatically surfaced to the user via the drop down arrows. Special calculated columns can be created which
summarize or calculate data in the table. These columns have the ability to expand and shrink according to size
of the table, and maintain proper formula referencing.

Tables can be made from data already present in the worksheet. Tables can also be the result of an external
data query. Finally, tables can be the result of mapping a collection of repeating XML elements to a worksheet
range.

3.4.2 File Architecture

Workbook

/

122

10

11

12

13

14
15
16
17

18

19

20

21

22

Introduction to SpreadsheetML

Each table is referred to by a relationship from a sheet to the table. The relationship is found in the sheet's
_rels directory. The sheet XML also references the ID of this relationship, because there can be more than one
table in a sheet.

The sheet XML stores the numeric and textual data. The table XML records the various attributes for the
particular table object.

3.4.3 Example: Table

This example demonstrates a table created from data that was previously entered in the sheet. (See §3.15 for
a discussion of Tables with XML data bindings.)

3.4.4 Illustration

Consider the example provided in §3.4.1 above:

A B C D

Seattle

== N = T TR S
=

Seattle
WA Tacoma
OR Portland
OR Portland
ID Post Falls
10 Count
11

Notice that this table has column headings "State", "City", and "Zipcode". There is a row summarizing the data,
in this case a count of Zip codes. In the "State" column abbreviations of United States State names are listed. In
the City column are listed names of Cities within those states. Finally, within the Zipcode column are postal
codes residing within those cities.

The table has a style applied, which provides unique formatting for:

e The column heading area, with bold facing and top and bottom borders
e The data area, with banded striping

e The total row area, with a top double border and bold facing

o The last column area, with a solid background fill of blue.

123

N oo o o AW

10

11

12
13
14
15
16
17
18
19
20
21
22
23

25
26

27
28
29
30

31
32
33
34
35
36
37

Introduction to SpreadsheetML

3.4.5 The Sheet XML

The sheet XML for this example references the table definition part:

<tableParts count="1">
<tablePart r:id="rIdl1"/>
</tableParts>
</worksheet>

3.4.6 The Table XML

The tableParts collection appears after the sheetData section of the sheet. This sheet references a table
whose relationship Id r:id value is rId1.

The Table definition XML for this example:

<table xmlns= .. id="8" name="Tablel9" displayName="Tablel9" ref="B3:D10"
totalsRowCount="1">
<autoFilter ref="B3:D10"/>
<tableColumns count="3">
<tableColumn id="1" name="State" totalsRowLabel="Count"
totalsRowDxfId="0"/>
<tableColumn id="2" name="City"/>
<tableColumn id="3" name="Zipcode" totalsRowFunction="count"/>
</tableColumns>
<tableStyleInfo name="TableStyleMediuml6" showFirstColumn="0"
showLastColumn="1"
showRowStripes="1" showColumnStripes="0"/>
</table>

name indicates that the Table's name is Tablel9, and the ref value indicates that it occupies the range
B3:D10 on the relevant sheet. totalsRowCount value of 1 indicates that this Table's total row is visible.

The autoFilter element indicates that the autoFilter feature is applied to the range B3 :D10. The
tableColumns collection indicates there are 3 columns in the table, whose names are "State", "City", and
"Zipcode". Furthermore, the column titled "State" has a label in the total row, whose caption is "Count", and
the column titled "Zipcode" has a total row function applied, whose function is "count".

The tableStylelnfo element indicates various attributes of this Table's style and formatting. In this example,
name indicates that the Table style named "TableStyleMedium16" has been applied. Additionally, even though
formatting has been defined by this table style to indicate uniquely the first column of the table, since
showFirstColumn is set to @ (false), this first column formatting will not be applied to the table. The same is
true for column stripes. Since showColumnStripes is set to @ (false), even though formatting for column
stripes is defined by the table style, it is not applied to this table. However, both row striping and last column
formatting is set to be applied to this table, as indicated by showRowStripes and showLastColumn.

124

Introduction to SpreadsheetML

1 3.5 Calculation Chain

2 3.5.1 Overview

3 The Calculation Chain part specifies the order in which cells in the workbook were last calculated. It only
4 records information about cells containing formulas. It does not include any information about the formula-
5 dependency calculation tree. In other words, the Calculation Chain part does not indicate the dependencies
6 that formulas have on other cell values; it only indicates the order in which the cells were last calculated.

7 Any particular calculation event can cause the calculation chain order to be rearranged or altered. For
g8 example, adding more formulas to the workbook will add references in the Calculation Chain part.

9 Another example of how the calculation order can be updated involves the idea of partial calculation. Partial
10 calculation is an optimization a spreadsheet application can implement to calculate only those cells that are
11 dependent on other cells whose values have changed, and to ignore other formulas in the workbook. This
12 helps to avoid redundantly recalculating results that are already known. Therefore, if a set of formulas that
13 were previously ignored during a calculation become required for calculation (due to a cell's value changing),
14 then these formulas will move to "first" on the calculation chain so they can be evaluated.

15 While calculation chain information can be loaded by a spreadsheet application, it is not required. A

16 calculation chain can be constructed in memory at load-time based on the formulas and their

17 interdependence, if the spreadsheet application finds this information useful. The order expressed in the
18 Calculation Chain part does not force or dictate to the implementing application the order in which

19 calculations must be performed at runtime.

20 3.5.2 Example

21 Consider the following set of formulas in a workbook:

1} B C D

1|1 1 11 11

2 |=Al+1 2 =B1+1 12

3 |=A2+1 3 =B2+1 13

4 [=A3+1 4 =B3+1 14

5 |=Ad+1 3 =B4+1 15

6 |=A5S+1 6 =B5+1 16

7 |=Ab+l 7 =B6+1 17

8 =AT7+1 8 =B7+1 18

9 =AB+1 9 =BE+1 15

10 | =A9+1 10 =Bo+1 200 =Bl0O+Al0 30 |=C10+10 40
22 11
23

24 Note that the content of each cell is displayed on the left side of the cell, and the evaluated value is
25 superimposed on the right side of each cell.

125

10
11
12

13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to SpreadsheetML

Cell Al contains the numeric constant 1. Cell A2 contains the formula =A1+1, and this formula is filled down
to A10. Cell B1 contains the numeric constant 11. Cell B2 contains the formula =B1+1, and this formula is filled
down to B10. C10 contains the formula =B10+A10, whose current value is 30. D10 contains the formula
=C10+10, whose current value is 40.

Because dependencies among formulas do affect calculation order, dependencies will be discussed briefly
here. The formula in D10 depends on the result from C10. The formula in C10 depends on the results from
both A10 and B10. The formulas in column A each depend on the cell above them, ultimately depending on
the constant value in Al. The formulas in column B each depend on the cell above them, ultimately depending
on the constant value in B1.

This example was created by first entering the values in A1 then B1. Next, typing the formula in A2, and filling
that across to B2. Then the formulas in A2 and B2 were concurrently filled down to A10:B10. Next, the
formula was typed into C10, and finally the formula in D10 was entered. The application was in
automatic/partial calculation mode when this information was entered.

3.5.2.1 Partial Calculation

The calculation chain might be saved after initially entering the data and saving the workbook, as follows:

<calcChain xmlns="..">
<c r="D10" i="1"/>
<c r="C10"/>
<c r="A3"/>
<c r="B3"/>
<c r="A4"/>
<c r="B4"/>
<c r="A5"/>
<c r="B5"/>
<c r="A6"/>
<c r="B6"/>
<c r="A7"/>
<c r="B7"/>
<c r="A8"/>
<c r="B8"/>
<c r="A9"/>
<c r="B9"/>
<c r="Al0"/>
<c r="B10@"/>
<c r="B2"/>
<c r="A2"/>
</calcChain>

Every c element represents a cell containing a formula. The first cell calculated appears first (top-to-bottom),
and so on. The reference attribute r indicates the cell's address in the sheet. The index attribute i indicates the

126

10
11
12
13
14

15
16

17
18
19

20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to SpreadsheetML

index of the sheet with which that cell is associated. The sub-chain attribute s (not present in this first
example) indicates that this cell can be treated as a sub chain of the preceding cell. Sub-chains can be useful
when calculation can be multi-threaded or calculated concurrently. Whenever a cell does not containaniors
attribute, it is understood to inherit these values from the previous cell.

Because of the way in which the workbook was initially created and saved, cell D10 should be the first cell
calculated. The reason for this, which cannot be determined from examining the XML, is that cell D10 is the
only cell that needs calculating, due to the partial calculation optimization. Since the cells A2:B10 and C10
were previously calculated (as a result of entering formulas in those cells), when entering the formula in D10,
D10 is the only cell that needs to be calculated.

This calculation chain indicates that after D10 is calculated, C10 can be evaluated. In looking at the
dependencies, it is understood that during a full calculation, C10 would be evaluated before D10 can be
evaluated. However, because of the partial calculation optimization, at the time C10 was entered, it was
placed first on the calculation chain to be evaluated. Subsequent to that, D10 was entered, and so C10 was
moved to second position in the calculation chain, and that is why it is currently in the second place.

Moving through the rest of the cells with this same logic, just before C10 was entered, A3, then B3, then A4,
then B4, and so on up to A10 and B10 were added and then evaluated as part of the fill-down operation.

Finally, cells A2 and B2 were the first formulas to be added and calculated. All formulas in the workbook were
added after A2 and B2 were evaluated. Since A2 and B2 didn't need to be re-evaluated (due to the partial
calculation optimization) after that, they eventually settled to the end of the calculation chain.

3.5.2.2 First Full Calculation

Below is how the calculation chain will look after changing the values of Al and B1, or after forcing the
application to perform a full calculation on the entire set of formulas:

<calcChain xmlns="..">
<c r="B2" i="1"/>
<c r="B3" s="1"/>
<c r="B4" s="1"/>
<c r="B5" s="1"/>
<c r="B6" s="1"/>
<c r="B7" s="1"/>
<c r="B8" s="1"/>
<c r="B9" s="1"/>

<c r="B1O@" s="1"/>
<c r="C10" s="1"/>
<c r="D10@" s="1"/>
<c r="A2"/>

<c r="A3" s="1"/>
<c r="A4" s="1"/>

127

N o o AwWwN

10
11
12
13
14
15
16
17
18

19

20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Introduction to SpreadsheetML

<c r="A5" s="1"/>
<c r="A6" s="1"/>
<c r="A7" s="1"/>
<c r="A8" s="1"/>
<c r="A9" s="1"/>
<c r="Al0" s="1"/>
</calcChain>

Now the order of calculation seems more in line with the way in which the formulas depend on each other:
cells B2:B10 are calculated in order, and cells A2 : A10 are calculated in order.

Additionally, the application has discovered that the formulas in column B can be calculated in parallel with the
formulas in column A (i.e., they don't depend on each other). This is evidenced by the presence of s="1" on the
cell element for cells B2:B10, indicating that B2:10 are part of a "child-chain" starting with B2. Note also that
C10 and B10 are included in that child chain, even though these formulas do, in fact, depend on calculated
values from column A. This is due to the multi-threaded nature of the calculation engine. Currently the chain
on which C10 and D10 reside can be calculated concurrently with the chain on which A2:A10 reside because
by the time C10 and D10 need to be calculated (e.g., by CPU #1), A10 has already been calculated (e.g., by

CPU #2). In some future calculation, the timing may be different, and at that time, the application will need to
resort to moving C10 and D10 to a new calculation level (see §3.5.2.3).

3.5.2.3 Twentieth 20th Full Calculation
After several full calculation iterations, this particular calculation chain will settle into a stable state. For
example:
<calcChain xmlns="..">

<c r="B2" i="1"/>

<c r="B3" s="1"/>

<c r="B4" s="1"/>

<c r="B5" s="1"/>

<c r="B6" s="1"/>

<c r="B7" s="1"/>

<c r="B8" s="1"/>

<c r="B9" s="1"/>

<c r="B10@" s="1"/>

<c r="A2"/>

<c r="A3" s="1"/>

<c r="A4" s="1"/>

<c r="A5" s="1"/>

<c r="A6" s="1"/>

128

N o o AwWwN

10

11
12
13
14
15
16

17

18

19

20

21
22
23
24

25

26

27

28

Introduction to SpreadsheetML

<c r="A7" s="1"/>
<c r="A8" s="1"/>
<c r="A9" s="1"/>
<c r="Al10" s="1"/>
<c r="C10" 1="1"/>
<c r="D1@" s="1"/>
</calcChain>

The difference introduced here is the concept of a dependency-level attribute 1. This flag indicates that all
chain and child chain concurrent calculation must be completed (and all cells will have newly calculated values)
before proceeding with calculation.

In this example, cells C10 and D10 are marked to exist in a new and separate dependency level from the cells
A2:A10 and B2:B10. This makes sense given how the dependencies for these formulas are set up: A2:A10
can be calculated concurrently with B2 :B10 because they do not depend on each other. A2 :A10 exists as one
calculation chain, and B2:B10 exist as another parallel calculation chain. However, C10 and D10 are both
dependent on calculated results from the two parallel chains, and so can only be calculated after the first set
of parallel calculations are completed.

Dependency-Level | flags indicate where calculation must wait for all concurrent threads to complete before
continuing with calculation

3.6 Comments

3.6.1 Overview

A comment is a rich text note that is attached to, and associated with, a cell, separate from other cell content.
Comment content is stored separate from the cell, and is displayed in a drawing object (like a text box) that is
separate from, but associated with, a cell. Comments are used as reminders, such as noting how a complex
formula works, or to provide feedback to other users. Comments can also be used to explain assumptions
made in a formula or to call out something special about the cell.

3.6.2 Example

Consider the following graphic representation of a worksheet:

il B C D E F & H I]

1

2 [[[
3 412,52 Ch"d"' = 524, 92
4 Expenses 69? 37 Why such high expense? | 546.44
5 | Total 51 109.89 - 51,071.36
6

7

129

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Introduction to SpreadsheetML

Note that cells D4 and J4 have comments.

3.6.3 File Architecture

Inside the file, the comment content ("Comments1") is expressed separately from the sheet information
("Sheetl"), and separately from the drawing information ("legacyDrawingl") for the containing object:

legacyDrawing1

(Arawinall \

The parts are related using relationships from the sheet to the comments and drawings parts. Comments are
stored together at the sheet-level. Therefore, if there are five worksheets in a workbook, and three of those
contain cells with associated comments, there will be three comment parts in the file, one for each sheet.

3.6.4 The XML

<comments>
<authors>
<author>Chad</author>
<author>CBR</author>
</authors>
<commentList>
<comment ref="D4" authorId="0">
<text>
<r>
<rPr>

<sz val="8"/>
<color indexed="81"/>
<rFont val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>
</rPr>
<t>Chad:</t>
</r>

130

O 00 N OO s~ W N

BOwW W W W oWwWw W W wWwWwWw N NNNNDNNNRNNRER P B R B P B B
O VW 0 N O O B W N B O ©W 0 N O 1 B W N P O W 0 N O Ul B W N B O

Introduction to SpreadsheetML

<r>
<rPr>
<sz val="8"/>
<color indexed="81"/>
<rFont val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve">Why such high expense?</t>
</r>
</text>
</comment>
<comment ref="J4" authorld="1">
<text>
<r>
<rPr>

<sz val="8"/>
<color indexed="81"/>
<rFont val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>
</rPr>
<t>CBR:</t>
</r>
<r>
<rPr>

<sz val="8"/>
<color indexed="81"/>
<rFont val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve">
Pending a couple expenses in December.</t>
</r>
</text>
</comment>
</commentList>
</comments>

131

Qo U A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39

Introduction to SpreadsheetML

3.6.5 Authors

<comments>
<authors>
<author>Chad</author>
<author>CBR</author>
</authors>

The authors collection is a unique list of author names for all comments on a particular sheet. In this example,

there are two authors listed. Each comment definition references the authors collection by zero-based index.

3.6.6 Comments

<commentList>
<comment ref="D4" authorId="0">
<text>
<r>
<rPr>

<sz val="8"/>
<color indexed="81"/>
<rFont val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>
</rPr>
<t>Chad:</t>
</r>
<r>
<rPr>
<sz val="8"/>
<color indexed="81"/>
<rFont val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>
</rPr>
<t xml:space="preserve">
Why such high expense?</t>
</r>
</text>
</comment>

commentList is a listing of all comments on a sheet. The first comment in this example has ref="D4" and
authorld="0". This indicates that the comment is associated with cell D4 and is associated with the author
"Chad".

132

10
11
12

13

14
15
16

17
18
19

20
21
22
23

24

25

26
27

Introduction to SpreadsheetML

The content of comment is rich text, following the rich text schematics, including the author name and actual

comment.
3.7 Styles
3.7.1 Overview

There are several ways to express formatting applied to objects in a worksheet. SpreadsheetML supports the
concepts of Styles, Themes, and Direct Formatting applied to cell ranges, Tables, PivotTables, Charts, and
Shapes.

A Style is a named collection of formatting elements. A cell style can specify number format, cell alignment,
font information, cell border specifications, colors, and background / foreground fills. Table styles specify
formatting elements for the regions of a table (e.g. make the header row & totals bold face, and apply light
gray fill to alternating rows in the data portion of the table to achieve striped or banded rows). PivotTable
styles specify formatting elements for the regions of a PivotTable (e.g. 1st & 2nd level subtotals, row axis,
column axis, and page fields).

A Style can specify color, fonts, and shape effects directly, or these elements can be referenced indirectly by
referring to a Theme definition. Using styles allows for quicker application of formatting and more consistently
stylized documents.

Themes define a set of colors, font information, and effects on shapes (including Charts). If a style or
formatting element defines its color, font, or effect by referencing a theme, then picking a new theme switches
all the colors, fonts, and effects for that formatting element.

Applying Direct Formatting means that particular elements of formatting (e.g. a bold font face or a number
format) have been applied, but the elements of formatting have been chosen individually instead of
collectively by choosing a named Style. Note that when applying direct formatting, themes can still be
referenced, causing those elements to change as the theme is changed.

3.7.2 File Architecture

Workbook

For a workbook, a single Styles part holds all its formatting definitions. Similarly, a single Themes part defines
the theme information used in the workbook. These parts are referenced by relationship from the Workbook

133

w N

w

10

11
12
13

14

15

16

17
18
19
20
21
22

23

24

25
26
27

28

29
30

31

32
33

Introduction to SpreadsheetML

part. Each of the formatted objects refers by index to a master formatting definition record expressed in the
Styles part. This master formatting record references additional supporting formatting element collections in
the Styles part. If the formatting element in the Styles part is defined in terms of a theme, then this formatting
element will reference an index to a theme element defined in the Theme part. The solid arrows denote that
there are relationships expressed from the Workbook part to each of the Sheetl, Styles, and Themes parts.
The dotted arrow from the Sheetl part to the Styles part indicates that there are references in the Sheetl
part's markup that refer, by index, to elements defined in the markup in the Styles part. Similarly, the dotted
arrow from the Styles part to the Themes part indicates that there are references in the Styles part's markup
that refer, by index, to elements defined in the markup in the Themes part.

3.7.3 Organization in the Styles Part

The Styles part is organized into element collections as described in the following subclauses. The element
collections must appear in the order presented below. The element collections are siblings in the Styles part
XML definition, whose parent, the root node of this part, is <styleSheet>.

Please refer to the reference material or schemas themselves for more precise descriptions on the required
order of elements.

3.7.3.1 Number Format Expressions

This is where cell number formats used in this workbook are expressed. This collection never references a
theme. In this collection the numFmtId attribute is an actual ID, unlike the other sibling collections. That is,
instead of relying on the order in which a particular numFmt appears, it is referenced elsewhere by calling out
the numFmtId value. Then the corresponding numFmt record can be found by finding the numFmt record with
the matching numFmtId value. In the case of number formats, a set of numFmtId values are predefined and
fixed by this specification. These values map to actual number formatting expressions.

The following XML would format a cell containing the value 1234 to look like this:

£1,234.00

<numFmts count="1">
<numFmt numFmtId="165" formatCode=""$"#,##0.00"/>
</numFmts>

A <numFmt> definition is referenced by ID (numFmtId) from either a <cellXf> ora<cellStyleXf>.

To read more about how to interpret number format codes like the value found in formatCode above, please
read the reference section on numFmt, in the Styles section.

3.7.3.2 Font Definitions

This is where font definitions used in this workbook are expressed. Elements of the font definition may
reference theme definitions.

134

O 00 N OO s~ W N

10
11
12
13

14

15

16

17

18
19
20
21
22
23
24
25

26
27
28

29
30

31

32

33

35
36

Introduction to SpreadsheetML

<fonts count="1">

<sz val="11"/>
<color theme="1"/>
<name val="Calibri"/>
<family val="2"/>

</fonts>

This font definition specifies bold face, font size of "11", a font color specified in the Theme part, specifically
the color whose index is "1" in the <clrScheme> collection, a font name of "Calibri", and whose font family
value is "2" (for more explanation on font family, please refer to the Styles reference material). A
definition is referenced by index (fontId) from either a <cellXf> ora <cellStyleXf>

A font record is referenced by zero-based index, meaning the numerical order in which the font appears
under fonts.

3.7.3.3 Fill Definitions

This is where fills used in the workbook are expressed.

<fills count="1">
<fill>
<patternFill patternType="solid">
<fgColor theme="4"/>
<bgColor theme="4"/>
</patternFill>
</fill>
</fills>

This fill definition specifies a solid pattern fill, whose color uses a themed color, whose index is "4" in the
<clrScheme> collection of the Theme part. A <fill> definition is referenced by index (fi11Id) from either
a<cellXf>ora<cellStyleXf>.

A fill record is referenced by zero-based index, meaning the numerical order in which the fill appears
under fills.

3.7.3.4 Borders Definitions

This is where border formats are specified.

<borders count="1">
<border>
<left/>

135

10

11

12

13
14

15

16
17
18

19

20
21
22

23
24
25

26

27

28
29
30

31

32
33
34
35

Introduction to SpreadsheetML

<right/>
<top/>
<bottom/>
<diagonal/>
</border>
</borders>

This example specifies a cell with left, right, top, and bottom borders. A <border> definition is referenced by
index (borderId)from either a <cellXf> ora<cellStyleXf>.

A border record is referenced by zero-based index, meaning the numerical order in which the border
appears under borders.

3.7.3.5 Master Records - Cell Styles

The 'master’ cell style record (<xf>) ties together all the formatting (e.g. number format, font information,
and fill) for a named cell style. An <xf> inside <cellStyleXfs> is referenced by zero-based index (not ID)
(xfId)from a <cellStyle> definition, which names a particular cell style.

<cellStyleXfs count="1">
<xf numFmtId="0" fontId="0" fillId="©" borderId="0"/>
</cellStyleXfs>

3.7.3.6 Master Records - Formatting

The 'master’ cell style record (<xf>) ties together all the formatting (e.g. number format, font information,
and fill) for a cell's direct formatting. An <xf> inside <cellXfs> is referenced by zero-based index (not ID) (s)
from a cell definition (<c>) in one of the sheets.

<cellXfs count="1">
<xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0"/>
</cellXfs>

3.7.3.7 Cell Styles
This is a collection of cell styles used in the workbook.
<cellStyles count="1">
<cellStyle name="Accentl" xfId="1" builtinId="29"/>
</cellStyles>
3.7.3.8 Differential Formatting Records

"Differential formatting" enables subsets of formatting to be specified, without overriding other elements of
formatting. For example, if it is desired to express "add bold face to whatever formatting is already there",
then a <dxf> definition can be used. <dxf> definitions are used to express additional (or "differential")
formatting that will be applied via Table styles or PivotTable styles. <dxf> definitions are referenced by index

136

O 00 N O

11
12
13
14
15
16
17
18
19

20

21
22

23
24
25
26
27
28

29

30

31

Introduction to SpreadsheetML

(dxfId)froma<tableStyleElement>. The formatting elements used in a <dxf> definition are subsets of

formatting collections described above

A dxf record is referenced by zero-based index, meaning the numerical order in which the dxf appears under

dxfs.

<dxfs count="1">
<dxf>

<color theme="0"/>

<fill>
<patternFill patternType="solid">
<fgColor theme="5"/>
<bgColor theme="5"/>
</patternFill>
</fill>
</dxf>
</dxfs>

3.7.3.9 Custom Table Style Definitions

Built-in Table and PivotTable styles are not saved out, only custom-defined styles are saved out. In this
example, a custom table style defines formatting for an element of a table, the "whole table" region.

<tableStyles count="1" defaultTableStyle="TableStyleMedium9"
defaultPivotStyle="PivotStylelLightl6">
<tableStyle name="TableStyleMediuml® - Custom" pivot="0" count="1">
<tableStyleElement type="wholeTable" dxfId="6"/>
</tableStyle>
</tableStyles>

3.7.4 Example

3.74.1 [llustration

For this example, consider this graphic representation of a worksheet:

137

10
11

12
13
14

Introduction to SpreadsheetML

A B C D E| F G H I J K L M N 0
1]
2 m m m m Columni [Column2 EJ column3 B3 Columna
3 Revenue 412.52 515.21 866.74 52432 A 381.41 513.27 357.29
LN Expenses 69?.3?’ 539.72 149.51 546.44‘ B 470.33 411.76 723.52
5 | Total $1,109.89 $1,054.93 51,016.25 51,071.36 C 624.47 287.49 365.38
6 D 17.77 775.36 983.69,
7
3
9 Column4 (al) (+]
10
11 Data
12 Filter rows B Sum of Column2 Sum of Column3
13 A 38141 513.27
14 B 470.33 411.76
15 C 624.47 287.49
16 D 17.77 775.36
17 Grand Total 1493.98 1987.88

Looking at the top left region of the illustration, cells D2, F2, H2, J2, and B3:B4 have the cell style "Accent1"
applied to them. "Accent1" is a theme-driven style, and results in a blue cell fill and white / Calibri font
formatting. Additionally these cells have direct border formatting applied which isn't specified as part of the
"Accentl" cell style.

Cells D3:D4, F3:F4, H3:H4, and J3:J4 have a light blue cell fill applied. The light blue color is part of a themed
color scheme, and will update when a new theme is selected.

Cells D5, F5, H5, and J5 have a currency number format applied as well as a green cell fill. While the cell fill is a
themed color, the number format is fixed and will not vary or change if a new theme is selected.

The table in L2:06 has a table style applied, called "TableStyleMedium10", which specifies formatting for the
header row, row striping, and total row (even though the total row isn't shown in this example).

The PivotTable in L9:N17 has a PivotTable style applied, called "PivotStyleMedium10", which specifies
formatting for the regions of a PivotTable, including the page field area in L9:M9, the header row area in
L11:N12, the totals row in L17:N17, and the body of data in L13:N16.

138

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Introduction to SpreadsheetML

3.7.4.2 File Architecture

Workbook

All of the cells illustrated are defined in the "Sheetl" part in this example. The table is defined in the "Table1"
part and the PivotTable is defined in the part named "PivotTablel". Each of the formatted objects refers to a
set of formatting definitions which are expressed in the "Styles" part. If the formatting element is part of a
themed set, the element will reference a theme element defined in the "Themes" part. The solid arrows
represent relationships among the parts, the dotted arrows represent references by Id or index to various
elements in the target part.

3.7.4.3 The XML For This Example

<styleSheet>
<numFmts count="1">
<numFmt numFmtId="164" formatCode=""$"#,##0.00"/>

</numFmts>
<fonts count="5">

<sz val="11"/>
<color theme="1"/>
<name val="Calibri"/>
<scheme val="minor"/>

<sz val="11"/>
<color theme="1"/>
<name val="Calibri"/>
<family val="2"/>

139

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

Introduction to SpreadsheetML

<sz val="8"/>
<color indexed="81"/>
<name val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>

<sz val="8"/>
<color indexed="81"/>
<name val="Calibri"/>
<charset val="1"/>
<scheme val="minor"/>

<sz val="11"/>
<color theme="0"/>
<name val="Calibri"/>
<scheme val="minor"/>

</fonts>
<fills count="5">

<fill>
<patternFill patternType="none"/>
</fill>
<fill>
<patternFill patternType="grayl25"/>
</fill>
<fill>
<patternFill patternType="solid">
<fgColor theme="4"/>
<bgColor theme="4"/>
</patternFill>
</fill>
<fill>
<patternFill patternType="solid">
<fgColor theme="6" tint="0.59999389629810485"/>
<bgColor indexed="65"/>
</patternFill>
</fill>
<fill>
<patternFill patternType="solid">

140

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

Introduction to SpreadsheetML

<fgColor theme="4" tint="0.79998168889431442"/>

<bgColor indexed="65"/>
</patternFill>
</fill>
</fills>
<borders count="5">
<border>
<left/>
<right/>
<top/>
<bottom/>
<diagonal/>
</border>
<border>
<left/>
<right/>
<top/>
<bottom style="double">
<color indexed="64"/>
</bottom>
<diagonal/>
</border>
<border>
<left style="thick">
<color auto="1"/>
</left>
<right style="thick">
<color auto="1"/>
</right>
<top style="thick">
<color auto="1"/>
</top>
<bottom style="thick">
<color auto="1"/>
</bottom>
<diagonal/>
</border>
<border>
<left style="thick">
<color auto="1"/>
</left>
<right style="thick">
<color auto="1"/>

141

O 00 N OO s~ W N

B D W OW W W W W OWW W WNNNDNNNRNNRNNNDNNDNRR R R P B B opop
N P O © ® N o 0 & W N B O © 0 N O U B W N P O W O N O 1 M W N L O

Introduction to SpreadsheetML

</right>
<top style="thick">
<color auto="1"/>
</top>
<bottom/>
<diagonal/>
</border>
<border>
<left style="thick">
<color auto="1"/>
</left>
<right style="thick">
<color auto="1"/>
</right>
<top/>
<bottom style="thick">
<color auto="1"/>
</bottom>
<diagonal/>
</border>
</borders>
<cellStyleXfs count="2">
<xf numFmtId="0" fontId="0" fillId="©" borderId="0"/>
<xf numFmtId="0" fontId="4" fillId="2" borderId="0"

applyNumberFormat="0" applyBorder="0" applyAlignment="0" applyProtection="0">

<protection/>
</xf>
</cellStyleXfs>
<cellXfs count="14">
<xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="@"/>
<xf numFmtId="0" fontId="1" fillId="©" borderId="0" xfId="0"
applyFont="1"/>
<xf numFmtId="4" fontId="0" fillId="©" borderId="0" xfId="0"
applyNumberFormat="1" applyBorder="1"/>
<xf numFmtId="164" fontId="0" fillId="0" borderId="0" xfId="0"
applyNumberFormat="1" applyBorder="1"/>
<xf numFmtId="0" fontId="0" fillId="©" borderId="0" xfId="0"
pivotButton="1"/>
<xf numFmtId="0" fontId="0" fillId="©" borderId="0" xfId="0"
applyAlignment="1">
<alignment horizontal="left"/>
</xf>

142

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

Introduction to SpreadsheetML

<xf numFmtId="0" fontId="@" fillId="©" borderId="0" xfId="0"
applyNumberFormat="1"/>

<xf numFmtId="0" fontId="4" fillId="2" borderId="2" xfId="1"
applyBorder="1"/>

<xf numFmtId="0" fontId="4" fillId="2" borderId="3" xfId="1"
applyBorder="1"/>

<xf numFmtId="0" fontId="4" fillId="2" borderId="4" xfId="1"
applyBorder="1"/>

<xf numFmtId="0" fontId="1" fillId="3" borderId="0" xfId="0"
applyFont="1" applyFill="1"/>

<xf numFmtId="164" fontId="0" fillId="3" borderId="0" xfId="0"
applyNumberFormat="1" applyFill="1" applyBorder="1"/>

<xf numFmtId="4" fontId="0" fillId="4" borderId="0" xfId="0"
applyNumberFormat="1" applyFill="1" applyBorder="1"/>

<xf numFmtId="4" fontId="0" fillId="4" borderId="1" xfId="0"
applyNumberFormat="1" applyFill="1" applyBorder="1"/>

</cellXfs>
<cellStyles count="2">
<cellStyle name="Accentl" xfId="1" builtinId="29"/>
<cellStyle name="Normal" xfId="0" builtinId="©"/>

</cellStyles>
<dxfs count="7">
<dxf>
<fill>
<patternFill patternType="solid">
<fgColor theme="0" tint="-0.14999847407452621"/>
<bgColor theme="0" tint="-0.14999847407452621"/>
</patternFill>
</fill>
</dxf>
<dxf>
<fill>
<patternFill patternType="solid">
<fgColor theme="0" tint="-0.14999847407452621"/>
<bgColor theme="0" tint="-0.14999847407452621"/>
</patternFill>
</fill>
</dxf>
<dxf>

<color theme="0"/>

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

Introduction to SpreadsheetML

<fill>
<patternFill patternType="solid">
<fgColor theme="5"/>
<bgColor theme="5"/>
</patternFill>
</fill>
</dxf>
<dxf>

<color theme="0"/>

<fill>
<patternFill patternType="solid">
<fgColor theme="5"/>
<bgColor theme="5"/>
</patternFill>
</fill>
</dxf>
<dxf>
<border>
<top style="double">
<color theme="1"/>
</top>
</border>
</dxf>
<dxf>

<color theme="0"/>

<fill>
<patternFill patternType="solid">
<fgColor theme="5"/>
<bgColor theme="5"/>
</patternFill>
</fill>
<border>
<bottom style="medium">
<color theme="1"/>
</bottom>
</border>
</dxf>

144

O 00 N OO s~ W N

N N N N N N N N N B B B B R R R p 3,
0 N o U1 A W N B O O ® N O 1 B W N LB O

N
o

30

31

32
33
34

Introduction to SpreadsheetML

<dxf>

<color theme="1"/>

<border>
<top style="medium">
<color theme="1"/>
</top>
<bottom style="medium">
<color theme="1"/>
</bottom>
</border>
</dxf>
</dxfs>

<tableStyles count="1" defaultTableStyle="TableStyleMedium9"
defaultPivotStyle="PivotStylelLightl16">
<tableStyle name="TableStyleMediuml® - Custom" pivot="0" count="7">
<tableStyleElement type="wholeTable" dxfId="6"/>
<tableStyleElement type="headerRow" dxfId="5"/>
<tableStyleElement type="totalRow" dxfId="4"/>
<tableStyleElement type="firstColumn" dxfId="3"/>
<tableStyleElement type="lastColumn" dxfId="2"/>
<tableStyleElement type="firstRowStripe" dxfId="1"/>
<tableStyleElement type="firstColumnStripe" dxfId="0"/>
</tableStyle>
</tableStyles>
<colors/>
</styleSheet>

3.7.4.4 Cell D2 Formatting

& B C D I

Revenue iy
Expenses ﬁBle
Total 51,109.89

i | B fw | m =

Cell D2 contains the text "Q1" and is defined in the cell table of sheet1 as:

<c r="D2" s="7" t="s">
<V>0</Vv>
</c>

145

10

11
12

13
14
15
16
17
18

Introduction to SpreadsheetML

On this cell, the attribute value s="7" indicates that the 7th (zero-based) <xf> definition of <cel1lXfs> holds
the formatting information for the cell. The 7th <xf> of <cellXfs> is defined as:

<xf numFmtId="0" fontId="4" fillIld="2" borderIld="2" xfId="1" applyBorder="1"/>

The number formatting information cannot be found in a <numFmt> definition because it is a built-in format;
instead, it is implicitly understood to be the Oth built-in number format. Remembering that the indexes to
other element collections are also zero-based, the font information can be found in the 4th definition;
the fill information in the 2nd <fil1l> definition; and the border information in the 2nd <border> definition.
The cell uses a cell style which is defined in the 1st <cellStyleXf> definition and, finally, borders specified in
this master formatting record should be applied.

Remember that these collections are zero-based.

Additionally the <fill> definition for D2 references a themed color, whose index is 4th in the <c1lrScheme>
definition of the theme part:

<fill>
<patternFill patternType="solid">
<fgColor theme="4"/>
<bgColor theme="4"/>
</patternFill>
</fill>

Graphically, the index references can be shown like this:

146

Introduction to SpreadsheetML

<border=

built-in <iill~ .
(caz yal="11"> <patternFill patternType="4olid"> <left style=/thick™>
<color theme=""/= <fgColor therpe= 4> “coloy auto="17>
<name val="CAlibri"/> =<bgColor thémz="4"/> <lleft I
=scheme va)&"minor"/= </patternFill> =right syle="thick =
<ffill= =cplor auto="1"/=

=ffont=

=/righ
=top gtyle="thick"=
color auto="1"/=
p}

=aitheme xmins:a="http://schemas.openxmliformats.
=aithemeElements=>
=a:clrScheme name="0OffiCe">
=adk1=
<a sysClr val="windowText"/>
<fadk1=
=alt1=
<a:sysClr val="window"/=
=faltl=
=a.dk2=
=a:srghClr val="1F497D"/>
<fa:dk2>
=alt2=
=a:srghClr val="FAF
=lalt2>
=g:accent!=
=a:srghClr val="5C83B4"/=
=ja:accentl=

=</Horder=

<cellStyleXfg’count="2">
<xf pdmFmtld="0" fontld="0" filld="0" borderld="0"/=
<numFmtld="0" fontld="4" fillld="2" borderld="0" applyMumberFormat="0" applyBorder="0" applyAlignment="0" applyProtection="0"=
ction/=

=fuf=

=cellStyles count="2"=
<cellStyle name="Accent1" xfld="1" builtinld="29"/>

3.7.4.5 Custom Table Style

L M M O

Columni [EJ Column2 E3 Column3 E3 Column4a |

A 381.41 513.27 357.29
B 470.33 411.76 723.52
C 624.47 287.49 365.38
D 17.77 775.36 959.69,

This range of cells is a Table object with a custom Table style applied. The table definition in tablel specifies
which table style is applied, and which aspects of the table style definition are 'turned on' and should be
applied:

147

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

26

27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to SpreadsheetML

<table 1id="2" name="Tablell" displayName="Tablell" ref="L20:024"
totalsRowShown="0">

<tableStyleInfo name="TableStyleMediuml® - Custom” showFirstColumn="0"
showLastColumn="0" showRowStripes="1" showColumnStripes="0"/>
</table>

The <tableStyleInfo> elementindicates that this Table uses the "TableStyleMedium10 - Custom" style
and that "first column", "last column", and "column stripes" formatting are OFF. It also indicates that "row
stripes" formatting is ON.

Here is the "TableStyleMedium10 - Custom" definition in the Styles part:

<tableStyles count="1" defaultTableStyle="TableStyleMedium9"
defaultPivotStyle="PivotStylelLightl6e">
<tableStyle name="TableStyleMediuml® - Custom" pivot="0" count="7">
<tableStyleElement type="wholeTable" dxfId="6"/>
<tableStyleElement type="headerRow" dxfId="5"/>
<tableStyleElement type="totalRow" dxfId="4"/>
<tableStyleElement type="firstColumn" dxfId="3"/>
<tableStyleElement type="lastColumn" dxfId="2"/>
<tableStyleElement type="firstRowStripe" dxfId="1"/>
<tableStyleElement type="firstColumnStripe" dxfId="0"/>
</tableStyle>
</tableStyles>
<colors/>
</styleSheet>

Note that even though column stripes are defined for this table style, they are not used for this instance of the
table.

The header row formatting for this table is defined by the 5th <dxf> definition:

<dxf>

<color theme="0"/>

<fill>
<patternFill patternType="solid">
<fgColor theme="5"/>
<bgColor theme="5"/>
</patternFill>
</fill>
<border>

<bottom style="medium">

148

A W N

10
11
12

13

14
15
16
17
18
19

Introduction to SpreadsheetML

<color theme="1"/>
</bottom>
</border>
</dxf>

This formatting indicates that for the header row of this table, the font is bold face and uses a themed color;
the fill is solid and uses a themed color; and there is a bottom border on the cells.

3.8 Worksheet Metadata

3.8.1 Overview

Value and cell metadata are additional properties that can be associated with a particular cell or value. Cell
metadata properties can be carried along with the cell as it moves (e.g., via insert, shift, copy/paste, merge, or
unmerge) and value metadata properties can be propagated along with the value as it is referenced in
formulas.

All of this metadata is stored separately in the metadata.xml part in the workbook.

While the architecture of this feature allows for future extensions, only MDX metadata—metadata that is
associated with a particular cube function and it's results—is currently defined. For example, if a CUBEMEMBER
function call is used to identify a particular member in an OLAP cube, then the metadata would express the
OLAP connection name, the mdx expression identifying that member, and various operational attributes of
that metadata (e.g., whether it propagates through formula assignment, shifts with the cell when the cell
moves locations in the grid, and so on).

149

1

O 00 N O

10
11
12

13
14
15
16
17

18
19

Introduction to SpreadsheetML

3.8.1.1 OLAP Cube Review
Car sales in Australia for 2003 Sales in UsD

-
.

Cars

\'_/

<

Product

Geography
Australia

Consider the 3-dimensional OLAP cube above. The three dimensions of the cube are "Product", "Geography",
and "Time". "Sales Amount" is the measure being summarized, and is often considered an additional
dimension of the cube. OLAP cubes can be N-dimensional, while this one has three dimensions.

Within each dimension are hierarchies, or ways of organizing the dimension into various levels of granularity.
For example, within the Time dimension there can exist the Calendar Year / Quarter / Month / Day hierarchy.
Likewise, the Time dimension can also have the Fiscal Year / Quarter / Month / Day hierarchy. Each of Year /
Quarter / Month / Day represents levels in the hierarchy. '2003' is considered a member of the 'Year' level
within the hierarchy. Likewise, the Product dimension can have multiple hierarchies. A hierarchy could be
constructed based on the type of product while another hierarchy could be constructed based on the color of
the product.

In the example above, picking a member from one dimension would be visualized as a slice through the cube.
For example, picking 'Australia’ from the Geography dimension could be a relatively thick slice of the cube, if
there were many levels underneath 'Country', like 'State', 'City', and 'PostalCode'. Picking a member from
Geography that is more granular than 'Australia” results in a thinner slice of the cube in the Geography
dimension, because now some of Australia will have been omitted from the data.

A tuple is the intersection of two or more members from distinct dimensions. In the example above, three
members from three dimensions are expressed:

150

10
11

12

13

14

15

16

17

18
19

20

21
22

Introduction to SpreadsheetML

1. From Geography we have [Geography].[Country].&[Australia]

2. From Product we have [Product].[Cars].children

3. From Time we have [Time].[Calendar].[Calendar Year].&[2003]
3.8.1.2 OLAP Function Summary

There are seven recognized “CUBE” functions that can be used in cell formulas. These functions enable
formulas in any cell to fetch data from Analysis Services. Specifically, the functions can fetch any member, set,
aggregated value, property, or KPI from the OLAP cube. Because it is formula-driven, the layout of this data is
as flexible as cells and formulas. The OLAP data can be placed anywhere on the spreadsheet, intermingled with
other local calculations or within other formulas.

The function names are: CUBEKPIMEMBER, CUBEMEMBER, CUBEMEMBERPROPERTY, CUBERANKEDMEMBER,
CUBESET, CUBESETCOUNT, and CUBEVALUE.

3.8.2 File Architecture - Relationships

Workbook

The workbook holds the relationship to the metadata part, and cells within a sheet reference the items in the

metadata part.

3.8.3 Example

In the following example, Cube functions are used to build up a report of internet sales by country, for all
products, for the calendar years 2003 and 2004.

151

1

10
11

12

13
14
15
16
17
18
19

Introduction to SpreadsheetML

3.8.3.1 [llustration

=CUBEMEMBER"xl=xtdstd Adventurs Works", [Messurss] [Internst Sales Amount]”)

",
.,

.,
™,

-, .,

",

=CUBEMEM E-EF{['xEq-:atE' Adwenturs Works", [Date] [Calendsr] [All Periods] [CY 2003]7) =C UI':‘.F_h’EI.J BER{"slextdstd Adwenturs Works", [Diate] [Calendar] [All Periods] [CY 2004]7)

=CUBEMEM E-Ehf*x\lﬂﬂiiﬁ Adwenture Works”, Product] [Product Categories] [4ll Products]")

. ", ™,

- ,
.,

s -.
=CUBESET{ xlextdatd A-:\%‘Nj.\la'W\{SHQ"."[‘CLstorr%ﬁ.[\Cl.stﬂTar Geography] [All CI.EI:D!‘I’EIE:.DI‘H-:I—::\I' A Col.rtria;".l‘;'\\l:-f-} _,'
", ., ., i o’

n

' A S \\\Q . C 1;-"'
Ty T
. |1 | . . Internet Sales Amount
M 2 " €Y 2003 CY 2004 B
3 “All Products __— =CUBEMEMBER{xlsdatd Adventu ran@'fc_- :cif;:»'.nz. Szleg)
4" e —
5 \‘cGunmES & 2003 Sales ,"zm‘._ caleg ~——— =CUBEMEMBER[xlmadst A:EHLEWQHE",@__, 2 C3)2004 Sales’)
6 United States .$2,838,512.36 $3,324,031.16
7/ Australia " $3,033,784.21 5-2.563.'?34.29
;é United Kingdom $1,298,248.57 $1,210,386.27
19 Germany $1,058,405.73 $1,076,890.77
10 France $1,026,324.97 $922,179.04
11 Canada $535,784.46 $673,62.21
=CUBERANKEDMENEER Wextdsts Adventure ka;".@:s.'fﬁm—{;c_}f::. =CUBEVALUE[ectdatd Adventure wm;{[ﬁ:-_'_

=CUBEVALUE xlsctdatd Adventure Worke(535, 545))

3.8.3.1.1 Function Summary

CUBEMEMBER (connection, member-expression, caption) returns a member in the cube (e.g., Bicycles, Cars, All
Products, CY 2004) (member can be a tuple)

CUBESET (connection, set-expression, caption, sort-order, sort-by) returns a set of members (e.g., all
Countries)

CUBERANKEDMEMBER (connection, set-expression, rank, caption) returns one member of the referenced set
(e.g., Australia)

CUBEVALUE (connection, member-expression-1, member-expression-2, ...) returns the aggregate summarized
value for the intersection of members specified.

3.8.3.1.2 Walk Through

C1 contains a CUBEMEMBER function call specifying the "Internet Sales Amount" member from the Measures
dimension. C2 contains a CUBEMEMBER function call specifying "CY 2003" from the Date dimension. D2
contains a similar function specifying "CY2004" from the Date dimension. C3 contains a CUBEMEMBER function
call specifying "All Products" from the Product dimension. Each of these cells contain simple string values (e.g.,
"All Products" in C3), and each of these cells is associated with mdx metadata which specifies the mdx
expression identifying a particular member of a particular dimension (e.g., [Measures].[Internet Sales
Amount]).

152

10
11
12

13

14
15
16
17
18
19
20
21
22

23

24

25
26
27
28
29
30

31

32
33
34
35
36
37

Introduction to SpreadsheetML

A5 contains a CUBESET function call specifying a set of members. Additionally, the CUBESET function call
allows for specifying a caption for the cell ("Countries"), a sort order for sorting the set (in this case,

"2" corresponds to descending), and a sort by field (in this case the set will be sorted by the member as
expressed in the mdx associated with cell D5, labeled "2004 Sales"). Finally, it should be noted that CUBESET
returns a set of members, not just a single member.

Cells A6:A11 use the CUBERANKEDMEMBER function to return the individual members, by rank, returned from
the CUBESET function call in A5. For example, A6 uses the "xlextdat9 Adventure Works" connection to connect
to the OLAP cube, and addresses the first member (because "ROW(A1)" resolves to "1") in the set returned

in A5.

Cell C6 uses the CUBEVALUE function to return measure data identified by intersecting the mdx expression
found in A6 with the mdx expression found in C5 ("CY 2003 Internet Sales for All Products in the United
States"). C7:C11 use similar CUBEVALUE function calls. D6:D11 involves similar functions as well, but using
"CY 2004" instead.

The power of metadata in this example is that anytime a CUBE function argument referenced another cell, and
that argument requires a set or member mdx expression, the mdx metadata for that referenced cell is
returned to the calling function instead of the simple string value. For example, A6 contains a
CUBERANKEDMEMBER function call, whose second argument is expecting a set of members. The reference for
that argument is A5. Instead of using the A5's string value of "Countries" (which would result in a error),
A5's mdx expression metadata is used instead, which returns a set. Similarly any of the CUBEVALUE function
calls rely on cell references, where those cells contain mdx metadata used to pinpoint the measure data
requested. Furthermore, each of the cells referenced by C6:D11, in turn reference other cells' mdx metadata.
In this way, the mdx metadata is able to propagate through the formula calculation chain.

3.8.3.2 Worksheet Metadata XML

3.8.3.2.1 General Organization

<metadata>
<metadataTypes/>
<metadataStrings/>
<mdxMetadata/>
<valueMetadata/>

</metadata>

There are four general collections in the metadata part:

e metadataTypes - expresses various application runtime behaviors that apply to a set of metadata.

e metadataStrings - expresses supporting string resources for the metadata part. This includes the
connection name to the OLAP cube as well as mdx expressions identifying members and sets.

e mdxMetadata - expresses the tuples in use in this workbook.

o valueMetadata - The block (bk) elements stored in valueMetadata are referenced from cells in the
sheet definition (vm on the cell is an index (1-based) to a bk element). Each record in a block

153

Introduction to SpreadsheetML

references additional element collections in the metadata part to define fully the metadata associated
with this particular record, and therefore the full metadata definition for a particular cell's value. The
records in valueMetadata serve as the bridge between the metadata definitions and the cells or values
in the sheet.

3.8.3.2.2 Metadata Behaviors
The metadata type expresses operations on cells that allow the metadata to remain associated with the cell.

Operations not listed or set to '0' would cause the metadata to no longer be associated with the cell.

<metadataTypes count="1">
<metadataType name="XLMDX" minSupportedVersion="120000" copy="1"

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

pasteAll="1" pasteValues="1" merge="1" splitFirst="1"
rowColShift="1" clearFormats="1" clearComments="1" assign="1"
coerce="1"/>

</metadataTypes>

Regarding metadataTypes:

count is the number of metadataType elements.
type is a particular set of cell operations.

Regarding metadataType:

name is the name of this particular metadata type.

minSupportedVersion indicates the earliest version of the application which supports this metadata
type.

copy value of 1 indicates that this metadata will be copied to other cells when the cell is copied.
pasteAll value of 1 indicates that this metadata will be pasted to another cell when 'paste all' is chosen
during a copy/paste operation.

pasteValues value of 1 indicates that this metadata will be pasted to another cell when only the
values of the cell is pasted during a copy/paste operation.

merge value of 1 indicates that when the cell is merged, the metadata associated with the cell
remains.

splitFirst value of 1 indicates that when a merged cell is split, the metadata associated with the
merged cell is only applied to the first (from top left) cell resulting from the split.

rowColShift value of 1 indicates that metadata associated with a cell remains after rows and columns
are inserted, even when the cell is moved.

clearFormats value of 1 indicates that the metadata remains after the cell has been cleared of all
formatting.

clearComments value of 1 indicates that the metadata remains after comments have been cleared
from the cell.

assign value of 1 indicates that the metadata propagates through formula assignment operations

154

O 00 N O

11
12
13
14
15
16
17
18
19
20
21

22

23
24

25

26

27

28

29
30
31
32
33
34

e coerce value of 1 indicates that the metadata can be removed when the data type is coerced to

another type.

3.8.3.2.3 Metadata Strings

Introduction to SpreadsheetML

This collection is a set of string resources for the metadata part. Most follow the format of an mdx expression.

Connection names (to OLAP cubes) are also expressed here.

<metadataStrings count="12">

<s v="xlextdat9 Adventure Works"/>
<s v="[Measures].[Internet Sales Amount]"/>

<s v="[Date].[Calendar].[Calendar Year].&[2003]"/>
<s v="[Date].[Calendar].[Calendar Year].&[2004]"/>
<s v="[Product].[Product Categories].[All Products]"/>

<s v="[Customer].[Customer

<s v="[Customer].[Customer

<s v="[Customer].[Customer
[United States]"/>

<s v="[Customer].[Customer
[United Kingdom]"/>

<s v="[Customer].[Customer

<s v="[Customer].[Customer

<s v="[Customer].[Customer

</metadataStrings>

Regarding metadataStrings:

Geography].
Geography].
Geography].

Geography].
Geography].

Geography].
Geography].

[All Customers].children"/>
[Country].& [Australia]"/>
[Country].&

[Country].&
[Country].& [Germany]"/>

[Country].&[France]"/>
[Country].& [Canada]"/>

e count indicates the number of strings in the collection.

e s isthe string container element
e v isthe string value itself.

3.8.3.24 mdxMetadata

This collection expresses mdx metadata, and builds up the mdx members, sets, KPls, and member properties.

valueMetadata records reference these records

<mdxMetadata count="26">
<mdx n="0" f="m">

<t c="1">
<n x="1"/>
</t>
</mdx>

155

O 00 N OO s~ W N

w W W W W W W W W W N N N N N N NN NN NN PP PR R, R R, R R
O 00 N OO U A~ W N P O L 0 NoO Ul WN R O L O N WN -, O

<mdx n="0" f="m">

<t c="1">
<n x="2"/>
</t>
</mdx>
<mdx n="@" f="m">
<t c="1">
<n x="3"/>"
</t
</mdx>
<mdx n="@" f="m">
<t c="1">
<n x="4"/>
</t>
</mdx>
<mdx n="@" f="m">
<t c="3">
<n x="1"/>
<n x="2"/>
<n x="4"/>
</t>
</mdx>
<mdx n="@" f="m">
<t c="3">
<n x="1"/>
<n x="3"/>
<n x="4"/>
</t>
</mdx>
<mdx n="@" f="r">
<t c="1">
<n x="6"/>
</t>
</mdx>
<mdx n="@" f="r">
<t c="1">
<n x="7"/>
</t>
</mdx>

Introduction to SpreadsheetML

156

O 00 N OO s~ W N

W oW W W WwWwWw NN NNNDNDNNNNDNRR R B B B B oR R
o B W N P O © 0O N O 1 B W N B O O 00 N O U B W N B O

<mdx n="@" f="r">
<t c="1">
<n x="8"/>
</t>
</mdx>
<mdx n="@" f="r">
<t c="1">
<n x="9"/>
</t
</mdx>
<mdx n="@" f="r">
<t c="1">
<n x="10"/>
</t>
</mdx>
<mdx n="@" f="r">
<t c="1">
<n x="11"/>
</t>
</mdx>
<mdx n="@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="2"/>

<n x="4"/>

<n x="6"/>
</t>
</mdx>

<mdx n="0@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="3"/>

<n x="4"/>

<n x="7"/>
</t>
</mdx>

Introduction to SpreadsheetML

157

O 00 N OO s~ W N

BOwW W W W oWwWw W W wWwWwWw N NNNNDNNNRNNRER P B R B P B B
O VW 0 N O O B W N B O ©W 0 N O 1 B W N P O W 0 N O Ul B W N B O

<mdx n="0@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="2"/>

<n x="4"/>

<n x="7"/>
</t
</mdx>

<mdx n="0" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="3"/>

<n x="4"/>

<n x="8"/>
</t>
</mdx>

<mdx n="0" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="2"/>

<n x="4"/>

<n x="8"/>
</t>
</mdx>

<mdx n="0@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="3"/>

<n x="4"/>

<n x="9"/>
</t>
</mdx>

<mdx n="0@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="2"/>

<n x="4"/>

<n x="9"/>
</t>
</mdx>

Introduction to SpreadsheetML

158

O 00 N OO s~ W N

BOwW W W W oWwWw W W wWwWwWw N NNNNDNNNRNNRER P B R B P B B
O VW 0 N O O B W N B O ©W 0 N O 1 B W N P O W 0 N O Ul B W N B O

<mdx n="0@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="3"/>

<n x="4"/>

<n x="10"/>
</t
</mdx>

<mdx n="0" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="2"/>

<n x="4"/>

<n x="10"/>
</t>
</mdx>

<mdx n="0" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="3"/>

<n x="4"/>

<n x="11"/>
</t>
</mdx>

<mdx n="0@" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="2"/>

<n x="4"/>

<n x="11"/>
</t>
</mdx>

<mdx n="0" f="v">
<t c="4" ct="en-US">

<n x="1"/>

<n x="3"/>

<n x="4"/>

<n x="6"/>
</t>
</mdx>

Introduction to SpreadsheetML

159

O 00 N OO s~ W N

L e =
A W N L O

15

16

17

18

19

20

21

22

23

24

25

26
27
28
29

30

Introduction to SpreadsheetML

<mdx n="0@" f="s">
<ms r]S=Il5ll C="3“ O=Ildll>

<n x="1"/>

<n x="3"/>

<n x="4"/>
</ms>
</mdx>

<mdx n="0" f="c">
<ms r]S=Il5ll C="3“ O=Ildll>

<n x="1"/>
<n x="3"/>
<n x="4"/>
</ms>
</mdx>
</mdxMetadata>

Regarding mdxMetadata:
e countindicates the number of mdx statements in the collection.
Regarding mdx, which is a particular mdx statement:

e nindicates the index of the record in metadataStrings containing the connection name.
e findicates the name of the calling cube function in the workbook.

Regarding t, which is an mdx tuple:
e isthe count of member expressions in the mdx tuple.
Regarding n:

e X istheindex value into metadataStrings indicating the particular member expression for this
dimension of the tuple expression.

For example, cell C5 has a CUBEMEMBER function call expressing the result of "Internet Sales Amount of All
Products for CY 2003". In sheetl.xml, cell C5 has vim="5", which means it has an associated valueMetadata
record whose index is "5". Looking ahead into the valueMetadata records, the 5th (1-based) record points to
the 4th (zero-based) mdx collection in mdxMetadata.

The 5th mdx collection:

160

N o o AwWwN

10

11

12

13

14
15

16

17

18

19

20
21
22
23
24
25

26

27
28

29
30
31
32

Introduction to SpreadsheetML

<mdx n="0" f="m">

<t c="3">
<n x="1"/>
<n x="2"/>
<n x="4"/>
</t
</mdx>

Where <n x="1"/> corresponds to the 1st position in the string store, namely
<s v="[Measures].[Internet Sales Amount]"/>

and where <n x="2"/> corresponds to the 2nd position in the string store, namely
<s v="[Date].[Calendar].[Calendar Year].&[2003]"/>

and where <n x="4"/> corresponds to the 4th position in the string store, namely
<s v="[Product].[Product Categories].[All Products]"/>.

Therefore this data point in the cube is addressed by intersecting these three hierarchies, one in each
dimension of the OLAP cube:

e [Measures].[Internet Sales Amount]
e [Date].[Calendar].[Calendar Year].[2003]
e [Product].[Product Categories].[All Products]

Regarding ms:

e ns istheindex of the mdx set definition in the string store.

e C isthe number of sort-by member indicies, in this case 3 because the set is sorted by the contents
of D5, which happens to be a member defined by 3 coordinates in the cube.

e 0 indicates the order of the sort; in this case, 'descending'.

e n istheindex indicating the mdx expressions in the string store used to identify the members used to
define the sort-by set.

3.8.3.2.5 valueMetadata
This collection defines cell or value metadata information (depending on the value of metadataType's

cellMeta)

<valueMetadata count="26">
<bk>
<rc t="1" v="0"/>
</bk>

161

O 00 N OO s~ W N

B D W OW W W W W OWW W WNNNDNNNRNNRNNNDNNDNRR R R P B B opop
N P O © ® N o 0 & W N B O © 0 N O U B W N P O W O N O 1 M W N L O

<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>

t

t

t

t

t

t

t

t

t

t

t

t

t

t

||1||

lllll

lllll

lllll

lllll

lllll

lllll

lllll

lllll

lllll

lllll

II1II

lllll

lllll

v="1"/>
v="2"/>
v="3"/>
v="4"/>
v="5"/>
v="6"/>
v="7"/>
v="8"/>
v="9"/>
v="10"/>
v="11"/>
v="12"/>
v="13"/>
v="14"/>

Introduction to SpreadsheetML

162

O 00 N OO s~ W N

W oW oWN N NN NNNNNNDNR R B B R B B R
N B O ©W 00 N O U1 B W N P O W 0 N O Ul B W N B O

33

38
39

<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>
<bk>
<rc
</bk>

t

t

t

t

t

t

t

t

t

t

t

||1||

lllll

lllll

lllll

lllll

lllll

lllll

lllll

lllll

lllll

lllll

V="15"/>

V="16“/>

V="17“/>

V="18“/>

V="19"/>

V="29"/>

V="21"/>

V="22"/>

V="23“/>

v="24"/>

V="25“/>

</valueMetadata>

Regarding valueMetadata:

Regarding bk, which is a metadata block, and rc, which is a metadata record:

count indicates the number of metadata block records.

Introduction to SpreadsheetML

t indicates the index of the metadataType record in metadataTypes collection.

v is the index of metadata record value in the storage corresponding to record type.

163

10

11
12

13

14

15

16
17

Introduction to SpreadsheetML

Looking at the first block using the bk element, the type of metadata with which this record is associated is the
first (and only) metadataType record, which is of type "XLMDX". This indicates that the v index is pointing to
the Oth mdxMetadata record.

3.9 Pivot Table, Pivot Cache, and Common Types

3.9.1 Feature Overview

PivotTables display aggregated views of data easily and in an understandable layout. Hundreds or thousands of
pieces of underlying information can be aggregated on row & column axes, revealing the meanings behind the
data. PivotTable reports are used to organize and summarize your data in different ways. Creating a PivotTable
report is about moving pieces of information around to see how they fit together. In a few gestures the pivot
rows and columns can be moved into different arrangements and layouts.

A PivotTable object has a row axis area, a column axis area, a values area, and a report filter area. Additionally,
PivotTables have a corresponding field list pane displaying all the fields of data which can be placed on one of
the PivotTable areas.

Consider this source data:

A C F H I (0] P Q Z AA AB

1

2 Michele Raman Australia Bendigo Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
3 |Misty Raji Australia Bendigo Bikes Road Bikes 2001 3 July 3578.27 286.2616 89.4568
4 Tabitha EArthur Australia Bendigo Bikes Road Bikes 2001 3 July 3578.27 286.2616 89.4568
5 |Clarence D Rai Australia Bendigo Bikes Mountain Bikes 001 3 July 3399.99 271.9992 84.9998
6 JimmyLMoreno Australia Bendigo Bikes Mountain Bikes 2001 3 July 3399.99 2719992 84.9998
7 |Rob Verhoff Australia Bendigo Bikes Mountain Bikes 2001 3 July 3374.99 269.9992 84.3748
8 |Levi Sai Australia Bendigo Bikes Road Bikes 2001 3 July 3578.27 286.2616 89.4568
9 |Logan Gonzales Australia Brisbane Bikes Road Bikes 2001 3 July 3578.27 286.2616 89.4568
10 Dalton) Lee Australia Brisbane Bikes Road Bikes 2001 3 August 3578.27 286.2616 89.4568
11 Jessie] Ortega Australia Brisbane Bikes Road Bikes 2001 3 August 3578.27 286.2616 89.4568
12 Paul). Shakespear Australia CaloundrzBikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
13 |Joan R Martin Australia Caloundrz Bikes Road Bikes 2001 3 September 699.0982 55.9279 17.4775
14 Casey Pal Australia Caloundrz Bikes Road Bikes 2001 3 July 3578.27 286.2616 89.4568
15 |[Ethan G Coleman Australia CaloundrzBikes Road Bikes 2001 3 August 3578.27 286.2616 89.4568
16 Kendra Rubio Australia Caloundrz Bikes Road Bikes 001 3 August 3578.27 286.2616 89.4568
17 |Bethany G Yuan Australia Cloverdal Bikes Mountain Bikes 2001 3 August 3399.99 2719992 84.9998
138 Jasmine Wilson Australia Coffs Hark Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
19 |Micah Wu Australia Coffs Hark Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
20 Warren LZhang Australia Coffs Hark Bikes Road Bikes 2001 3 July 699.0982 55.9279 174775
21 Ariana Stewart Australia Coffs Hark Bikes Road Bikes 2001 3 August 3578.27 286.2616 89.4568
22 Suzanne K Lu Australia Coffs Hark Bikes Road Bikes 2001 3 August 3578.27 286.2616 89.4568
23 Randall M Rubio Australia Cranbourr Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
24 Deborah K Kumar Australia Cranbourr Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
25 |Krystal Holt Australia Cranbourr Bikes Road Bikes 2001 3 July 3578.27 286.2616 89.4568
26 Patricia TRaman Australia Cranbourr Bikes Road Bikes 2001 3 August 3578.27 286.2616 89.4568
27 'Wendy Dominguez Australia Cranbourr Bikes Mountain Bikes 2001 3 August 3374.99 269.9992 84.3748
23 Willie She Australia Darlinghu Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
29 |Alan Zhu Australia Darlinghu Bikes Road Bikes 2001 3 September 3578.27 286.2616 89.4568
30 Dawn R Tang Australia Darlinghu Bikes Road Bikes 2001 3 Julv 3578.27 286.2616 89.4568

This data can be consolidated and summarized in a PivotTable. One way to organize the information would
look like this:

164

Introduction to SpreadsheetML

A B | C | D E F | 6 | H |

1|

| 2 | Customer Name (All) E

| 3 | Product Category (All) -

4|

| 5 | Column Labels E

6 | Sum of Sales Amount Sum of Tax Amount

| 7| =2001 2001Total =2001 2001 Total

8 Row Labels K : 4 z a4

9| - Australia 606184.7066 702862.4912 1309047.198 48494.7771 56229 104723.7771

10 Goulburn P aossosseall 25047.89 65628.7764 3246.471 2003.8312 5250.3022

11 Warrnamboal [0 28091320 27863.04 55954.36 2247.3056 2229.0432 4476.3488

|12 Port Macquarie [2574698820 24463.05 50210.0382 2059.7591 1957.044 4016.8031

13 Wollongong B 24691.33 1 25250.4282 50081.7582 1975.3064 2031.2343 4006.5407

14 Bendigo B 24483050 1748479 a1972.34 1959.044 1393.7832 3357.8272

15| Geelong B 21113.060 21083.06 42201.12 1689.0448 1637.0448 3376.0896

16 Hobart B 21088.06] 6953.26 28041.32 1687.0443 556.2608 2243.3056

17| LavenderBay [21063.06 | 21965.4382 43028.4982 1685.0448 1757.2351 3442.2799
1 18 Matraville B 20909.78] 6799.98 27709.76 1672.7824 543.9984 2216.7808

2 Here is the corresponding PivotTable field list:

165

10

Introduction to SpreadsheetML

PivotTable Field List v

Choose fields to add to repart:

[v]City ~
[#] Country “F
[Jcurrency

Customer Name

[]Discount Amount

[]piscount Pct

[]Extended Amount

[]Freight

[Group

[IManth

[]order Quantity

[[]Postal Code

Product Category

[]Product Description

[JProduct Name

[JProduct Standard Cost

[JProduct Subcategaory

[]Jpromotion w

Drag fields between areas below

“ Report Filter 1 column Labels
Customer Mame ~ ® Values hd
Product Cate... = Year -

Quarter w7

1 Rowlabels = VYalues
Country A Sum of Sales ...
City A Sum of Tax A... ™

3.9.2 File Architecture

The workbook points to (and owns the longevity of) the pivotCacheDefinition part, which in turn points to and
owns the pivotCacheRecords part. The workbook also points to and owns the sheet part, which in turn points
to and owns a pivotTable part definition, when a PivotTable is on the sheet (there can be multiple PivotTables
on a sheet). The pivotTable part points to the appropriate pivotCacheDefinition which it is using. Since multiple
PivotTables can use the same cache, the pivotTable part does not own the longevity of the
pivotCacheDefinition.

The pivotTable part describes the particulars of the layout of the PivotTable on the sheet. It indicates what
fields are on the row axis, the column axis, report filter, and values areas of the PivotTable. It also indicates

166

192 B N 8

10

11

12
13
14
15
16

17
18

19

20
21
22

Introduction to SpreadsheetML

formatting information about the PivotTable. If conditional formatting has been applied to the PivotTable, that
is also expressed in the pivotTable part.

The pivotCacheRecords part contains the underlying data to be aggregated. It is a cache of the source data.
The pivotCacheDefinition part defines each field in the pivotCacheRecords part, including field name and
information about the data contained in the field. The pivotCacheDefinition part also defines pivot items that
are shared among the pivotTable and pivotRecords parts.

3.9.3 Example - Native with Range Source

3.9.3.1 [llustration

Consider the source data pictured in the overview section. There are 28 fields of data in total (some aren't
shown). A corresponding PivotTable summary of the data can look like this:

A B C D E F G
1
2 Country (All) E
3 State (All) [+
4 City (All)
5
5] Sum of Sales Amount Column Labels E3
7 © 2001 2001 Total
8 =23 3 Total
9 Row Labels B3 july August September
10 - Bikes 209652.9046 222538.2892 173993.5128 606184.7066 606184.7066
11 Mountain Bikes | 64424.81) 60899.82] 10174.97] 135499.6] 1354996
12 Road Bikes I 145228.0946 [161638.4692 [163818.5428 [470685. 1066 [470685.1066
13 Grand Total 209652.9046 222538.2892 173993.5128 606184.7066 606184.7066

Regarding the layout of the PivotTable, notice that "Country", "State", and "City" are in the report filter area of
the PivotTable. "Product Category" and "Product Subcategory" are on the row axis ("Bikes" belongs to the
"Product Category" field and both "Mountain Bikes" and "Road Bikes" belong to the "Product Subcategory"
field). On the column axis are "Year" ("2001"), "Quarter" ("3"), and "Month" ("July", "August", and
"September") fields.

Row Grand Totals are turned on, and column Subtotals are turned on for Quarter and Year (if there was more
than 1 quarter in the source data the Year Subtotal would be more interesting).

3.9.3.2 XML - pivotCacheDefinition part

The pivotCacheDefinition part defines each field in the source data, including the name, the string resources of
the instance data (for shared items), and information about the type of data appearing in the field. Note: some
of the "Customer Name" and "City" values have been removed to improve readability and reduce length.

167

O 00 N OO s~ W N

w W W W W W W W W N N N N NN N N N NN PP PR R, R, R, R R
00 N o U b~ W N P O LV 0O N O U A~ W N P O L 0O N O u A~ W N = O

<pivotCacheDefinition xmlns:r="..

Introduction to SpreadsheetML

r:id="rId1" refreshedBy="AnonUser"

refreshedDate="2006-05-22T10:07:16" createdVersion="3"
refreshedVersion="3" minRefreshableVersion="3" recordCount="182">
<cacheSource type="worksheet">

<worksheetSource name="Tablel"/>
</cacheSource>
<cacheFields count="28">

<cacheField name="Customer Name" numFmtId="0">

<sharedItems count="7">

<s
<S
<S
<s
<s
<s
<s

v="Michele Raman"/>
v="Misty Raji"/>
v="Tabitha E Arthur"/>
v="Clarence D Rai"/>
v="Jimmy L Moreno"/>
v="Rob Verhoff"/>
v="Levi Sai"/>

</sharedItems>

</cacheField>

<cacheField name="Group" numFmtId="0">
<sharedItems/>

</cacheField>

<cacheField name="Country" numFmtId="0">
<sharedItems count="1">

<s

v="Australia"/>

</sharedItems>

</cacheField>

<cacheField name="Region" numFmtId="0">
<sharedItems/>

</cacheField>

<cacheField name="State" numFmtId="0">
<sharedItems count="5">

<s v="Victoria"/>
<s v="Queensland"/>
<s v="South Australia"/»>
<s v="New South Wales"/>
<s v="Tasmania"/>
</sharedItems>
</cacheField>

168

O 00 N OO s~ W N

BOwW W W W oWwWw W W wWwWwWw N NNNNDNNNRNNRER P B R B P B B
O VW 0 N O O B W N B O ©W 0 N O 1 B W N P O W 0 N O Ul B W N B O

Introduction to SpreadsheetML

<cacheField name="City" numFmtId="0">
<sharedItems count="7">
<s v="Bendigo"/>
<s v="Brisbane"/>
<s v="Caloundra"/»>
<s v="Cloverdale"/>
<s v="Coffs Harbour"/>
<s v="Cranbourne"/>
<s v="Darlinghurst"/>
</sharedItems>
</cacheField>
<cacheField name="Postal Code" numFmtId="0">
<sharedItems/>
</cacheField>
<cacheField name="Product Category" numFmtId="0">
<sharedItems count="1">
<s v="Bikes"/>
</sharedItems>
</cacheField>
<cacheField name="Product Subcategory"” numFmtId="0">
<sharedItems count="2">
<s v="Road Bikes"/>
<s v="Mountain Bikes"/>
</sharedItems>
</cacheField>
<cacheField name="Product Name" numFmtId="0">
<sharedItems/>
</cacheField>
<cacheField name="Product Description"” numFmtId="0">
<sharedItems/>
</cacheField>
<cacheField name="Promotion Category" numFmtId="0">
<sharedItems/>
</cacheField>
<cacheField name="Promotion" numFmtId="0">
<sharedItems/>
</cacheField>
<cacheField name="Promotion Type" numFmtId="0">
<sharedItems/>
</cacheField>

169

O 00 N OO s~ W N

B D W OW W W W W OWW W WNNNDNNNRNNRNNNDNNDNRR R R P B B opop
N P O © ® N o 0 & W N B O © 0 N O U B W N P O W O N O 1 M W N L O

Introduction to SpreadsheetML

<cacheField name="Year" numFmtId="0">
<sharedItems count="1">
<s v="2001"/>
</sharedItems>
</cacheField>
<cacheField name="Quarter" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" containsInteger="1" minValue="3" maxValue="3
count="1">
<n v="3"/>
</sharedItems>
</cacheField>
<cacheField name="Month" numFmtId="0">
<sharedItems count="3">
<s v="September"/>
<s v="July"/>
<s v="August"/>
</sharedItems>
</cacheField>
<cacheField name="Currency" numFmtId="0">
<sharedItems/>
</cacheField>
<cacheField name="Order Quantity" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" containsInteger="1" minValue="1"
maxValue="1"/>
</cacheField>
<cacheField name="Unit Price" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" minValue="699.09820000000002"
maxValue="3578.27"/>
</cacheField>
<cacheField name="Extended Amount" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" minValue="699.09820000000002"
maxValue="3578.27"/>
</cacheField>
<cacheField name="Discount Pct" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" containsInteger="1" minValue="0"
maxValue="0"/>
</cacheField>

170

O 00 N OO s~ W N

W oW oWN N NN NNNNNNDNR R B B R B B R
N B O ©W 00 N O U1 B W N P O W 0 N O Ul B W N B O

33

34

35

36

37

38

39
40

41

Introduction to SpreadsheetML

<cacheField name="Discount Amount" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" containsInteger="1" minValue="0"
maxValue="0"/>
</cacheField>
<cacheField name="Product Standard Cost" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" minValue="413.1463"
maxValue="2171.2941999999998" />
</cacheField>
<cacheField name="Total Product Cost" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" minValue="413.1463"
maxValue="2171.2941999999998" />
</cacheField>
<cacheField name="Sales Amount" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" minValue="699.09820000000002"
maxValue="3578.27"/>
</cacheField>
<cacheField name="Tax Amount" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1"
minValue="55.927900000000001" maxValue="286.26159999999999"/>
</cacheField>
<cacheField name="Freight" numFmtId="0">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" minValue="17.477499999999999"
maxValue="89.456800000000001" />
</cacheField>

</cacheFields>

</pivotCacheDefinition>

In the context of pivotCacheDefinition:

r:id indicates the relationship id pointing to the corresponding pivotCacheRecords part.

refreshedBy indicates the username of whomever last refreshed the PivotCache.

refreshedDate indicates when the PivotCache was last refreshed.

createdVersion indicates the version of the producer which created the PivotCache.
refreshedVersion indicates the version of the producer which last refreshed the PivotCache.
minRefreshableVersion indicates the minimum version of the producer required to be able to refresh
this PivotCache.

In the context of cacheSource:

171

10
11
12
13
14
15
16
17
18

19

20
21

22
23
24
25
26
27

28

29
30

31
32
33
34

Introduction to SpreadsheetML

e type indicates that data in a worksheet is the source for this PivotCache.
o worksheetSource identifies the particular location of the source data. In this case, it is a named range
whose name is "Tablel1".

In the context of cacheFields, which is a collection of all the field definitions in the source data:
e cacheField indicates the name of the field and provides number format information.
In the context of cacheField:

e sharedltems indicates various flags about the data in this field. Child elements express the values of
the shared items.

In the context of sharedItems:

e containsSemiMixedTypes "1" indicates that this field contains text values possibly mixed with other
types of values, this can contain blanks. In this example the value is "0".

e containsString value of "1" indicates that this field contains a text value. In this example, the value
is"@".

e containsNumber value of "1" indicates that this field contains numeric values.

e containsInteger indicates that this field contains integer values.

e minValue indicates that this field's minimum value is "3".

e maxValue indicates that this field's maximum value is "3".

e sindicates string content for this item value (expressed in v).

e nindicates the numeric content for this item value (expressed in v).

If there are no shared items expressed for a particular field, then the values are expressed directly in the
pivotCacheRecords part.

Items in the PivotCacheDefinition can be shared, in order to reduce the redundancy of those values, since
they're referenced in multiple places across all the PivotTable parts. For example, a value might be part of a
filter, it might appear on a row or column axis, and will appear in the pivotCacheRecords definition as well.
However, because of the performance cost of creating the optimized shared items, items are only shared if
they are actually in use in the PivotTable. Therefore, depending on user actions on the PivotTable layout, the
pivotCacheDefinition and underlying PivotCacheRecords part may be updated.

3.9.3.3 XML - pivotCacheRecords part

This part expresses the underlying source data that the PivotTable is aggregating. (Note that the data has been
trimmed down to two records to increase readability.)

<pivotCacheRecords .. xmlns:r="." count="2">
<r>
<x v="0"/>

<s v="Pacific"/>

172

O 00 N OO s~ W N

N N N RN NN NN NN R B P B R B P B B
© 0 N O U1 B W N B O VW 0 N OO U B W N B O

30
31
32
33
34
35
36
37
38
39
40
41
42
43

<X
<s
<X
<X
<sS
<X
<X
<s
<s

Introduction to SpreadsheetML

v="0"/>
v="Australia"/>
v="0"/>

v="0"/>

v="3550"/>

v="0"/>

v="0"/>

v="Road-150 Red, 62"/>

v="This bike is ridden by race winners. Developed with the Adventure

Works Cycles professional race team, it has a extremely light heat-treated
aluminum frame, and steering that allows precision control."/>

<s
<s
<s
<X
<X
<X
<s
<n
<n
<n
<n
<n
<n
<n
<n
<n
<n

</r>

<r>
<X
<s
<X
<s
<X
<X
<s
<X
<X
<s
<s

v="No Discount"/>
v="No Discount"/>
v="No Discount"/>

v="0"/>

v="0"/>

v="0"/>

v="Australian Dollar"/>
v="1"/>

v="3578.27"/>

v="3578.27"/>

V="0"/>
V="@"/>
v="2171.2941999999998" />

v="2171.2941999999998" />
v="3578.27"/>

v="286.26159999999999" />
v="89.456800000000001" />

v="1"/>
v="Pacific"/>
v="0"/>
v="Australia"/>
v="0"/>

v="0"/>
v="3550"/>
v="0"/>

v="0"/>

v="Road-150 Red, 44"/>
v="This bike is ridden by race winners. Developed with the Adventure

Works Cycles professional race team, it has a extremely light heat-treated
aluminum frame, and steering that allows precision control."/>

173

O 00 N OO s~ W N

e e e O e T e T e
© 0 N O U1 A W N L O

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

<s v="No Discount"/>
<s v="No Discount"/>
<s v="No Discount"/>

<x v="0"/>
<x v="0"/>
<x v="1"/>
<s v="Australian Dollar"/>
<n v="1"/>

<n v="3578.27"/>

<n v="3578.27"/>

<n v="0"/>

<n v="0"/>

<n v="2171.2941999999998" />
<n v="2171.2941999999998" />
<n v="3578.27"/>

<n v="286.26159999999999" />
<n v="89.456800000000001" />

</r>

</pivotCacheRecords>

In the context of pivotCacheRecords:

r contains one record.

In the context of r:

3.9.3.4

Introduction to SpreadsheetML

X is an index value referencing an item for this field, as defined in the pivotCacheDefinition part.

s indicates that a value is being expressed inline in this record, and it is a string value.

n indicates that a value is being expressed inline in this record, and it is a numeric value.

XML - pivotTable part

The pivotTable part is organized into 11 sections.

Top-level attributes

Location information

Collection of Fields

Fields on the row axis

Items on the row axis (specific values)
Fields on the column axis

Items on the column axis (specific values)
Fields in the report filter area

Fields in the values area

Style information

This is what the shell of that structure looks like:

174

Introduction to SpreadsheetML

Jany

<pivotTableDefinition>
<location/>
<pivotFields/>
<rowFields/>
<rowItems/>
<colFields/>
<collItems/>
<pageFields/>
<dataFields/>
</dataFields>
<conditionalFormats/>

12 <pivotTableStyleInfo/>

13 </pivotTableDefinition>

O 00 N OO s~ W N

=
L O

14 Each collection will now be addressed section by section.

15 3.9.34.1 Attributes on pivotTableDefinition

16 <pivotTableDefinition xmlns:sh=".." name="PivotTable2" cacheId="5"

17 applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="0"
18 applyPatternFormats="0" applyAlignmentFormats="0"

19 applyWidthHeightFormats="1"

20 dataCaption="Values" updatedVersion="3" minRefreshableVersion="3"
21 showCalcMbrs="0" useAutoFormatting="1" colGrandTotals="0"

22 itemPrintTitles="1"

23 createdVersion="3" indent="0" outline="1" outlineData="1"

24 multipleFieldFilters="0">

25 Inthe context of pivotTableDefinition:

26 e name indicates the name of the PivotTable.

27 e cacheld references by Id a particular pivotCache in the pivotCaches collection listed in workbook.xml.
28 e applyNumberFormats value of "1" means to apply legacy autoformat number format properties.

29 e applyBorderFormats value of "1" means to apply legacy autoformat border format properties.

30 e applyFontFormats value of "1" means to apply legacy autoformat Font format properties.

31 e applyPatternFormats value of "1" means to apply legacy autoformat pattern format properties.

32 e applyAlignmentFormats value of "1" means to apply legacy autoformat alighment format properties.
33 o applyWidthHeightFormats value of "1" means to apply legacy autoformat width and height format
34 properties.

35 o dataCaption is the name of the values area header cell which can appear in the PivotTable when two
36 or more fields are in the values area.

37 e updatedVersion is the Pivot version that last updated the PivotTable.

38 o minRefreshableVersion is the minimum Pivot version required to update this PivotTable's Pivot

39 Cache.

175

10
11
12
13
14
15

16

17

21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36

Introduction to SpreadsheetML

o showCalcMbrs indicates whether calculated members should be shown in the PivotTable. Only applies
to PivotTables based on OLAP sources.

e useAutoFormatting indicates whether autoformatting has been applied to the PivotTable.

e colGrandTotals indicates whether column grand totals are on for this PivotTable.

o rowGrandTotals defaults to "1" and therefore is not written.

o itemPrintTitles flag indicating whether Pivotltem names should be repeated at the top of each
printed page.

e createdVersion The Pivot version that created the cache.

e indentindentation increment for compact row axis, which means the Report Layout is set to Compact
Form.

o outline flag indicating whether new fields should have their outline form flag set to "1".

e outlineData flag indicating whether the values field in the PivotTable should be displayed in outline
form.

o multipleFieldFilters flag indicating whether each field of a pivot table can have multiple filters set on
it.

3.9.3.4.2 Location Information

Location provides details on where the PivotTable is located in the sheet.

<location ref="B6:G13" firstHeaderRow="1" firstDataRow="4"
firstDataCol="1" rowPageCount="3" colPageCount="1"/>

In the context of location:

o refthe location of the PivotTable area, not including the report filter area.

e firstHeaderRow the first row of the PivotTable header, relative to the top left cell in ref value.

e firstDataRow the first row of the PivotTable values area, relative to the top left cell in ref value.

o firstDataCol the first column of the PivotTable values area, relative to the top left cell in ref value.

e rowPageCount indicates how many rows the report filter area will occupy, as fields are added to it,
before taking up another column (there can be multiple rows and columns of fields in the report filter
area). By default there is a single column of report filter fields and the fields occupy as many rows as
there are fields..

e colPageCount indicates how many columns the report filter region will occupy, as fields are added to
it, before taking up another row (there can be multiple rows and columns of fields in the report filter
region). By default, there is a single column of report filter fields and the fields occupy as many rows as
there are fields.

3.9.3.4.3 PivotTable Fields

This collection expresses item order and field information for each field associated with the PivotTable,
whether shown in the PivotTable report or not. (Note that items have been removed from the "Customer
Name" and "City" fields (1st and 6th) to shorten the example.)

176

O 00 N OO s~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Introduction to SpreadsheetML

<pivotFields count="28">
<pivotField showAll="0" includeNewItemsInFilter="1">
<items count="8">
<item x="66"/>
<item x="133"/>
<item x="74"/>
<item x="27"/>
<item x="118"/>
<item x="63"/>
<item x="141"/>
<item t="default"/>
</items>
</pivotField>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1">
<items count="2">
<item x="0"/>
<item t="default"/>
</items>
</pivotField>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1">
<items count="6">
<item x="3"/>
<item x="1"/>
<item x="2"/>
<item x="4"/>
<item x="0"/>
<item t="default"/>
</items>
</pivotField>
<pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1">
<items count="8">
<item x="0"/>
<item x="1"/>

<item x="2"/>
<item x="3"/>
<item x="4"/>
<item x="5"/>
<item x="6"/>
<item t="default"/>
</items>
</pivotField>

177

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

<pivotField showAll="0" includeNewItemsInFilter="1"/>

<pivotField axis="axisRow" showAll="0" includeNewItemsInFilter="1">

<items count="2">

<item x="0"/>
<item t="default"/>
</items>
</pivotField>

<pivotField axis="axisRow" showAll="0" includeNewItemsInFilter="1">

<items count="3">

<item x=
<item x=
<item t=

</items>

"1"/>
llell/>
"default"/>

</pivotField>

<pivotField
<pivotField
<pivotField
<pivotField
<pivotField
<pivotField

showAll="0"
showAll="0"
showAll="0"
showAll="0"
showAll="0"

axis="axisCol" showAll="0" includeNewItemsInFilter="1">

<items count="2">

<item x=
<item t=

</items>

"0"/>
"default"/>

</pivotField>

<pivotField axis="axisCol" showAll="0" includeNewItemsInFilter="1">

<items count="2">

<item x="0"/>
<item t="default"/>
</items>
</pivotField>

<pivotField axis="axisCol" showAll="0" includeNewItemsInFilter="1">

<items count="4">
<item x="1"/>
<item x="2"/>

<item x="0"/>
<item t="default"/>
</items>

</pivotField>
<pivotField showAll="0"
<pivotField showAll="0"
<pivotField showAll="0"
<pivotField showAll="0"

includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>

includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>
includeNewItemsInFilter="1"/>

Introduction to SpreadsheetML

178

0 N o b~ W N

10
11
12
13

14

15
16
17
18
19

20

21

22

23

24
25
26
27

28

29

30
31

Introduction to SpreadsheetML

<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField dataField="1" showAll="0" includeNewItemsInFilter="1"/>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
<pivotField showAll="0" includeNewItemsInFilter="1"/>
</pivotFields>

In the context of pivotField:

showAll flag indicating whether to show all items for this field.

e includeNewltemsInFilter Flag indicating if new items in the data source are included in the filter
automatically after refresh when there was at least one hidden item for the field.

e axis indicates on which axis this field is shown on the PivotTable.

e dataField indicates that this field is in the values area of the PivotTable.

In the context of items, which is a listing of items (by index) in this field. The order in which the items are listed
is the order they would appear on a particular axis (row or column, for example). In this example, the first field
is "Customer Name" and the first item referenced here is <item x="66"/>,which references the value "Adam L
Flores" in the pivotCacheDefinition. Therefore if one added "Customer Name" to the row axis, "Adam L Flores"
would be the first row item listed.

In the context of item:
e tvalue of 'default' indicates the subtotal or total item.

3.9.3.4.4 Row Axis Fields

This collection indicates which fields are on the row axis of the PivotTable.

<rowFields count="2">
<field x="7"/>
<field x="8"/>

</rowFields>

In the context of field within rowFields:
e Xisazero based index into the pivotFields collection.

For this example, this collection indicates that "Product Category" and "Product Subcategory" are on the row
axis of the PivotTable, in that order.

179

O 00 N o u»n

11
12
13
14
15
16
17

19

20
21

22

23

24
25

26

27
28
29
30
31

32

33
34
35

Introduction to SpreadsheetML

3.9.3.4.5 Row Items

This collection is a listing of all the values on the row axis of the PivotTable. In the spreadsheet example, the
item values are found in cells B10:B13. For example, "Bikes" is in B10, and corresponds to the first [element
below.

<rowItems count="4">
<i>
<x/>
</i>
<i r="1">
<x/>
</i>
<i r="1">
<x v="1"/>
</i>
<i t="grand">
<x/>
</i>
</rowItems>

In the context of rowltems:

e iexpresses all the values (for all fields) in one row of the row axis. There will be an 1 element for every
row in the PivotTable.

In the context of i:
e r indicates how many fields/item values to "fill down" from the previous row item.

Note that the first item has no r explicitly written. Since a default of "@" is specified in the schema, for any
item whose r is missing, a default value of "@" is implied.

In the context of x:

e Vv isazero-based index referencing a pivotField item value. There will be as many x elements as
there are item values in any particular row. Note that these x elements may not be explicitly written,
but instead "inherited" from the previous row/i element, via the value of r. Note also that the
pivotField items don't list values explicitly, but instead reference a shared item value in the
pivotCacheDefinition part.

Note that the first instance of x has no attribute value v associated with it, so v's default value of "@" is implied.

Looking at the layout of the PivotTable in the spreadsheet for this example, "Bikes" is the first (and only) item
value in the first row, in cell B10. In the XML defining the PivotTable row item values, the first [element
corresponds to the first row. There is a single index element x. The first (and only) x element corresponds to

180

10
11
12
13

14

15

16

17

18

19

20

21

22
23

24

25

26
27

28

29
30
31

Introduction to SpreadsheetML

the first field on the row axis, namely "Product Category", and an index value of "@" indicates that the Oth item
in the items collection for that pivotField definition is how to obtain the item value. Note that "Bikes" isn't
explicitly listed as a value here, but instead the Oth item is an index to this field's shared items collection in the
pivotCacheDefinition part.

For the second row, there are two item values, one item value (Bikes) from the first field in that row (Product
Category) and one item value (Mountain Bikes) from the second field in that row (Product Subcategory). In the
PivotTable, the first item value "Bikes" is hidden from view. In the XML for this example, the second I element
expresses both item values for this row. The first item value "Bikes" is expressed implicitly, because the value
of ron the secondi elementis '1', indicating that the first item value from the previous row will be reused
again as the first item value for the current row. The second item value is expressed explicitly via the x element
under the second i element. The index of '@' indicates that the Oth item in the pivotField element for that field
is how to obtain the item value. Note again that the Oth item is itself an index into this field's shared items
collection in the pivotCacheDefinition part.

The item values for the third row can be discovered in a similar way, so will not be discussed in detail here.
In the context of item:
e tvalue of 'default' indicates a grand total as the last row item value.

3.9.3.4.6 Column Axis Fields
This collection indicates which fields are on the column axis of the PivotTable.
<colFields count="3">
<field x="14"/>
<field x="15"/>

<field x="16"/>
</colFields>

In the context of field:

e Xisazero based index into the pivotFields collection defined in this part.

For this example, the collection indicates that "Year", "Quarter" and "Month" are on the column axis of the
PivotTable, in that order.

3.9.3.4.7 Column Items

This collection is a listing of all the values on the column axis of the PivotTable. In this example, the item values
are found in cells C6:H8. For example, "2001" / "3" / "July" values are in C7:C9. Those are the first column
item values and are referenced by the first <i> element below.

181

O 00 N OO s~ W N

e e e O e T e T e
© 0 N O U1 A W N L O

20

21
22

23

24

25

26

27
28
29
30
31

32
33

34
35
36

Introduction to SpreadsheetML

<colItems count="5">
<i>
<x/>
<xX/>
<xX/>
</i>
<i r="2">
<x v="1"/>
</i>
<i r="2">
<x v="2"/>
</i>
<i t="default" r="1">
<x/>
</i>
<i t="default">
<x/>
</i>
</colltems>

In the context of colltems:

e iexpresses all the values (for all fields) in one column of the column axis. There will be an i element for
every column in the PivotTable column area.

In the context of i:

e 1 indicates how many fields/item values to "fill right" from the previous column.
Note that the first item has no r explicitly written so the default value of "@" is implied.
In the context of x:

e v isazero-based index referencing a pivotField item value. There will be as many x elements as
there are item values in any particular column. Note that these x elements sometimes are not
explicitly written, but instead "inherited" from the previous column/i element, via the value of r. Note
also that the pivotField items don't list values explicitly, but instead reference a shared item value in
the pivotCacheDefinition part.

Note that the first instance of x has no attribute value v associated with it, so v's default value of "9" is
implied.

The first i collection represents all item values for the first column in the column axis area of the PivotTable.
The first x in the first i corresponds to the first field in the columns area of the PivotTable, namely "Year". The
implied index value of '@' on this x indicates that the item value for this first item in the column is the Oth item

182

10

11

12
13
14
15
16

17

18

19

20

21

22
23
24

25

26

27

28

29

30

31
32

Introduction to SpreadsheetML

for this pivotField. The Oth item for this pivotField is itself an index to an item value into this field's shared
items collection in the pivotCacheDefinition part, namely "2001".

The item values corresponding to the second and third x elements can be found in the same way, arriving at
"3" for the second item value, and arriving at "July" for the third item value for this first column.

The second i collection expresses all three item values for the second column in the column axis area. The

r value of '2' indicates that the first two item values from the previous column will be repeated here, which
means that the first item value for this second column will be "2001" again and the second item value for this
second column will be "3". The third item value is expressed by the only x element under this second

i element, and without further explanation is understood to reference the item value "August".

3.9.3.4.8 Report Filter Area Fields
This collection describes which fields are found in the report filter area of the PivotTable.
<pageFields count="3">
<pageField f1ld="2" hier="0"/>
<pageField fld="4" hier="0"/>

<pageField fld="5" hier="0"/>
</pageFields>

In the context of pageField:

e fld isazero-based index indicating the field to be on the report filter area.
e hier isan index of the OLAP hierarchy to which this belongs.

3.9.3.49 Values Area Fields
This collection describes which fields are found in the values area of the PivotTable.
<dataFields count="1">

<dataField name="Sum of Sales Amount" fld="25" baseField="0" baseItem="0"/>
</dataFields>

In the context of dataField:

e name isthe name of the values field.

o fld isthe index of the field being summarized.

o baseField is the index of the base field when showDataAs calculation is in use.
e baseltem is the index of the base item when showDataAs calculation is in use.

3.9.3.4.10 PivotTable Style Information

Styles information is discussed in the informative section on spreadsheetML styles. Therefore the XML is
provided for completeness, but will not be discussed here.

183

10
11
12

13

14

15

16

17

18

19

20

21

22

23
24

25
26

27
28

29

Introduction to SpreadsheetML

<pivotTableStyleInfo name="PivotStyleDark8" showRowHeaders="1"
showColHeaders="1" showRowsStripes="0" showColStripes="0"
showLastColumn="1"/>

</pivotTableDefinition>

3.10 Shared Workbook Revisions

3.10.1 Overview

The Shared Workbooks architecture enables a spreadsheet application to record revisions made to a workbook
(e.g., track changes), and is designed to enable multiple users to edit the same workbook at the same time.
Therefore, the application needs to support the ability to read changes made by another user, and update its
own state of the same workbook with those changes, even when those changes are made concurrently with
other changes made by other users. Inevitably, there will be conflicts, and therefore merge conflict resolution
should be supported by the runtime application.

This architecture supports the ability to track changes made by a single user as well.

3.10.2 How It Works

[Workbook }
/ Changes 1

/

Revision
Log Changes 2

Changes 3

Relationship diagram

A Shared Workbook must have shared mode turned on. For unsaved workbooks, this will require a save,
because revisions will be stored in the file.

Changes to the workbook are saved as Shared Workbook Revision Header parts within the document at each
save or time interval specified.

A table summarizing the revision logs (revisionHeaders.xml) tracks when changes are made, who made them,
and lists the relationship id to the specific Shared Workbook Revision Log part.

The application scans the summary table for new change logs and merges them into the workbook.

184

10

11

12
13
14
15
16
17
18
19
20

21
22

23

24

25

Introduction to SpreadsheetML

3.10.3 Example

Consider a series of edits made by different users.

3.10.3.1 First Edit

Starting with a blank workbook, the first user types "A, B, C" into A1:C1,and "1, 2, 3; 4, 5, 6" into A2:C3, like
this:

i B C
1 |.-'1'-. .IB i
2 1 2
3 4 3
4

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this
change is written.

3.10.3.1.1 Summary Revision Table

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml).
Inside the summary table there is a revision header definition corresponding to the time of the edit:

<header guid="{902054C2-C7B5-48BA-BFB2-4D439D9758D6}"
dateTime="2006-04-14T10:33:16" maxSheetId="4" userName="User 1"
r:id="rId2" minRId="1" maxRId="11">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>

Notice that the user name, userName, and date and time stamp, dateTime, for the edit is stored along with
an outline of the sheet structure. Use the r:id value of rId2 and then follow the relationship expressed in
revisionHeaders.xml.rels. In this way, the corresponding Shared Workbook Revision Log can be located.

3.10.3.1.2 First Edit Revision Log

Inside the corresponding Shared Workbook Revision Log part is the following content:

185

O 00 N OO s~ W N

w W W W W W W W W W N N N N N N NN NN NN PP PR R, R R, R R
O 00 N OO U A~ W N P O L 0 NoO Ul WN R O L O N WN -, O

<revisions xmlns="..

<rcc rId="1" sId="1">
<nc r="A1" t="inlineStr">
<is>
<t>A</t>
</is>
</nc>
</rcc>
<rcc rId="2" sId="1">
<nc r="B1" t="inlineStr">
<is>
<t>B</t>
</is>
</nc>
</rcc>
<rcc rId="3" sId="1">
<nc r="C1" t="inlineStr">
<is>
<tH>C/t>
</is>
</nc>
</rcc>

xmlns:r="..

M

Introduction to SpreadsheetML

<rrc rId="4" sId="1" eol="1" ref="A2:XFD2" action="insertRow"/>

<rcc rId="5" sId="1">
<nc r="A2">
v>1</v>
</nc>
</rcc>
<rcc rId="6" sId="1">
<nc r="B2">
<V>2</v>
</nc>
</rcc>
<rcc rId="7" sId="1">
<nc r="C2">
<Vv>3</v>
</nc>
</rcc>
<rrc rId="8" sId="1" eol="1"

ref="A3:XFD3"

action="insertRow"/>

186

O 00 N OO s~ W N

e e L e o =
o U A~ W N =B O

17

18

19

20
21

22
23

24

25
26

27

28
29

30

31

Introduction to SpreadsheetML

<rcc rId="9" sId="1">
<nc r="A3">
<Vv>4</v>
</nc>
</rcc>
<rcc rId="10" sId="1">
<nc r="B3">
<V>5</v>
</nc>
</rcc>
<rcc rId="11" sId="1">
<nc r="C3">
<V>6</Vv>
</nc>
</rcc>
</revisions>

rld is the revision Id, and indicates the order in which the particular revision should be applied.
sld indicates the sheet to which this revision applies.
rcc means "revision cell change"

nc means new cell, and is of type CT_Cell (see §3.2 for more information on the cell definition). Note that
instead of using a shared string table, strings are expressed inline for these cells.

rrc means "revision row/column". Note that rrc can have an associated action, like insertRow (or deleteRow),
which would cause a row to be inserted (or deleted) at that step in the series of revisions.

3.10.3.2 Second Edit

During the second edit, bold facing has been applied to A1:C1, and a formula has been applied to A4:C4 to
sum the data in the table. For example, A4 contains =SUM(A2:A3).

A B C
1A !E C
2 1 2
3 4 3
= 5

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this
change is written.

3.10.3.2.1 Summary Revision Table

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml).

187

O 00 N o U b~ W N

=
o

11
12
13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Introduction to SpreadsheetML

Inside the summary table there is a revision header definition corresponding to the time of the edit:

<header guid="{A3A5EE@9-2092-433C-895D-77D5A15DC847}"
dateTime="2006-04-14T10:34:10" maxSheetId="4" userName="User 2"
r:id="rId3" minRId="12" maxRId="15">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>

This time the user name has been updated. Use the r:id value of rId3 and then follow the relationship
expressed in revisionHeaders.xml.rels. In this way, the corresponding Shared Workbook Revision Log can be
located.

3.10.3.2.2 Second Edit Revision Log
Inside the corresponding Shared Workbook Revision Log part is the following content:

<revisions xmlns="." xmlns:r=".">
<rfmt sheetId="1" sqref="Al:C1l" start="0" length="2147483647">
<dxf>

</dxf>
</rfmt>
<rrc rId="12" sId="1" eol="1" ref="A4:XFD4" action="insertRow"/>
<rcc rId="13" sId="1">
<nc r="A4">
<f>SUM(A2:A3)</f>
</nc>
</rcc>
<rcc rId="14" sId="1">
<nc r="B4">
<f>SUM(B2:B3)</f>
</nc>
</rcc>

188

Jany

N o o AwWwN

10

11

12

13
14

15

16

17
18

19

20

21
22
23
24
25
26
27
28
29

Introduction to SpreadsheetML

<rcc rId="15" sId="1">
<nc r="C4">
<F>SUM(C2:C3)</F>
</nc>
</rcc>
<rcv guid="{34804977-BBD3-40C9-87A7-1779BEE2183C}" action="add"/>
</revisions>

rfmt indicates a formatting revision

start and length indicate where to apply the formatting on the string

eol indicates that an insert is happening at the end of a list of data (end row)

rcv means "revision custom view", and indicates that a custom view is to be added.

3.10.3.3 Third Edit

During this editing session, column A has been inserted, and columns have been inserted between the data.
Additionally, a row has been inserted between the data and the summary formula row, and at the top of the

worksheet.
A B C D E =
l:I
2 A B C
3 1 2 3
4 4 5 &
g 3 7 g
7

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this
change is written.

3.10.3.3.1 Summary Revision Table

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml).

<header guid="{894981D2-DACF-4C1B-951C-EB199EAQ1DBF}"
dateTime="2006-04-14T10:36:10" maxSheetId="4" userName="User 2"
r:id="rId4" minRId="16" maxRId="20">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>

189

O 00 N o wun

11
12
13

14

15

16
17

18

19

20
21

22

23

25
26

Introduction to SpreadsheetML

Use the r:id value of rId4 and then follow the relationship expressed in revisionHeaders.xml.rels. In this way,
the corresponding Shared Workbook Revision Log part can be located.

3.10.3.3.2 Third Edit Revision Log
Inside the corresponding Shared Workbook Revision Log part is the following content:

<revisions xmlns=".." xmlns:r=".">

<rrc rId="16" sId="1" ref="A1:XFD1" action="insertRow"/>

<rrc rId="17" sId="1" ref="A1:A1048576" action="insertCol"/>

<rrc rId="18" sId="1" ref="C1:C1048576" action="insertCol"/>

<rrc rId="19" sId="1" ref="E1:E1048576" action="insertCol"/>

<rrc rId="20" sId="1" ref="A5:XFD5" action="insertRow"/>

<rcv guid="{34804977-BBD3-40C9-87A7-1779BEE2183C}" action="delete"/>

<rcv guid="{34804977-BBD3-40C9-87A7-1779BEE2183C}" action="add"/>
</revisions>

rrc indicates a "revision to row/column". There are several row inserts and column inserts expressed here.

3.10.3.4 Fourth Edit
During this edit, a double-underscore cell border was applied to B4 and D4. Also, column F (the data titled "C")
was deleted.
A B C D E F

1

2 A B

3 1 2

4 4 5

B 5 7

7

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this
change is written.

3.10.3.4.1 Summary Revision Table

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml).

<header guid="{A478A962-DEB9-43AA-BB25-2C54AFA155F1}"
dateTime="2006-04-14T10:37:14" maxSheetId="4" userName="User 2"
r:id="rId5" minRId="21">

190

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>

Introduction to SpreadsheetML

Use the r:id value of rId5 and then follow the relationship expressed in revisionHeaders.xml.rels. In this way,

the corresponding Shared Workbook Revision Log part can be located.

3.10.3.4.2

Fourth Edit Revision Log

Inside the corresponding Shared Workbook Revision Log part is the following content:

<revisions xmlns="..

xmlns:r="..">

<rrc rId="21" sId="1" ref="F1:F1048576"
<rfmt sheetId="1" xfDxf="1" sqref="F1:F1048576" start="0" length="0"/>
<rcc rId="0" sId="1" dxf="1">

action="deleteCol">

<nc r="F2" t="inlineStr">

<is>
<t>C/t>
</is>
</nc>
<ndxf>

<sz val="11"/>
<color theme="
<name val="Cal

1||/>
ibri"/>

<scheme val="minor"/>

</ndxf>
</rcc>
<rcc rId="0" sId="1">
<nc r="F3">
<v>3</v>
</nc>
</rcc>
<rcc rId="0" sId="1">
<nc r="F4">
<V>6</Vv>
</nc>
</rcc>
<rcc rId="0" sId="1">

<nc r="F6">

191

O 00 N OO s~ W N

N N N RN NN NN NN R B P B R B P B B
© 0 N O U1 B W N B O VW 0 N OO U B W N B O

30
31
32

33

34

35

36

37

38

Introduction to SpreadsheetML

<F>SUM(F3:F4)</f>
</nc>
</rcc>
</rrc>
<rfmt sheetId="1" sqref="B4" start="0" length="0">
<dxf>
<border>
<left/>
<right/>
<top/>
<bottom style="double">
<color auto="1"/>
</bottom>
</border>
</dxf>
</rfmt>
<rfmt sheetId="1" sqref="D4" start="0" length="0">
<dxf>
<border>
<left/>
<right/>
<top/>
<bottom style="double">
<color auto="1"/>
</bottom>
</border>
</dxf>
</rfmt>
</revisions>

The first rrc element, with action="deleteCol" expresses that column F was deleted. Additionally, child
collections of rrc contain all the column, formatting, and cell information (values and formulas) that was
deleted as part of deleting column F.

xfDxf true means a whole row/column of formatting was affected.
dxf true means cell change includes format change
The rfmt collections at the bottom of this XML indicate that borders were applied to B4 and D4.

3.10.3.5 Fifth Edit

Rename "Sheetl" to "Published Numbers".

Before:

192

10
11
12
13
14
15
16

17
18

19

20

21
22
23
24

25

26

27

Introduction to SpreadsheetML

38
M4 4 » M| Sheetl . Sheet2 . Sheet3

Feady |

After:

38
M 4 » M| Published Numbers - Sheet2 . Sheet3

Ready [*]

Once the file is saved to disk after these edits, the summary table is updated and the revision log for this
change is written.

3.10.3.5.1 Summary Revision Table

Contents of the Shared Workbook Revision Header part (revisionHeaders.xml).

<header guid="{BOCB8BC9-63A4-4830-8821-E03CO53BD326}"
dateTime="2006-04-14T10:40:24" maxSheetId="4" userName="User 2"
r:id="rId6" minRId="22">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>

Use the r:id value of rId6 and then follow the relationship expressed in revisionHeaders.xml.rels. In this way

the corresponding Shared Workbook Revision Log part can be located.

3.10.3.5.2 Fifth Edit Revision Log
Inside the corresponding Shared Workbook Revision Log part is the following content:

<revisions xmlns=".." xmlns:r=".">
<rsnm rId="22" sheetId="1" oldName="[SharedWorkbook.xlsx]Sheet1"
newName="[SharedWorkbook.xlsx]Published Numbers"/>

</revisions>

rsnm means "revision: sheet name".
oldName indicates the name of the sheet before renaming it.

newName indicates the name of the sheet after renaming it.

193

10

12
13
14
15

16

17
18
19
20

21

22
23

24

25
26

Introduction to SpreadsheetML

3.11 Query Tables

3.11.1 Overview

A QueryTable object is a range that is bound to an external data source. It is a cohesive range of cells in a sheet
that share a common collection of properties and behaviors, separate from the connection itself. A QueryTable
object can be associated with a cell range or a table definition.

3.11.2 Web Query Example

This example illustrates a range, B2 :D6, QueryTable rendering, which is data-bound to a table found on
http://www.msn.com, specifically the financial information table usually found on that page.

A B £ D E F

1 :I

2 This table charts the key U.S. financial indices by their last
3 Index Last Change

4 Dow 11,642.65 2.88

5 NASDAC 2,320,794 -17.51

7] S&P 1,322.85 -2.29

3.11.2.1 QueryTable XML
<queryTable xmlns=".." name="www.msn" preserveFormatting="0"

connectionId="1"

autoFormatId="16" applyNumberFormats="0" applyBorderFormats="0"
applyFontFormats="1" applyPatternFormats="1" applyAlignmentFormats="0"
applyWidthHeightFormats="0"/>

In the context of queryTable:

e name is the name of the QueryTable.

e preserveFormatting indicates whether to retain user-applied formatting after refresh or re-apply
source data formatting.

e connectionld is the workbook connection's id.

e autoFormatld identifies (by implied index) the auto-format applied to the QueryTable.

All remaining attributes beginning with apply... indicate whether to apply this particular aspect of the auto-
format definition.

3.11.3 Text Import Example

This example illustrates a range (B2:D3) QueryTable rendering which is data-bound to a text file. Notice that
formulas are entered in E2:E3, the column directly to the right of the QueryTable range.

194

http://www.msn.com/

10
11
12
13
14

15

16

17
18
19
20

21

22

24
25

Introduction to SpreadsheetML

| =sumM(B2:D2)

E2 -
A B|C|D E F €]
1
2 123 ﬁ_l
3 456 15
3.11.3.1 QueryTable XML
<queryTable xmlns=".." name="Text" refreshOnLoad="1" fillFormulas="1"

removeDataOnSave="1" connectionId="3" autoFormatId="16"
applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="1"
applyPatternFormats="1" applyAlignmentFormats="0"
applyWidthHeightFormats="0"/>

In the context of queryTable:

o refreshOnLoad value of 1 indicates that this QueryTable should be refreshed when the workbook is
opened.

e fillFormulas indicates that this QueryTable has immediately adjacent columns (which are not part of
the QueryTable range) containing formulas that need to be filled down as the QueryTable grows and
shrinks in size after refresh.

e removeDataOnSave indicates that the data in the worksheet resulting from the QueryTable refresh
should be removed from the worksheet when saved and closed.

3.11.4 Access Table Example

This example demonstrates a QueryTable that is applied to a Table object. This data came from connecting to
an Access database table with four fields: "ID", "Field1", "Field2", and "Field3". "Field3" has been deleted from
the QueryTable in the worksheet below. Notice that a calculated column has been added to the Table, in the
column titled "CustomClientColumn", which concatenates the values from "Field1" and "Field2".

E4 v # | =IField1]&[Field2]
A B C D E

1

2 1D B3 Field1 B3 Field2 B3 customClientColumn B3|
3 aA B AB

4 5D E [oe |
5 6 G H GH)i

3.11.4.1 QueryTable XML

<queryTable xmlns="..
autoFormatId="16" applyNumberFormats="0
applyFontFormats="0" applyPatternFormats="0
applyWidthHeightFormats="0">

name="Databasel.accdb" connectionId="2"
" applyBorderFormats="0"
" applyAlignmentFormats="0"

195

O 00 N OO s~ W N

S
N R, O

13

14
15
16
17

18

19
20
21

22

23
24

25

26

27

28
29
30
31
32

33
34
35

Introduction to SpreadsheetML

<queryTableRefresh nextId="6" unboundColumnsRight="1">
<queryTableFields count="4">
<queryTableField id="1" name="ID" tableColumnId="1"/>
<queryTableField id="2" name="Fieldl" tableColumnId="2"/>
<queryTableField id="3" name="Field2" tableColumnId="3"/>
<queryTableField id="5" dataBound="0" tableColumnId="4"/>
</queryTableFields>
<queryTableDeletedFields count="1">
<deletedField name="Field3"/>
</queryTableDeletedFields>
</queryTableRefresh>
</queryTable>

In the context of queryTableRefresh:

e nextld is the next available Id that can be assigned to a field. This is an optimization done for
load/save, to avoid recalculating the value.

¢ unboundColumnsRight are the number of columns on the right side of the QueryTable that aren’t
data bound (don’t come from the external data)

In the context of queryTableFields:

e Each of the queryTableField elements expresses information about one of the columns in the Table
that is part of the QueryTable. For example, the right-most column's dataBound is set to 9, indicating
that this column is not bound to external data.

In the context of queryTable:

o queryTableDeletedFields collection expresses which fields returned by the connection have been
deleted from the QueryTable. This is tracked so that the connection information does not have to be
updated with which columns are no longer required.

3.12 External Connection

3.12.1 Overview

Many spreadsheet users want to be able to access data from external sources: databases, text files, web
pages, XML web services, OLAP cubes. Typically, a spreadsheet application will provide abilities for the user to
locate, browse, connect to, and query external data sources. Once the data source has been located,
connected to, and queried, the resulting data must be rendered in the spreadsheet application, and made
available for further analysis.

Data sources such as databases are made available for browsing and consumption via data-provider
technologies. Typically, the data provider provides a standard interface for accessing the data, and removes
the complexity introduced due to each database application's providing non-standard data access APIs. In this

196

10
11

12
13
14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Introduction to SpreadsheetML

way, OLEDB providers, for example, can be written for myriad database implementations, and a consumer can
always use a single interface (defined by OLEDB) to access these disparate data sources.

A live connection to a data source is established by the application at runtime, and can only exist as a live
connection while the application is running. There are two types of information about a particular connection:

e The information used to establish the connection.
e The information and properties about how the connection should be used and how the connection
should behave in conjunction with the application.

Information about a connection can be supplied by the user as the connection is being established—for
example, providing a password, picking a table, applying a filter, or setting behavioral properties such as
whether to refresh the data when the workbook is opened and whether to store refreshed data in the
worksheet when the workbook is saved.

Information about a connection can also be persisted in a connection file separately from the workbook file. In
this way a directory or file share containing a variety of these connection files can be considered a library of
data connections, for example.

Any time a connection is established, whether by using information from a connection file or by gathering the
connection information directly from the user, a copy of the connection information is stored in the workbook.

Data providers and connection types discussed below are:

e ODBC

e OLEDB

e ADO

e DAO

e Text Import
e Web

The corresponding features in SpreadsheetML that render and analyze the data are:

e Query Table

e Table

e XML Map

e Pivot Table

e The CUBE* Functions

3.12.2 OLAP Connection

Below is a PivotTable that is rendering data from an OLAP source:

197

O 00 N o wun

11
12
13
14
15
16

17

18

19
20
21
22
23
24
25
26
27
28
29

30

31
32

Introduction to SpreadsheetML

Fil B C

1

2 Row Labels * | Amount

3 Current Year's Actuals 398755.69
4 Adjustment for Budget input 565238.13
5 Current Year's Budget 565238.13
B Forecast 565238.13
7 Grand Total 398755.69
2

3.12.3 Pivot XML fragment

In this example, the PivotTable data cache records /cacheSource@connectionId="2", which associates
this PivotTable to the connection whose id="2" in the workbook connections part.

<pivotCacheDefinition .. saveData="0" refreshedBy="Chad Rothschiller"”
refreshedDate="2006-04-13T16:02:14" backgroundQuery="1"
createdVersion="3"
refreshedVersion="3" minRefreshableVersion="3
<cacheSource type="external” connectionId="2"/>
<cacheFields count="2">
<cacheField name="[Category].[Category Description]"
caption="Category
Description” numFmtId="@" hierarchy="1" level="1">
<sharedItems count="4">
<s v="[Category].[All Category].[Current Year's Actuals]"”
c="Current Year's Actuals"/>

recordCount="0">

3.12.4 Connection XML

Looking at the XML in the workbook connections part that describes the connection whose id="2":

<connection id="2" odcFile="
c:\..\externalData.odc" keepAlive="1" name="externalData"
description="FoodMart 2000 - Budget Planing" type="5"
refreshedVersion="3" background="1">
<dbPr connection="Provider=MSOLAP.2;Integrated Security=SSPI;Persist
Security Info=True;Data Source=xlextdat8;Initial
Catalog=AdamTest;Client
Cache Size=25;Auto Synch Period=10000;MDX Compatibility=1"
command="Budget" commandType="1"/>
<olapPr sendLocale="1" rowDrillCount="1000"/>
</connection>

Attributes on the connection element express properties about the connection.

e odcFile indicates the location of the data connection file which was used to create this connection.
Data connection files can be created on the local machine, on any network share, or any web location

198

10
11
12

13

14
15
16
17
18

19

20
21
22

23

24

25

26

Introduction to SpreadsheetML

whenever the connection is created so that the connection information can be reused if desired. The
connection information is copied from the connection file into the spreadsheet. When a connection
cannot be established, the spreadsheet application can check the external connection file to see if a
newer definition of the connection is available.

e name indicates the friendly name of the connection. This name must be unique within a workbook.

e KkeepAlive indicates that the application should hold the connection open once established, instead of
closing the connection after retrieving the data.

e type value of 5 indicates that this connection type is OLEDB.

e refreshedVersion indicates the version of the application which last refreshed this connection.

e background value of 1 indicates that background refresh (asynchronous refresh) is enabled. Note that

this is not a guarantee that the connection will be refreshed asynchronously. Certain objects may
require a connection to be refreshed either synchronously or asynchronously regardless of this setting.

Attributes on the dbPr element express additional properties on the connection.

e connection expresses the connection string that is needed to establish a connection to the external
data source.

e command can indicate a table name, a cube name, or an SQL expression requesting data.

e commandType indicates what kind of information is found in command: 1 means the value of

command is the name of an OLAP cube.

Attributes on the olapPr element express properties that apply to connections to OLAP data sources.

sendLocale value of 1 indicates that the client application should send its user interface language
locale to the OLAP data provider in order to receive back from the server localized OLAP cube member
string values.

e rowDrillCount is number of rows to return on a drill through request.

3.12.5 Web Query

A possible user interface for picking a web source is:

New Web Query Elgl

v 2@ B @A B ontions...

Address: | http:ffvsws . msn.com)

Click [#] next to the tables you want to select, then click Import.

EWWS

data frorm Afghans
raq training lags
predict quakes?
0¥ SPORTS Bad bosses
drops hoops for MEL 10 famousky

air Good Friday game mean managers

estyle
o *

Dione

LS P
Advertisement Ad feedback

Dow 11,137.65 - nch Get Quote:
MASDAD 2,326,111 + 11.42 EO
cEp 1,289.12 + 1.00 Quotes delayed 20 min.

Financial News

- The wiorld's worst tax nightrnares
* How Dietroit can save itself

+ &re interest-rate hikes over?

Offer: The average LS Credit Score is 677, se2 your
score for free

SHOPPING v

v|

[Import] [Cancel

]

199

o 00 N O

10

22
23
24
25
26
27
28
29

30

31

32

Introduction to SpreadsheetML

A possible rendering in the spreadsheet grid might be:

B E D

Web Query to MSN Money

Dow 11,137.65 7.68
NASDAQ 2,326.11 11.43
S&P 1,283.12 1

3.12.6 QueryTable XML

The XML expressing the definition of the QueryTable indicates that it is using the connection whose Id value
is 1 (connectionld):

<queryTable .. name="msn" connectionId="1" autoFormatId="16"
applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="1"
applyPatternFormats="1" applyAlignmentFormats="0"
applyWidthHeightFormats="0"/>

3.12.7 Connection XML

The workbook connection whose Id is 1 is expressed below.

<connection id="1" name="Connection" type="4" refreshedVersion="3"
background="1" saveData="1">
<webPr sourceData="1" parsePre="1" consecutive="1" x12000="1"
url="http://www.msn.com" htmlTables="1">
<tables count="1">
<x v="2"/>
</tables>
</webPr>
</connection>

Attributes and elements that have been previously discussed are not discussed here.

e type value of 4 indicates the connection is a web query connection.

e saveData value of 1 indicates that refreshed data will be kept in the sheet when saving the workbook.
0 indicates to remove the data from the workbook when saving the workbook.

e sourceData value of lindicates to import and parse the XML data rather than consume the web page's
HTML definition.

e parsePre value of 1 indicates that text in <PRE> tags is interpreted as tables.

e consecutive value of 1 means consecutive delimiters are treated as one delimiter

e urlisthe address indicating where to retrieve data for this query.

e htmlTables true means only import html tables

tables indicates which HTML table to import from the web page.

e vvalue of 2 indicates that the second table is the one to import.

200

10
11

12

13
14

16
17
18
19
20
21
22

24

25

26

Introduction to SpreadsheetML

3.12.8 Unused Connection

A connection can be expressed in a workbook, but not currently used. It remains until deleted by the user
explicitly. This simply means that there is no object or feature in the workbook; that is referencing the
connection.

3.12.9 ODBC
A database table imported to the grid, where the data provider is ODBC:

Fi B C D
Bar Goo

1

2 3 Foo

3 4 The Quick Brown

4 5 Fox Jumped Over

5 6 The Lazy Dog .
B

When a table object is used to render external data, it is associated with a QueryTable object to store the
properties used when a range is associated with external data. Therefore, the Table object references the
QueryTable name, which in turns references connectionld to identify the connection in the workbook
connections part.

3.12.10 Connection XML

<connection id="4" name="Query from MS Access Database" type="1"
refreshedVersion="3" background="1" saveData="1">
<dbPr connection="DSN=MS Access
Database;DBQ=E:\..\Databasel.accdb;DefaultDir=E:\Documents and
Settings\chadroth\Desktop;DriverId=25;FIL=MS
Access;MaxBufferSize=2048;PageTimeout=5;"
command="SELECT Tablel.ID,
Tablel.Fieldl, Tablel.Field2,
Tablel.Field3_x000d__x000a_FROM
"E:\..\Databasel.accdb™ .Tablel Tablel"/>
</connection>

e type value of 1 indicates ODBC connection type.
e command contents are an SQL select statement.

3.12.11 SQL

An implementation might use a data connection wizard to connect to a SQL table; for example:

201

2

Data Connection Wizard

Select Database and Table
Select the Database and Table/Cube which contains the daka you want.

Select the database that contains the data wou want:

|N0rthwind

e

Conneckt to a specific table:

Mame
hlphabetical lisk of

Cner
dbio

producks

Cakegory Sales for 1997 dbo
Current Produck Lisk dba
Customer and Suppliers by Cicy dbo

Drescripbion

Modified

Created

/52000 1:34:09 AM
Sf6/2000 1:34:1Z AM
S/E/2000 1:34:10 AM
Sf6/2000 1:34:09 AM

EEF Invoices dbo BI6/2000 1:34:11 AM
oOrder Details Extended dbo SiE/2000 1:34:11 AM
EEH order Subtatals dbo BIB/Z000 1:34:11 AM
< J 2

[Cancel] [< Back. Mext =] [Finish

The resulting data is rendered in the grid:

il B

1

2 SOL Connection
3

4 7/16/1996 0:00
3 7/10/1996 0:00
G 7/12/1996 0:00
7 7/15/1996 0:00
8 7/11/1996 0:00
9 7/16/1996 0:00
10 7/23/1996 0:00
11 7/15/1996 0:00
12 7/17/1996 0:00
13 7/22/1996 0:00
14 7/23/1996 0:00
15 7/25/1996 0:00
16 7/29/1996 0:00
17 7/30/1996 0:00
18 7/25/1996 0:00

10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262

M‘Ml

1863.4
1552.6
654.06
3397.9
14448
556.62
2490.5
517.8
1113.9
1614.88
100.8
1504.65
448
S84

Introduction to SpreadsheetML

In this example, a table object is used to render external data, it is associated with a QueryTable object to store

the properties used when a range is associated with external data. Therefore, the Table object references the

QueryTable name, which in turns references connectionId to identify the connection in the workbook

connections part.

202

14

15

16

17

19

20

21

Introduction to SpreadsheetML

3.12.12 Connection XML

<connection id="6" odcFile="c:\..\xlextdat8 Northwind Summary of Sales by
Year.odc" keepAlive="1"
name="xlextdat8 Northwind Summary of Sales by Year"
type="5" refreshedVersion="3" background="1" saveData="1">
<dbPr connection="Provider=SQLOLEDB.1;Integrated Security=SSPI;
Persist Security Info=True;Initial Catalog=Northwind;Data
Source=xlextdat8;Use Procedure for Prepare=1;Auto
Translate=True;Packet Size=4096;Workstation ID=CHADROTHO12;Use
Encryption for Data=False;Tag with column collation when
possible=False" command=""Northwind" ."dbo"
."Summary of Sales by Year"" commandType="3"/>
</connection>

e type value of 5 indicates that this connection is using an OLEDB data provider.
o commandType value of 3 specifies that a table name is in command
e command specifies a table name.

3.12.13 TextImport

Text Import settings:

Text Import Wizard - Step 2 of 3 @E|

This screen lets you set the delimiters wour data contains, You can see how wour text is affected in the preview
below.,

Delirmiters

Iab

[Semicolon [Treat consecutive delimiters as one
|:| Cormma
|:| Space

[othes:

Text gualifier: |" -

Daka prewviews

R
B
wn
?

[Cancel][< Back][Plext = |[Finish

Note that there are additional settings not pictured here.

The resulting data in the grid:

203

O 00 N o wun

11
12
13
14

15

16

17

18
19

20

21

22
23
24
25
26
27
28
29

Introduction to SpreadsheetML

A B|C D

1

2 Text Import
3 ab

4 12

5 4 5

6

The range is associated with a QueryTable object. This query table definition references the connectionld used
to retrieve the data.

3.12.14 Connection XML

<connection id="5" name="Text" type="6
background="1" saveData="1">..
<textPr codePage="437" sourceFile="E:\ ..\Text.txt">
<textFields count="3">
<textField type="text"/>
<textField position="5"/>
<textField type="skip" position="10"/>
</textFields>
</textPr>
</connection>

refreshedVersion="3"

connection defines the connection
e type value of 6 indicates that this is a text import type of connection.
textPr expresses properties which are specific to text import connections.

e codePage value of 437 indicates that the text file is using the IBM PC (OEM) code page 437 character
set.
e sourceFile indicates where the file is located.

textFields expresses information about the particular fields in the text file.

o delimited value of 1 (default) indicates that the text is delimited (variable length). Since this example
uses the default value, it is not saved as part of the connection information.

e type indicates the data type (user-specified) of the particular field.

e position indicates the starting position of the field for fixed-width fields.

e thousands specifies the thousands separator character (not in this example, but of enough interest to
mention).

e tab, space, comma attributes with values of 1 would flag these characters as delimiters (not in this
example, but of enough interest to mention).

204

10
11

12

13

14

16

17

18

19

20

Introduction to SpreadsheetML

3.13 External Links

3.13.1 Overview

An external link is used to link a workbook to other workbook or to external data. The most frequent
occurrence for linking a workbook to other workbooks has to do with formulas. In this case, a formula
references a range or name defined in another workbook. Hyperlinks on cells and other spreadsheet objects
are also considered an external link. OLE links are yet another technology used to link the workbook to another
object. Finally, Dynamic Data Exchange (DDE) servers can be used to access external data. DDE servers are
accessed through formulas in the workbook.

The goal of the way in which external links are saved is to always write the target source in a relationship file,
so that external resources are easily discoverable in lightweight relationship XML rather than deep in the
application's XML.

3.13.2 Formula Example

Consider cells B2 and C2 in the following worksheet, Sheet1:

A B C
Link to an external workbook range: Link to an external workbook name:
=SUM|'C:A[Source.xlsx]Sheetl'15A51:5A53) ='C:\Source2.xlsx'!NamelnExternalWorkbook

W3C Hyperlink

L9, I N TS T N T

Here, the formulas themselves are displayed in the cells.

A B C D
Link to an external workbook range: Link to an external workbook name:

1
2
3
4 | W3C Hyperlink

Here, the results of the formulas are displayed in the cells.

The formula is expressed in Sheetl's XML, as shown in the following subclause.

3.13.3 Sheet XML

The corresponding content from Sheet1.xml is:

205

O 00 N OO s~ W N

W W W W W wWwWwWwWNNRNNNDNNNNNDN-RR B B B B B R
N o0 R WN R O O 0O N U R W N R O W N OO UM W N B O

38

39

40

Introduction to SpreadsheetML

<worksheet ..>
<dimension ref="B1:C4"/>
<sheetViews>
<sheetView tabSelected="1" workbookViewId="0">
<selection activeCell="B2" sqref="B2"/>
</sheetView>
</sheetViews>
<sheetFormatPr defaultRowHeight="15"/>
<cols>
<col min="1" max="1" width="1.7109375" customWidth="1"/>
</cols>
<sheetData>
<row r="1" spans="2:3" customFormat="1" ht="9" customHeight="1"/>
<row r="2" spans="2:3" customFormat="1">
<c r="B2">
<f>SUM([1]Sheetl!A1:A3)</F>
<V>6</V>
</c>
<c r="C2">
<f>[2]!NameInExternalWorkbook</f>
<V>2</v>
</c>
</row>
<row r="4" spans="2:3" customFormat="1">
<c r="B4" s="1" t="s">
<V>0</v>
</c>
</row>
</sheetData>
<hyperlinks>
<hyperlink ref="B4" r:id="rId1l"/>
</hyperlinks>
<printOptions/>
<pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75"
header="0.3" footer="0.3"/>
<headerFooter/>
</worksheet>

3.13.3.1 Cell B2

The formula expressed in cell B2 (cell B2 is the ¢ element whose r="B2") is this:

SUM([1]Sheet1!A1:A3)

206

29
30
31
32
33

34

35

Introduction to SpreadsheetML

The external reference to another workbook in this case is tokenized to [1]. The value inside the brackets is a
1-based index to the externalReferences collection in the workbook part.

3.13.3.2 Cell C2

The formula expressed in cell C2 (cell C2 is the ¢ element whose ris C2) is this:
[2] 'NameInExternalWorkbook

The external reference to another workbook in this case is tokenized to [2]. The value inside the brackets is a
1-based index to the externalReferences collection in the workbook part.

3.13.3.3 Workbook XML

The corresponding content from workbook.xml is

<workbook ..>
<fileVersion lastEdited="4" lowestEdited="4" rupBuild="4012"/>
<workbookPr defaultThemeVersion="123820"/>
<bookViews>
<workbookView XxWindow="360" yWindow="270" windowWidth="18735"
windowHeight="11445"/>
</bookViews>
<sheets>
<sheet name="Sheetl" sheetId="1" r:id="rId1l"/>
<sheet name="Sheet2" sheetId="2" r:id="rId2"/>
<sheet name="Sheet3" sheetId="3" r:id="rId3"/>
</sheets>
<externalReferences>
<externalReference r:id="rId4"/>
<externalReference r:id="rId5"/>
</externalReferences>
<calcPr calcId="122211"/>
<webPublishing codePage="1252"/>
</workbook>

The workbook part's externalReferences collection indicates that there are two external workbook references
in this workbook. The first supporting external workbook data cache, also stored in this workbook, can be
found by following the relationship from the workbook whose Id value is rId4. The second supporting external
workbook data cache, also stored in this workbook, can be found by following the relationship from the
workbook whose Id value is rId5.

3.13.4 Workbook Relationships

The corresponding content from workbook.xml.rels is:

207

O 00 N OO s~ W N

S N s T
N oo A W N B O

18
19
20
21

22

23

25
26
27
28
29
30
31
32
33
34
35

Introduction to SpreadsheetML

<Relationships xmlns="http://../package/2006/relationships”>

<Relationship Id="rId8"

Target="sharedStrings.xml"

<Relationship Id="rId3"
Target="worksheets/sheet3.
<Relationship Id="rId7"
<Relationship Id="rId2"
Target="worksheets/sheet2.
<Relationship Id="rId1"
Target="worksheets/sheetl.
<Relationship Id="rId6"
<Relationship Id="rId5"

Type="http://..
/>
Type="http://..
xml"/>
Type="http://..
Type="http://..
xml"/>
Type="http://..
xml"/>
Type="http://..
Type="http://..

Target="externallLinks/externallLink2.

<Relationship Id="rId4"

Type="http://..

Target="externallLinks/externallLink1l.

<Relationship Id="rId9"
</Relationships>

Type="http://..

/sharedStrings”
/worksheet"

/styles" Target="styles.xml"/>
/worksheet"

/worksheet"

/theme" Target="theme/themel.xml"/>
/externallink"

xml"/>

/externallink"

xml"/>

/calcChain" Target="calcChain.xml"/>

These relationship expressions indicate that cell B2 is supported by the external workbook data cache located

at externallLinks/externallLink1.xml in the package. These relationship expressions also indicate that
cell C2 is supported by the external workbook data cache located at externalLinks/externallLink2.xml

in the package.

3.13.5 Supporting Workbook Cache (Cell C2)

The corresponding content from externalLink2.xml is:

<externallLink ..>

<externalBook xmlns:r="http://schemas.openxmlformats.org
/officeDocument/2006/relationships” r:id="rId1">

<sheetNames>

<sheetName val="Sheetl"/>
<sheetName val="Sheet2"/>
<sheetName val="Sheet3"/>

</sheetNames>
<definedNames>

<definedName name="NameInExternalWorkbook"
refersTo="="'Sheetl'!B1"/>

</definedNames>

208

O 00 N OO s~ W N

e e e
w N Rk O

14
15
16
17
18
19

20
21

22

23

24

25

26
27

28
29

30

31

Introduction to SpreadsheetML

<sheetDataSet>
<sheetData sheetId="0">
<row r="1">
<cell r="B1">
<V>2</v>
</cell>
</row>
</sheetData>
<sheetData sheetId="1"/>
<sheetData sheetId="2"/>
</sheetDataSet>
</externalBook>
</externallLink>

Supporting workbook data caches store the top-level structure of the workbook (sheet names, defined names,
cell table). Only the cells referenced are cached. This supporting workbook data cache indicates that the
workbook being referenced by C2 has three sheets, whose names are "Sheetl", "Sheet2", and "Sheet3", and
has a defined name of "NamelnExternalWorkbook". Additionally, the cell table shows that cell B1 in this
workbook is the cell being referenced. A copy of the cell table is stored locally, inside the workbook containing
the external link.

The r:id="rId1" on the top level externalLink element indicates the Id of the relationship from the
externallLink2.xml part, which indicates the location of the actual external workbook.

3.13.6 External Link (Cell C2)

The corresponding content from externalLink2.xml.rels is

<Relationships ..>
<Relationship Id="rId1" Type="http://../externallLinkPath"
Target="file:///C:\Source2.x1lsx" TargetMode="External"/>
</Relationships>

This relationship indicates that the supporting workbook that C2 references resides on the local drive, at
c:\source2.xlsx.

3.13.7 Supporting Workbook Cache (Cell B2)

The corresponding content from externalLinkl.xml is:

209

O 00 N OO s~ W N

WON N NN NNNNNNR R P B R B P P B
O VW 00 N O U B W N B O VW 0 N O 1 B W N L, O

31
32
33
34

35
36

37

38

<externalLink ..>

Introduction to SpreadsheetML

<externalBook xmlns:r="http://../relationships” r:id="rId1">

<sheetNames>
<sheetName val="Sheetl"/>
<sheetName val="Sheet2"/>
<sheetName val="Sheet3"/>
</sheetNames>
<sheetDataSet>
<sheetData sheetId="0">
<row r="1">
<cell r="A1">
v>1</v>
</cell>
</row>
<row r="2">
<cell r="A2">
<V>2</v>
</cell>
</row>
<row r="3">
<cell r="A3">
<v>3</v>
</cell>
</row>
</sheetData>
<sheetData sheetId="1"/>
<sheetData sheetId="2"/>
</sheetDataSet>
</externalBook>
</externallLink>

stored locally, inside the workbook containing the external link.

3.13.8 External Link (Cell B2)

The corresponding content from externalLinkl.xml.rels is

This supporting workbook data cache indicates that the workbook being referenced by B2 has three sheets,
whose names are "Sheetl", "Sheet2", and "Sheet3". Additionally, the cell table shows that cells A1, A2, and A3,
whose values are 1, 2, and 3, respectively, in this workbook are being referenced. A copy of the cell table is

The r:id="rId1" on the top level externalLink element indicates the Id of the relationship from the
externallinkl.xml part, which indicates the location of the actual external workbook.

210

10
11

12

13
14

15
16
17

18
19
20

21

22

23
24
25
26

27
28

Introduction to SpreadsheetML

<Relationships ..>
<Relationship Id="rIdl" Type="http://../externallLinkPath"
Target="file:///C:\Source.xlsx" TargetMode="External"/>
</Relationships>

This relationship indicates that the supporting workbook that C2 references resides on the local drive, at
c:\source.xlsx.

3.13.9 Hyperlink Example

Consider the following worksheet:

A B C
Link to an external workbook range: Link to an external workbook name:
=SUN{'C:\[Source.xlsx]Sheetl 15AS51:5A53) ='C\Source2.xlsx'INamelnExternalWorkbook

W3C Hyperlink

Lo e | pa | e

Cell B4 contains a hyperlink, whose friendly name is "W3C Hyperlink", and whose target is
"http://www.w3.0rg/".

3.13.10 Worksheet XML

See §3.13.3 for the full XML. Here is the snippet expressing the hyperlink information, whose collection
appears immediately after the sheetData collection in this example.

<hyperlinks>
<hyperlink ref="B4" r:id="rId1"/>
</hyperlinks>

The hyperlink XML indicates that cell B4 of this sheet has a hyperlink, whose target can be found by following
the relationship whose Id="rId1" from the current sheet. The 'friendly' name of the hyperlink is stored in the
cell definition.

3.13.11 Relationship

The corresponding content from sheetl.xml.rels is:

<Relationships ..>
<Relationship Id="rId1" Type="http://../hyperlink"
Target="http://www.w3.0rg/" TargetMode="External"/>
</Relationships>

This hyperlink points external to the workbook (TargetMode="External"), and the URL is found in the value of
Target to be "http://www.w3.org/".

211

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/

10

11
12

13

14

15

16

17

18

19

20

21

22

23

Introduction to SpreadsheetML

3.14 Volatile Dependencies

3.14.1 Overview

The volatile dependencies part provides a supporting cache of data for Real Time Data (RTD) and CUBE
functions in the workbook. Both of these types of functions require connectivity to external servers to retrieve
their data. For RTD functions, an RTD interface has been defined for how to provide (on the server side) and
retrieve (on the client side) external data. Similarly, CUBE functions are able to access data in OLAP cubes. Each
type of function has its own function syntax resulting in a specific piece of information being returned.

In the event that the server providing the data is unavailable, a spreadsheet application may want to cache the
most recently retrieved values so that when recalculating the spreadsheet, calculated results may be acquired
instead of errors.

The volatile dependencies part provides that cache of data and supporting information about these functions
and their data servers and connections.

3.14.2 File Architecture - Relationships

Workbook

volatileDependencies

The workbook holds the relationship to the volatile dependencies part.

3.14.3 Example

In this example, both a Real Time Data (RTD) function and CUBE functions are in use.

3.14.3.1 [Mlustration
fiy B
1 aaa:672
2
3 |Corporate
4 580,450,596.98
5 [set |
] #N/A
7 [#N/A
g8 Mot Applicable
9 Growth in Customer Base Goal

10

(values shown)

212

Introduction to SpreadsheetML

=RTD("jrtdx.rtd",,"aaa")

=CUBEMEMBER("xlextdatd Adventure Works DW Adventure Works","[Department].[Departments].[Corporate]”)

=CUBEVALUE("xlextdatd Adventure Works DW Adventure Works", A3)

=CUBESET("xlextdatd Adventure Works DW Adventure Works","[Customer].[Customer Geography].[All Customers].[United Kingdom].children","Set")
':CUBERANKEDMEMBER("xIextdatS Adventure Works DW Adventure Works", 5453, ROW(A1))

"=CUBESETCOUNT(A3)

=CUBEMEMBERPROPERTY("xlextdatd Adventure Works DW Adventure Works","[Product].[Product].[All Products].[Blade]","Class")
=CUBEKPIMEMBER("xlextdatd Adventure Works DW Adventure Works","Growth in Customer Base",2)

[F- RN R TS PR

=
(=]

(functions shown)

3.14.3.2 volatileDependencies.xml

<volTypes xmlns=".">
<volType type="realTimeData">
<main first="jrtdx.rtd">
<tp t="s">
<v>aaa: 4447</v>
<stp/>
<stp>aaa</stp>
<tr r="A1" s="1"/>
</tp>
</main>
</volType>
<volType type="olapFunctions">
<main first="xlextdat9 Adventure Works DW Adventure Works">

<tp t="e">
<VO>HN/A</ V>
<stp>1</stp>
<tr r="A6" s="1"/>
<tr r="A9" s="1"/>
<tr r="A8" s="1"/>
<tr r="A5" s="1"/>
<tr r="A4" s="1"/>
<tr r="A3" s="1"/>
</tp>
</main>
</volType>
</volTypes>
3.14.3.2.1 RTD Supporting Data

/voltypes/volType@type indicates that the supporting information pertains to an RTD function call. Valid
values are realTimeData and olapFunctions

213

10

11
12

13

14
15
16
17

18

19

20
21

22
23

24

25

26

27

28
29
30
31
32

Introduction to SpreadsheetML

/volTypes/volType/main@first indicates the Progld of the RTD server. This value corresponds to the
first argument of an RTD function in a worksheet.

/volTypes/volType/main/tp contains a listing of topics within the main topic. For the RTD function, this
collection will express the remaining parameters of the function, and indicate the last known value and data
type of that value.

/volTypes/volType/main/tp@t indicates the data type of the value associated with this topics. For this
RTD example, the value is "aaa: 4447" whose data type is string.

/volTypes/volType/main/tp/v expresses the last known value of this RTD function, "aaa: 4447".

/volTypes/volType/main/tp/stp expresses the remaining topics, or function parameters, for this RTD
function. Notice that in the example, the second parameter is left empty, and the third parameter is "aaa".

/volTypes/volType/main/tp/tr expresses the cells which are dependent on this particular set of topics,
and which are associated with this supporting information.

3.14.3.2.2 Cube Function Supporting Data

Cube functions use the same persistence structure as the RTD supporting data, but the information is
interpreted slightly differently. At a high level, main@first indicates the connection name, and the

tr elements spell out the cells with cube function calls dependent on this connection. In most cases (when
the <stp> value is equal to "1") the remaining information can be ignored.

/volTypes/volType/main@first indicates the connection name for the related cube functions.
/volTypes/volType/main/tp@t can be ignored when stp value is 1.

/volTypes/volType/main/tp/v contains an error value of "#N/A", which can be ignored when stp value
is 1.

/volTypes/volType/main/tp/stp value of 1 indicates that all of the related cells with calling cube
functions have been refreshed.

/volTypes/volType/main/tp/tr expresses the cells contain cube functions which are dependent on this
connection, and which are associated with this supporting information.

3.15 Custom XML Mappings

3.15.1 Overview

With the pervasiveness of XML data structures and XML web services, it is appropriate for a spreadsheet
application to consume XML data structures and render the data in the sheet grid. Furthermore it is
appropriate and desirable for the spreadsheet application to be able to generate XML data structures. Finally,
since XML is extensible, the kinds of XML structures that can be consumed or produced by a spreadsheet
application should be as varied as the number of XML schemas that exist.

214

Introduction to SpreadsheetML

1 The XML Mapping feature enables adding arbitrary XML data structures and arbitrary XML schema definitions
2 tothe workbook, then mapping the various XML nodes to cells and ranges in the workbook. Once an XML

3 Mapping is set up, the application is able to import and export XML instance structures according to the

4 schema definition.

5 While the original schema or XML definition may reside on disk or at some file location outside the workbook,
6 acopy of the schema is stored in the workbook.

7 Every time an XML instance or schema is added to the workbook, a new map object is created which ties
8 together the schemas and where the various elements are mapped in the workbook.

9 Additional properties are stored on each cell and each column of a Table that has an XML map association.

10 3.15.2 File Architecture - Relationships

Workbook

l Sheet \l XmlIMap \
l Table \lSmgIeCells\

12 The workbook owns sheets and the xmIMap definitions. Each sheet references Tables and single cells which

13 are mapped to XML structures.

215

Introduction to SpreadsheetML

3.15.3 Conceptual Model

; Schema
(via
Schemald)

| Table 1

Cell 2 (via)
(via

Table 2
(via
mapld)

Cell 1 (via
mapld)

Conceptually all the objects reference a common Map Object, by @id. It is in this way that they come together
into a single working feature that can import and export custom XML data.

3.15.4 Example

In this example both single cells and a Table are shown to have a data binding to an XML structure.

216

1

10
11

12

13
14

15
16
17
18
19
20
21
22
23
24
25
26

Introduction to SpreadsheetML

3.154.1 [llustration
A B c D E F I xMLSource v x
1 XML maps in this workbook:
2 currency detailed total-sum expense-repart_Map w
3 usD FALSE 556.9 5 = expensereport 2
4 | currency
5 |Fir5t Last Email - detailed
- -] total-sum
6 |Fred Landis f.landis@nanonull.com 5 Person
7 r =] First
a - - - - _I Last
g ILGdEinE _|Sa|es 1/1/2003 122.11 j :;f;ne
10 Lodging Development 1/2/2003 122.12 Played penny arcade] Email
11 Lodging Marketing 1/2/2003 299.45 Treated Clients =l expense-item
12 Entertainment Development 1/2/2003 13.22 Bought signed "XMLSPY Handbo =
13 L |] expto
| Nate b
14

[ODtic-ns v] [XML Maps. ..]

ac

The table in B8:G12 is also data bound to an XML mapping object. The first column, titled "type", is associated
with the XML Map named "expense-report_Map", specifically the attribute identified by the xpath expression
/expense-report/expense-item@type pointing into the corresponding XML structure. In similar fashion,
each of the columns in the Table correspond with elements or attributes in the related XML Map structure.

Additionally, cells B3:D3 and B6:D6 are each bound to a single, non-repeating element or attribute from the
same XML Map structure. For example, cell B3 corresponds to /expense-report@currency.

In this way XML instance structures can be refreshed into the cells and Table region, and XML instance
structures can be generated from the data in those ranges of the spreadsheet. In other words, XML structures
can be imported and exported to and from the worksheet via the XML Mapping feature.

3.15.4.2 The xmlMap XML

The xmIMaps part stores the custom schema that has been added to the workbook, and also stores the
xmlIMap definitions. There can be multiple schemas and xmIMaps in a single workbook.

<MapInfo SelectionNamespaces="">
<Schema ID="Schemal">
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element nillable="true" name="expense-report">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element minOccurs="0" nillable="true"
name="Person" form="unqualified">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element minOccurs="0" nillable="true"
type="xsd:string" name="First" form="unqualified"></xsd:element>

217

O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

type="xsd:
type="xsd:
type="xsd:
type="xsd:
nillable="
type="xsd:
type="xsd:
type="xsd:

Introduction to SpreadsheetML

<xsd:element minOccurs="0" nillable="true"
string" name="Last" form="unqualified"></xsd:element>

<xsd:element minOccurs="0" nillable="true"
string” name="Title" form="unqualified"></xsd:element>

<xsd:element minOccurs="0" nillable="true'
string" name="Phone" form="unqualified"></xsd:element>

<xsd:element minOccurs="0" nillable="true"
string” name="Email" form="unqualified"></xsd:element>

</xsd:sequence>
</xsd:complexType></xsd:element>
<xsd:element minOccurs="0" maxOccurs="unbounded"
true" name="expense-item" form="unqualified">
<xsd:complexType>
<xsd:all>

<xsd:element minOccurs="0" nillable="true"
date" name="Date" form="unqualified"></xsd:element>

<xsd:element minOccurs="0" nillable="true"
double"” name="expense" form="unqualified"></xsd:element>

<xsd:element minOccurs="0" nillable="true"
string" name="description" form="unqualified"></xsd:element>

<xsd:element minOccurs="0" nillable="true"

name="Misc" form="unqualified">

<xsd:complexType>
<xsd:attribute name="misctype"

form="unqualified" type="xsd:string"></xsd:attribute>

type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:

</xsd:complexType>
</xsd:element>
</xsd:all>
<xsd:attribute name="type" form="unqualified"
string"></xsd:attribute>
<xsd:attribute name="expto" form="unqualified"
string"></xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="currency" form="unqualified"
string"></xsd:attribute>
<xsd:attribute name="detailed" form="unqualified"
boolean"></xsd:attribute>
<xsd:attribute name="total-sum" form="unqualified"
double"></xsd:attribute>
</xsd:complexType>
</xsd:element>

218

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32

33
34
35
36
37
38
39
40

Introduction to SpreadsheetML

</xsd:schema>
</Schema>
<Map ID="1" Name="expense-report_Map" RootElement="expense-report”
SchemaID="Schemal" ShowImportExportValidationErrors="false" AutoFit="true"
Append="false" PreserveSortAFLayout="true" PreserveFormat="true">
<DataBinding FileBinding="true" DataBindinglLoadMode="1"/>
</Map>
</MapInfo>

e /MapInfo@SelectionNamespaces ties the prefix to the actual namespace. This is used when
writing xpath expressions at runtime against the XML instance structures, because the xpath
expressions use namespace prefixes instead of the fully spelled out namespace.

e /MapInfo/Schema stores the schemas for a particular XML map object. There can be multiple
<Schema> elements in a workbook, one for each XML map.

e /MapInfo/Schema@ID identifies the schema collection used to define a particular XML map object.

e /MapInfo/Map/@ID identifies the map object.

e /MapInfo/Map@Name is the friendly name of the map object.

e /MapInfo/Map@RootElement is the name of the root element of the XML instance (schemas can
define more than one root node).

e /MapInfo/Map@SchemalID identifies which schema collection the map uses.

e /MapInfo/Map@ShowImportExportValidationErrors indicates that when an XML instance is
imported or exported, the schema should be used to validate the instance, and schema errors should
be shown to the user.

e /MapInfo/Map@AutoFit indicates that after refresh, all the cells should be ‘best fitted’.

e /MapInfo/Map@Append means that when refreshed, don’t discard existing data, but append new
data to it.

e /MapInfo/Map@PreserveSortAFLayout indicates whether to keep filters on (Tables).

e /MapInfo/Map@PreserveFormat indicates whether to keep the cell formatting applied or re-apply
based on schema data type.

3.15.4.3 The Table XML

The only difference with table definitions that are bound to XML is that @tableType="xml" and each column
has an additional set of xml-specific properties, contained in the <xm1ColumnPr> collection, which appears
once for every column in the Table which has an XML data binding.

<table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/5/main"
id="7" name="Table7" displayName="Table7" ref="B8:G12" tableType="xml"
totalsRowShown="0" connectionId="1">

<autoFilter ref="B8:G12"/>

<tableColumns count="6">

<tableColumn id="1" uniqueName="type" name="type">
<xmlColumnPr mapId="1" xpath="/expense-report/expense-item/@type"

xmlDataType="string"/>

219

O 00 N OO s~ W N

N N N N N B B R R R R R R R
A W N B O L 00 N O U1 B W N KL O

25

26
27
28
29
30
31

32

33

34

35
36
37

39

Introduction to SpreadsheetML

</tableColumn>
<tableColumn id="2" uniqueName="expto" name="expto">
<xmlColumnPr mapId="1" xpath="/expense-report/expense-item/@expto"
xmlDataType="string"/>
</tableColumn>
<tableColumn id="3" uniqueName="Date" name="Date">
<xmlColumnPr mapId="1" xpath="/expense-report/expense-item/Date"
xmlDataType="date"/>
</tableColumn>
<tableColumn id="4" uniqueName="expense" name="expense">
<xmlColumnPr mapId="1" xpath="/expense-report/expense-item/expense"
xmlDataType="double" />
</tableColumn>
<tableColumn id="5" uniqueName="description" name="description">
<xmlColumnPr mapId="1" xpath="/expense-report/expense-
item/description” xmlDataType="string"/>
</tableColumn>
<tableColumn id="6" uniqueName="misctype" name="misctype">
<xmlColumnPr mapId="1" xpath="/expense-report/expense-
item/Misc/@misctype"” xmlDataType="string"/>
</tableColumn>
</tableColumns>
<tableStyleInfo name="TableStyleMedium7" showFirstColumn="0"
showLastColumn="0" showRowStripes="1" showColumnStripes="0"/>
</table>

The column in the Table titled "type" is bound to an XML mapping, whose map object Id @mapIdis "1". The
@xpath value indicates an xpath expression to which this Table column is associated. In this example the Table
column "type" corresponds to @type, which is an attribute of the <expense-item> collection. The
corresponding custom schema definition for @type indicates a data type of string. This is stored as an xml
column property as well, in @xm1DataType. This is used for interpreting the data on import and export, and is
also used to format the cells for proper rendering in the range.

The remaining columns have similar properties set and can be understood from the discussion above.

3.15.4.4 Single Cell XML

Contents of tableSingleCells.xml

<singleXmlCells
xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/5/main">
<singleXmlCell id="1" name="Tablel" displayName="Tablel" r="B3"
connectionId="1">
<xmlCellPr id="1" uniqueName="currency">

220

O 00 N OO s~ W N

BOwW W W W oWwWw W W wWwWwWw N NNNNDNNNRNNRER P B R B P B B
O VW 0 N O O B W N B O ©W 0 N O 1 B W N P O W 0 N O Ul B W N B O

> D
N

Introduction to SpreadsheetML

<xmlPr mapId="1" xpath="/expense-report/@currency"”
xmlDataType="string"/>
</xmlCellPr>
</singleXmlCell>
<singleXmlCell id="2" name="Table2" displayName="Table2" r="C3"
connectionId="1">
<xmlCellPr id="1" uniqueName="detailed">
<xmlPr mapId="1" xpath="/expense-report/@detailed”
xmlDataType="boolean"/>
</xmlCellPr>
</singleXmlCell>
<singleXmlCell id="3" name="Table3" displayName="Table3" r="D3"
connectionId="1">
<xmlCellPr id="1" uniqueName="total-sum">
<xmlPr mapId="1" xpath="/expense-report/@total-sum"
xmlDataType="double"/>
</xmlCellPr>
</singleXmlCell>
<singleXmlCell id="4" name="Table4" displayName="Table4" r="B6"
connectionId="1">
<xmlCellPr id="1" uniqueName="First">
<xmlPr mapId="1" xpath="/expense-report/Person/First"
xmlDataType="string"/>
</xmlCellPr>
</singleXmlCell>
<singleXmlCell id="5" name="Table5" displayName="Table5" r="C6"
connectionId="1">
<xmlCellPr id="1" uniqueName="Last">
<xmlPr mapId="1" xpath="/expense-report/Person/Last"
xmlDataType="string"/>
</xmlCellPr>
</singleXmlCell>
<singleXmlCell id="6" name="Table6" displayName="Table6" r="D6"
connectionId="1">
<xmlCellPr id="1" uniqueName="Email">
<xmlPr mapId="1" xpath="/expense-report/Person/Email"
xmlDataType="string"/>
</xmlCellPr>
</singleXmlCell>
</singleXmlCells>

A single cell which has been mapped to an XML node is expressed in much the same way that an entire table is
expressed.

221

10

11

12

13

14

15

16

17

21

22

23

24

25

26

Introduction to SpreadsheetML

The <singleXmlCell> collection is the top level object, like the Table, which identifies the cell in question.

The <xm1CellPr> collection identifies the name for the only 'column' in this structure, the single cell. In this
way it is much like a table column definition and the table column-level properties.

The <xm1Pr> collection expresses the xml properties for this cell.

3.16 Formulas

3.16.1 Introduction

A SpreadsheetML formula is an equation that performs a calculation that typically involves the values of one or
more cells in one or more worksheets.

A formula is an expression that can contain the following: constants (§3.16.2), operators (§3.16.3), cell
references (§3.16.4), calls to functions (§3.16.5), and names (§3.16.6).

Consider the formula PI()*(A272). In this case,

e PI() resultsin a call to the function PI, which returns the value of m.

e The cell reference A2 returns the value in that cell.

e 2 s anumeric constant.

e The caret (") operator raises its left operand to the power of its right operand.
e The parentheses, (and), are used for grouping.

e The asterisk (*) operator performs multiplication of its two operands.

3.16.2 Constants

A constant is a predefined value that is not calculated, and, therefore, does not change. A constant can be any
of the following:

e Areal number

e The logical values TRUE and FALSE
e Astring literal

e Anarray constant

e An error constant

3.16.3 Operators

An operator is a symbol that specifies the type of operation to perform on one or more operands. There are
arithmetic, comparison, text, and reference operators.

Operators

Family Operator | Description Precedence

222

Introduction to SpreadsheetML

Operators

Reference
operators

Binary range operator, which takes two cell
reference (§3.16.3) operands, and results in
one reference to the cells inclusive of, and
between, those references. For example,
SUM(B5:C15), which references 11 cells.

Binary union operator, which takes two cell
reference (§3.16.3) operands, and results in
one reference to all those, possibly non-
contiguous, cells. For example,
SUM((B5:B15,D5:D15))), which
references 22 cells, 11 from column B, and 11
from column D. The grouping parentheses
are necessary to indicate that the comma is
an operator rather than a punctuator
separating two arguments.

space

Binary intersection operator, which takes two
cell reference (§3.16.3) operands, and results
in one reference to those, possibly non-
contiguous, cells that are common. If the
intersection is empty, the result is #NULL!.
For example, COUNT((B1:C1) (C1:D1)),
which results in a reference to C1, while
COUNT((B1:D1) (B1,D1)) resultsina
single reference to B1 and D1.

highest

Arithmetic
operators

Unary minus

Percentage (unary postfix), which divides its
operand by 100. For example, 10. 5%, which
results in ©.105.

Exponentiation

Multiplication

Division

Addition

Subtraction

Text operator

Text concatenation (Each of the two
operands is converted to text, if necessary,
before concatenation.)

Comparison
operators

Equal-to

Not-equal-to

Less-than

Less-than or equal-to

Greater-than

lowest

223

10

11
12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Introduction to SpreadsheetML

Operators

>= Greater-than-or-equal-to

Given that cell E38 contains the value 4, and cell F38 contains the value 2, the formula
((-1+E3872)*3-F38)/2
produces the result 21.5.

3.16.4 Cell References

Each set of horizontal cells in a worksheet is a row, and each set of vertical cells is a column. A cell's row and
column combination designates the location of that cell.

A cell reference designates one or more cells on the same worksheet. Using references, one can:

e Use data contained in different parts of the same worksheet in a single formula.

e Use the value from a single cell in several formulas.

e Refer to cells on other sheets in the same workbook, and even to other workbooks. (References to
cells in other workbooks are called links.)

There are two cell reference styles: A1 and R1C1.

e Inthe Al reference style, each row has a numeric heading numbered sequentially from the top down,
starting at 1. Each column has an alphabetic heading named sequentially from left-to-right, A—Z, then
AA-AZ, BA-BZ, ..., ZA-ZZ, AAA—AAZ, ABA—ABZ, and so on. Column letters are not case-sensitive.

A relative reference to a single cell is written as its column letter immediately followed by its row
number. A relative reference to a whole row is written as its row number. A relative reference to a
whole column is written as its column letter. A reference to a range of two or more cells is written as
two single-cell references separated by the binary range operator (:). An absolute A1l reference is
made up of a cell's column letter followed by its row number, with each being preceded by a dollar
character ($). For example, A2, B34, and B5:D8 are relative Al references. A2, B34, and
B5:D8 are absolute Al references. $A2, B$34, and $B5:D$8 are mixed Al references.

e Inthe R1C1 reference style, each row has a numeric heading numbered sequentially from the top
down, starting at 1. Each column has a numeric heading numbered sequentially from left-to-right,
starting at 1.

A whole row is referenced by omitting the column, and a whole column is referenced by omitting the
row. An absolute row or column reference uses absolute row or column numbers, respectively. A
relative row or column reference uses, respectively, row or column offsets from the cell containing the
formula, with a negative offset indicating a row to the left or a column above, and a positive offset
indicateing a row to the right or a column below. Specifying an offset of zero is equivalent to omitting

224

10

11

12
13
14

15

16
17

18
19

20

21
22

Introduction to SpreadsheetML

that offset and its delimiting brackets. For example, R[-2]C refers to the cell two rows up and in the
same column, R[2]C[2] refers to the cell two rows down and two columns to the right, R2C2 refers
to the cell in the second row and in the second column, R[-1] refers to the entire row above the
active cell, and R refers to the current row.

The R1C1 alternate reference style can only be used at runtime.

3.16.5 Functions

A function is a named formula that takes zero or more arguments, performs an operation, and, optionally,
returns a result. Some examples of function calls are: PI(), POWER(A1,B3), and SUM(C6:C10).

There are more than 300 predefined functions defined by this Office Open XML specification. User-defined
functions are also permitted.

3.16.6 Names

A name is an alias for a constant, a cell reference, or a formula. A name in a formula can make it easier to
understand the purpose of that formula. For example, the formula SUM(FirstQuarterSales) is easier to
identify than SUM(C20:C390).

3.16.7 Types and Values
Each expression has a type. SpreadsheetML formulas support the following types: array, error, logical, number,

and text.

An array value or constant represents a collection of one or more elements, whose values can have any type
(i.e., the elements of an array need not all have the same type).

3.16.8 Error values

The evaluation of an expression can result in an error having one of a number of error values. These error
values are:

Error Value Reason for Occurrence

#DIV/0! Intended to indicate when any number, including zero, is divided by zero.

#N/A Intended to indicate when a designated value is not available. For example, Some
functions, such as SUMX2MY2, perform a series of operations on corresponding
elements in two arrays. If those arrays do not have the same number of elements,
then for some elements in the longer array, there are no corresponding elements in
the shorter one; that is, one or more values in the shorter array are not available.
This error value can be produced by calling the function NA.

#NAME? Intended to indicate when what looks like a name is used, but no such name has been
defined. For example, XYZ/ 3, where XYZ is not a defined name. Total is & A19,
where neither Total nor is is a defined name. Presumably, "Total is " & Al@
was intended. SUM(A1C10), where the range Al:C10 was intended.

225

10

11
12
13
14

15
16

17
18

Introduction to SpreadsheetML

Error Value

Reason for Occurrence

#NULL!

Intended to indicate when two areas are required to intersect, but do not. For
example, In the case of SUM(B1 C1), the space between B1 and C1 is treated as the
binary intersection operator, when a comma was intended.

#NUM!

Intended to indicate when an argument to a function has a compatible type, but has a
value that is outside the domain over which that function is defined. (This is known as
a domain error.) For example, Certain calls to ASIN, ATANH, FACT, and SQRT might
result in domain errors.

Intended to indicate that the result of a function cannot be represented in a value of
the specified type, typically due to extreme magnitude. (This is known as a range
error.) For example, FACT (1000) might result in a range error.

#REF!

Intended to indicate when a cell reference is invalid. For example, If a formula
contains a reference to a cell, and then the row or column containing that cell is
deleted, a #REF ! error results. If a worksheet does not support 20,001 columns,
OFFSET(A1,0,20000) will result in a #REF! error.

#VALUE!

Intended to indicate when an incompatible type argument is passed to a function, or
an incompatible type operand is used with an operator. For example, In the case of a
function argument, a number was expected, but text was provided. In the case of
1+"ABC", the binary addition operator is not defined for text.

3.16.9 Dates and Times

Each unique instant in SpreadsheetML time is represented as a distinct non-negative numeric serial value,

which is made up of an integer date component and a fractional time component. As dates and times are

numeric values, they can take part in arithmetic operations.

Numerous functions take as arguments one or more serial values or strings representing dates and/or times.
Functions that care only about the date shall ignore any time information that is provided. Functions that care
only about the time shall ignore any date information that is provided.

3.16.9.1 Date Representation

Going forward in time, the date component of a serial value increases by 1 each day.

There are two different bases for serial values:

e Inthe 1900 date base system, the lower limit is January 1, 1900, which has serial value 1. The upper-
limit is December 31, 9999, which has serial value 2,958,465.

e Inthe 1904 date base system, the lower limit is January 1, 1904, which has serial value 0. The upper-
limit is December 31, 9999, which has serial value 2,957,003.

As to which date base system an implementation uses by default or whether it allows its users to switch

between date base systems, is unspecified.

For the 1900 date base system:

226

javascript:AppendPopup(this,'IDH_xldefOperand_2')

10

11

12
13

14

15

16
17
18
19
20

21

22

23

24
25
26
27
28

29
30
31
32
33

Introduction to SpreadsheetML

DATEVALUE("01-Jan-1900") results in the serial value 1.0000000...
DATEVALUE("@3-Feb-1910") results in the serial value 3687 .0000000...
DATEVALUE("@1-Feb-2006") results in the serial value 38749 .0000000...
DATEVALUE("31-Dec-9999") results in the serial value 2958465 .0000000...

For the 1904 date base system:

DATEVALUE("@1-Jan-1904") results in the serial value 0.0000000...
DATEVALUE("@3-Feb-1910") results in the serial value 2225 .0000000...
DATEVALUE("@1-Feb-2006") results in the serial value 37287 .0000000...
DATEVALUE("31-Dec-9999") results in the serial value 2957003 . 0000000...

3.16.9.2 Time Representation

The time component of a serial value ranges in value from 0—-0.99999999, and represents times from 0:00:00
(12:00:00 AM) to 23:59:59 (11:59:59 P.M.), respectively.

Going forward in time, the time component of a serial value increases by 1/86,400 each second. (As such, the
time 12:00 has a serial value time component of 0.5.)

TIMEVALUE("00:00:00") results in the serial value ©.0000000...
TIMEVALUE("@0:00:01") results in the serial value ©.0000115...
TIMEVALUE("10:05:54") results in the serial value ©.4207639...
TIMEVALUE("12:00:00") results in the serial value 0.5000000...
TIMEVALUE("23:59:59") results in the serial value ©.9999884...

3.16.9.3 Combined Date and Time Representation

Any date component can be added to any time component to produce a serial value for that date/time
combination.

For the 1900 date base system:

DATE(1910,2,3)+4TIME(10,5,54) results in the serial value 3687 .4207639...
DATE(1900,1,1)+TIME(12,0,0) resultsin the serial value 1.5000000...
DATE(9999,12,31)+TIME(23,59,59) results in the serial value 2958465 .9999884...

For the 1904 date base system:
DATE(1910,2,3)+TIME(10,5,54) results in the serial value 2225.4207639...

DATE(1904,1,1)+TIME(12,0,0) results in the serial value ©.5000000...
DATE(9999,12,31)+TIME(23,59,59) results in the serial value 2957003.9999884...

227

10
11
12
13
14
15
16
17
18

19
20

21
22
23
24
25
26
27
28
29

30

Introduction to SpreadsheetML

3.16.10 XML Representation

A formula is represented in a worksheet's XML by an f element that contains the text of the formula, and a

v element that contains the text version of the last computed value for that formula. This pair of elements is
inside a c element, which is, in turn, is inside a row element. Consider the scalar formula SQRT(C272+D2"2),
where C2 refers to a cell containing the number 12.5, and D2 refers to a cell containing the number 9.6. The
corresponding XML might be as follows:

<row r="2" spans="2:4">
<c r="B2" s="40">
<F>SQRT(C2724D272)</F>
<v>15.761027885261798</v>
</c>
<c r="C2" s="0">
<v>12.5</v>

</c>
<c r="D2" s="0">
<v>9.6</v>
</c>
</row>

In the scalar formula CONCATENATE("The total is ",C7," units"), C7 refersto a cell containing the
number 23. The corresponding XML might be as follows:

<row r="7" spans="2:4" ht="285">
<c r="B7" s="4" t="str">
<'F>CONCATENATE("The total is ",C7," units")</f>
<v>The total is 23 units</v>

</c>
<c r="C7" s="0">
<v>23</v>
</c>
</row>

As the function CONCATENATE returns a string, the value for the cell's t attribute is str.

228

10

11

12

13

14

15

16

17

18

19

20

21
22

Introduction to PresentationML

4. Introduction to PresentationML

This clause is informative.
This clause contains a detailed introduction to the structure of a PresentationML document.
The PresentationML file format can be broken down into the following subjects:

e Presentation
e Slides

e Slide Content
e Animation

There are other schemas—most notably DrawingML—that make up a sizeable chunk of the PresentationML
file format. These schemas are addressed separately in §5.

4.1 Basics

4.1.1 Introduction

This subclause provides a high-level overview of the content described in the following schemas: pml-
baseTypes.xsd, pml-presentation.xsd, pml-presentationProperties.xsd, and pml-viewProperties.xsd.

The PresentationML file format can be broken down into the following subjects:

e Presentation
o Slides

e Slide Content
e Animation

The best way to understand the content in each of these subjects is to cover them in that particular order.

The eight schemas that collectively represent the PresentationML file format can be grouped by subject as

follows:
Presentation Slide Slide content Animation
pml-baseTypes.xsd pml-slide.xsd pml- pml-
embedding.xsd animationInfo.xsd
pml-presentation.xsd pml-comments.xsd
pml-
presentationProperties.xsd
pml-viewProperties.xsd

229

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26
27
28
29
30
31
32
33
34
35

Introduction to PresentationML

There are other schemas—most notably DrawingML—that make up a sizeable chunk of the PresentationML
file format. These schemas are addressed separately.

This subclause introduces the first subject, “Presentation”. Other subclauses build on this foundation.

4.1.2 Basic Utilities

The schema pml-baseTypes.xsd contains a set of complex types and simple types that are used by other
schemas. The types, or utilities, are used in a variety of cases. Their single implementation provides for rapid
and less error-prone changes throughout an implementation.

To provide some insight into the type of information that is being repurposed, here is a sample of these
utilities:

e Empty Element

e Name

e Direction

e Index and Index Range
e Slide Show ID

e Slide List Choice

e Slide Relationship

e Customer Data

e Future Extensibility

Each of these is discussed in the following subclauses.

4.1.2.1 Empty Element

Sometimes, the simple presence of an element is sufficient to convey meaning. That is, in some cases, you do
not necessarily need information to be a Boolean, an integer, or complex type.

A simple example is the Show Type element group. In this case, a slide show can be one of three types:
present, browse, or kiosk. The schema for this element group is as follows:

<xsd:group name="EG_ShowType">
<xsd:choice>
<xsd:element name="present" type="CT_Empty">
</xsd:element>
<xsd:element name="browse" type="CT_ShowInfoBrowse">
</xsd:element>
<xsd:element name="kiosk" type="CT_Empty">
</xsd:element>
</xsd:choice>
</xsd:group>

230

10

11

12

13

14
15

16

17
18
19
20
21

22

23

24
25
26

27
28
29
30
31
32
33

Introduction to PresentationML

41.2.2 Name

Many constructs within a presentation have names associated with them. In some cases, the names are
machine-generated, such as shape names (e.g., rectanglel), while others are user-defined, such as slide shows
(e.g., customer-ready).

In one implementation the name simple type is simply an xsd:string. The intent is to restrict this to the
appropriate pattern allowed for named constructs. The tentative restriction pattern is:

[\t]*["~ \t].*

41.2.3 Direction

This multi-purpose simple type is used to convey horizontal versus vertical direction of a variety of types. Such
usage can be found in the definition of slide transitions and various shape effects.

4.1.2.4 Index and Index Range

These two utilities are generally used to denote a contiguous set of items within a list. The classic example of
usage would be the selection of a set of slides to print.

From a schema-perspective, there is no way to enforce that the start index be equal to or less than the end
index.

4.1.2.5 Slide Show ID

This defines the ID for a slide show (also called a custom show). Because slide shows can be named, and that
name can change, an implementation needs a method of referring to a slide show that can withstand name
changes made by the user. In many cases, for example, with a slide, we can leverage the fact that each slide
has a part within the package, in which case we can use the relationship ID. However, since there is no part for
each slide show, we are forced to generate an unsigned integer for each slide show and use that.

There is nothing in the schema that prevents two or more slide shows from having the same ID.

41.2.6 Slide List Choice

There are many cases in which a user needs to specify a set of slides for an operation. The canonical example
is what slides to include in your slide show. Because this operation is frequently required in the file format,
one implementation has provided a utility to facilitate this:

<xsd:group name="EG_SlidelistChoice">
<xsd:choice>
<xsd:element name="sldAll" type="CT_Empty" />
<xsd:element name="sldRg" type="CT_IndexRange" />
<xsd:element name="custShow" type="CT_CustomShowId" />
</xsd:choice>
</xsd:group>

231

10
11
12
13
14
15

16

17
18
19
20
21

22

23
24
25
26

27

28
29

30
31
32
33

34
35
36

Introduction to PresentationML

As the schema above declares, when selecting a set of slides, the user can select all of the slides, a slide range
(by declaring a pair of start and end indices) or a particular custom show.

4.1.2.7 Slide Relationship

As described in the Slide Show ID paragraphs above, there are many situations where the format needs to
store an ordered list of slides, and does so by storing their slide IDs. This is implemented using two types: a list
entry complex type and a list complex type:

<xsd:complexType name="CT_SlideRelationshipListEntry">
<xsd:attribute ref="r:id" use="required"/>
</xsd:complexType>
<xsd:complexType name="CT_SlideRelationshipList">
<xsd:sequence>
<xsd:element name="sld" type="CT_SlideRelationshipListEntry"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

41.2.8 Customer Data

There is a set of utilities that facilitate the storage of customer XML data within the file format. Although a
topic for a separate paper, essentially, this functionality comes down to the ability to store customer-defined
XML in the file format in a way that it can be easily queried, modified and/or surfaced in the presentation.
Suffice it to say, the data is stored in a separate part within the package, and hence the utility pairs the object
using it with the part within the package.

4.1.2.9 Future Extensibility

There is functionality that provides the ability to extend a subset of objects within the file format for inclusion
of additional data over the lifetime of the file format. The utilities provide both the ability to add an
alternative representation (e.g., provide a raster image in addition to the XML data for a diagram) as well as
additional properties to the objects.

4.1.3 The Presentation Object

The schema pml-presentation.xsd defines the content of the principal or start part for a PresentationML
document. This content includes both structural and presentation-level data for the presentation.

Astute readers will quickly identify an apparent duplication of presentation-level data, as there is also a
separate schema file, pml-presentationProperties.xsd, which contains presentation-level data. That being said,
there is actually no duplication. Rather, the differentiation of what presentation-level data goes into which
part is based on two user scenarios: document signatures and document sanitization.

In a document signature scenario, assume a user digitally signs a presentation. There exist two types of data
within the presentation package: data which changes the “content” of the presentation and data which is
intended to configure an editor or the behavior of an editor. In the first case, any modification to data which

232

10
11
12
13

14
15
16
17

18
19

20

21
22

23
24

25

26

27

28

29

30
31
32

33
34

Introduction to PresentationML

changes the “content” of the presentation must invalidate the signature; in the second case, any modification
to that data should not invalidate the signature.

A classic example of this scenario deals with Kinsoku information and the publish path in the HTML settings. If
the user changes the Kinsoku information in a file, the file will look (and potentially mean) something different.
This is in contrast to a user setting a new HTML publish path for their particular computer.

In a document sanitization scenario, users want to remove all non-necessary information from the file. A
typical usage case would be posting a presentation to a company’s Internet site. In this case, you don’t want
certain configuration information publicly available. The ideal manner of removal would be to remove an
entire part from the presentation package as opposed to editing a part from a package.

Going back to our Kinsoku and HTML publish path example above, the Kinsoku information needs to remain
with the file. The HTML publish path could give away internal information about web servers that could be
used to facilitate an attack or, more likely, simply provide information about the author to the public (e.g., the
path c:\\documents and settings\shawnv\webpages strongly implies that “shawnv” published this document).

Going back to the original question—what presentation-level data goes in which part—we see that data that
will not invalidate a digital signature or data that should be removed during a sanitization pass should be
stored in the part associated with the pml-presentationProperties.xsd schema and other presentation-level
data should be stored in the part associated with the pml-presentation.xsd schema.

In addition to structural and presentation-level data defined by this schema, there are also definitions for
handling customer data and future extensibility. Again, both of these will be addressed in additional papers.

4.1.3.1 Structural Information

From a structural information perspective, there are two sets of data defined in this schema: core lists and
sizes.

The schema first defines a number of lists that serve as the foundation for most objects in the presentation.
These lists are as follows:

o Slide IDs

e Slide Masters

e Notes Masters

e Handout Masters
e Custom Shows

It is essential that the reader fully understand the implementation of usage of these lists as they are the
foundation for almost all solutions that operate—open, interrogate, modify, write—against the
PresentationML file format.

As mentioned above, the lists are defined as a part of list entry and list complex types. The slide master list is
defined as follows:

233

O 00 N OO s~ W N

=
o

11
12
13
14

15

16

17

18

19

20

21

22

23
24

25
26

27

Introduction to PresentationML

<xsd:complexType name="CT_SlideMasterIdListEntry">

<xsd:attribute ref="r:id" use="required" />
</xsd:complexType>
<xsd:complexType name="CT_SlideMasterIdList">

<xsd:sequence>

<xsd:element name="sldMasterId" type="CT_SlideMasterIdListEntry"
minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

Although not complex or difficult to understand, the lists are called out because they are vital to any solution.

The next pieces of structural information are the sizes for the slides and the notes slides. By storing this
information at the presentation level, the implication is that all slides (or all notes slides) in a presentation
have the same size. This further implies that all slides in a presentation share the same orientation (i.e., they
are all landscape-oriented or all portrait-oriented).

4.1.3.2 Presentation-Level Properties

The presentation-level properties defined in this schema can be grouped into the following groupings:

o Text-Related

e Save-Related

e Editor-Related

e Content-Related

A description for each property within each group follows.

4.1.3.2.1 Text-Related Properties

The first property stores information related to the Kinsoku settings. Kinsoku settings define the list of
characters that are not allowed to start or end a line of text for a given East Asian language.

The schema definition of the Kinsoku settings is relatively straightforward: identify the language, the set of
invalid start characters, and the set of invalid end characters:

<xsd:complexType name="CT_Kinsoku">
<xsd:attribute name="lang" type="xsd:string" use="optional”>
</xsd:attribute>
<xsd:attribute name="invalStChars" type="xsd:string" use="required">
</xsd:attribute>
<xsd:attribute name="invalEndChars" type="xsd:string" use="required">
</xsd:attribute>

</xsd:complexType>

The second property stores a flag to use strict characters for starting and ending a line of Japanese text.
Naturally, this is a simple Boolean attribute:

234

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32
33
34
35
36

37
38
39

Introduction to PresentationML

<xsd:attribute name="strictFirstAndLastChars"
type="xsd:boolean" use="optional" default="true"/>

The final text-related property stores information related to any fonts that are embedded in the presentation.
To do this, we need to store a list of embedded fonts that reference each part that stores font data (generally,
there is a one-font-to-one-part mapping, although this is not a strict rule). This information is defined using
three complex types:

<xsd:complexType name="CT_EmbeddedFontList">
<xsd:sequence>
<xsd:element name="embeddedFont" type="CT_EmbeddedFontListEntry"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CT_EmbeddedFontListEntry">
<xsd:sequence>
<xsd:element name="font" type="a:CT_TextFont" minOccurs="1"
maxOccurs="1" />
<xsd:element name="regular" type="CT_EmbeddedFontDataId"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="bold" type="CT_EmbeddedFontDatald"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="italic" type="CT_EmbeddedFontDatald"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="boldItalic" type="CT_EmbeddedFontDataId"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CT_EmbeddedFontDataId" >
<xsd:attribute ref="r:id" use="required"/>
</xsd:complexType>

4.1.3.2.2 Save-Related Properties

There is a set of properties that indicate to the editor what should be saved as part of the presentation.

The first such property controls the inclusion of Personally Identifiable Information (“PII”). Pllis any
information that can be used to identify the author or contributor to a presentation. And while there are cases
where this information is exposed visually to the user (e.g., author name in a comment shape), there are other
cases where the information is not immediately evident to the user (e.g., the document author name in the list
of document properties).

An implementation can provide a mechanism by which the author of a presentation can configure a file to
always remove any Pll that might otherwise by normally included during a regular save operation. While not a
guarantee that no Pll is stored in the file (e.g., consider a shape with my name in it—in some cases it describes

235

10
11

12
13
14

15
16
17
18

19
20
21
22

23

24
25
26
27
28

29
30
31
32

33
34
35

Introduction to PresentationML

content in the file [my position in my group’s organization chart] whereas in others it is an editorial directive
[“check with ShawnV on this point”]. Given this ambiguity, we cannot solve all cases of this. As a result, this is
more a convenience feature than a privacy management feature.

The second set of save-related properties has two groupings of properties. The first controls whether or not
fonts will be embedded into the package representing the presentation. The second, enabled by setting the
first, allows an implementation to optimize such font embedding to keep the size minimal, at the cost of future
editing on other machines.

<xsd:attribute name="embedTrueTypeFonts" type="xsd:boolean"
use="optional"” default="false"/>

<xsd:attribute name="saveSubsetFonts" type="xsd:boolean"
use="optional" default="false"/>

The user scenario behind these properties is as follows. Assume you are putting together a presentation to
distribute to external customers. You happen to use an East Asian font with an on-disk file size of around
5 megabytes.

Assuming that this font is not a standard font that is widely distributed, not including this font will cause font
substitution when the presentation is opened on machines that don’t have a copy of the font. In any case, this
can radically change the visual appearance of the presentation; in some cases, it can render the presentation
unreadable.

Because you cannot afford the presentation to be unreadable or to look unprofessional, you decide to embed
the font. By default, the implementation will set embedTrueTypeFonts to true and embed the entire

5 megabyte font file in the presentation package. This will clearly bloat the file, but will ensure that anyone
viewing or editing this file will have the same font experience as you originally had (subject to licensing
restrictions, of course).

Since you are distributing the presentation, and your primary purpose is for people to view the presentation,
you can reduce the amount of font data embedded in the presentation package. By setting the second
property (saveSubsetFonts) to true, only those characters in the font that were actually used to create the
presentation are saved. This yields less font data stored in the file at the cost of not being able to use unused
characters in future edits of the presentation on different machines.

The third property related to saving, controls whether or not an implementation can automatically compress
pictures contained in the presentation. This is particularly important given the proliferation of digital cameras
and scanners and the increasing importance of small files (e.g., to save network bandwidth, reduce storage
required for mail and file servers, etc.).

The final property in this set specifies a password that is required to enable editing of the file using the
implementation. Because this is a convenience feature intended to prevent accidental changes to information,
it is stored in clear text as an xsd:string.

236

10
11

12
13
14

15
16
17
18
19

20

21

22
23
24
25
26

27
28
29

30
31
32

33
34
35

Introduction to PresentationML

By storing this information in the file, the implementation will prompt the user for this password in order to
open the file read/write; if the user does not provide the correct modify password, the implementation will
open the file read-only.

4.1.3.2.3 Editor-Related Properties

The presentation file itself contains data that provide configuration information for the implementation’s
editor.

For example, the presentation can define a set of smart tags for use while editing the particular presentation.
Because Smart Tags are stored in a separate part, the presentation object contains the relationship ID of the
Smart Tag part.

In a fully functioning OLE server, PresentationML objects can be embedded into OLE containers, during which
time a customer can set a zoom scale. This is stored in the file as a percentage called serverZoom.

An internationalized application might support configuring the editor to respect different screen orientations.
For example, in regions of the world where Complex Scripts are in use, it is customary to orient the screen
right-to-left. As such, a presentation can request the editor reconfigure itself for such usage scenarios.

Finally, due to changes in the file format and functionality (e.g., graphics and text engines), PresentationML
introduces some end-user complexity when working collaboratively with other customers using older versions.
To help remedy this, an implementation might support a Compatibility Mode, which restricts the functionality
exposed by the editor to optimize the output for the best cross-version collaboration story possible. As a
result, each presentation needs to opt-into this mode.

4.1.3.2.4 Content-Related Properties

This set of properties is related to the actual content in the presentation.

End-users can define the starting slide number for numbered slides in each presentation. While it typically
starts at one, the user can select any positive number to begin slide numbering. The primary user scenario is
when compiling a mega-presentation that is a collection of multiple presentations. A secondary user scenario
is when including a presentation in the middle of or at the end of a printed document where you want the
slide/page numbers to continue.

Another content-related property controls whether or not header/footer placeholders are to be shown on title
slides. In many cases users will use special shapes called header and footer placeholder that contain built-in
field codes that control the display of various sorts of information like the date/time and slide number.

In most cases, users like to keep their title slides as simple as possible (much like in the printed world where
you want your first page to be clean and streamlined) and hence do not want data like date/times and slide
numbers to show up on such slides. This attribute defines this presentation-wide.

The final property relates to creating photo albums. The implementation has a feature that allows the user to
generate automatically a presentation based on a set of pictures. During this process, the user can select from
a variety of settings, including, but not limited to, what pictures to include, the layout of the pictures on the

237

10

11
12
13

14

15
16
17

18

19
20
21
22
23

24
25
26

27
28

29
30
31
32
33

34
35

Introduction to PresentationML

slides (e.g., one picture per slide, two pictures per slide, etc.), what type of frame shape to use, etc. All of this
information is stored in the presentation for future photo album creation.

4.1.4 Presentation Properties

Those properties that apply to the presentation as a whole, and that are likely to be removed during document
sanitization, or are not going to invalidate a digital signature, are defined in pml-presentationProperties.xsd.
These properties can be grouped into three primary groupings.

e HTML Publish Properties
e Print Properties

e Slide Show Properties

e View Properties

In addition to this grouping, there are properties that define a Most Recently Used (“MRU") list of colors as
well as providing for future extensibility. (The MRU will be discussed in a DrawingML paper and the
extensibility will be discussed in a similar paper.)

4.1.4.1 HTML Publish Properties

An implementation must have the ability to save (and publish) a presentation to a web-friendly format like
HTML or MHTML. Various parameters are used to configure the application for saving such formats as well as
to control what content gets generated. The parameters that configure the application are the HTML Publish
properties whereas the content properties are the Web Properties.

The HTML Publish properties provide the author with the ability to control what content gets displayed in the
browser when the resulting file—either HTML or MHTML—is viewed using that type of an application. For
example, the speaker notes can either be displayed in the frameset or can be hidden from view. This is
particularly useful when a speaker’s notes are not necessarily in a customer-ready format. It’s useful but not
necessarily secure.

The author can also specify the title to be displayed in the browser. Although this defaults to the actual file
name, or if that is missing, to the content of the first slide’s title placeholder, it can be overridden by the
author.

Finally the author can specify a publish path to use when saving this file in this format. This is particularly
useful for two reasons.

First, because there is a transformation happening, it sometimes takes a few iterations of publishing to get the
browser-based experience to be exactly what you want. A classic example of this is the differing animation
capabilities between the implementation and certain browsers: it is important to verify that the change in
animation behavior continues to work after publishing; if you are not satisfied with the experience, sometimes
you need to change the animation in the implementation and republish.

The second reason storing the path is useful is that web server paths can be cumbersome and are often not on
the tip of each user’s tongue. This allows the user to specify the path once and then publish using the same

238

22

23

24

25
26

27
28
29
30

31
32
33
34

35
36

Introduction to PresentationML

location without having to re-specify it. Naturally, being stored in the file format, this allows this data to
persist across session.

Indirectly, the HTML Publish properties can prime the Web Properties by defining a target web browser
generation (i.e., third, fourth or third and fourth). This is done by setting the appropriate
ST_HtmlIPublishWebBrowserSupport attribute:

<xsd:complexType name="CT_HtmlPublishProperties">
<xsd:sequence>
<xsd:group ref="EG_SlidelListChoice" minOccurs="1" maxOccurs="1">
</xsd:group>
</xsd:sequence>
<xsd:attribute name="showSpeakerNotes" type="xsd:boolean"
use="optional" default="true" />
<xsd:attribute name="pubBrowser"
type="ST_HtmlPublishWebBrowserSupport"
use="optional" default="v3v4" />
<xsd:attribute name="title" type="xsd:string" use="optional”
default="">
</xsd:attribute>
<xsd:attribute ref="r:id" use="required">
</xsd:attribute>
</xsd:complexType>

By providing a target generation, the Web Properties will be set to a predefined package defined for the
specified browser generation. Naturally, the user can override the individual Web Property settings.

41411 Web Properties

As mentioned in the previous subclause, these properties configure the output of the presentation when saved
using the HTML or MHTML formats. In this case, a number of parameters can be controlled.

In all multi-slide cases where the presentation is saved using one of these formats, the implementation will
create a frameset to bring the various parts of a presentation—the slide content, the speaker notes and the
outline—together as well as provide for simple navigation. The color of the HTML frames, the background
used and the user interface controls can be controlled to leverage browser settings, use high contrast, etc.

The author can also control how much interactivity will be exposed in the resulting output. For example, the
user may elect to disable slide animations and transitions and opt for a more static presentation. Similarly, the
author may elect to disable certain scripting features like the ability to resize dynamically the output to match
the size of the browser window.

Somewhat related to this is the ability to specify the target screen size which is especially important when
targeting the earlier browser generations or user environments where features like JavaScript are disabled.

239

10
11
12

13

14

15
16
17

18
19
20
21
22
23

24

25

26
27

28

29

30
31
32
33
34
35

Introduction to PresentationML

For an internationalized implementation, there is the ability to control the encoding of text used in the
generation of the HTML or MHTML output.

Finally there are a set of parameters that configure the on-disk storage of the resulting output. For example, if
the customer knows something about the machine configurations of her audience, she can opt to use better
raster graphic formats like PNG that support alpha transparency or elect to include Vector Markup Language
(“VML”) representations only for vector images.

The customer can also provide some indication as to how the output will be used. If the customer knows that
the output will be used like regular files (perhaps passed around on CDs or moved between file shares) the
user may elect to store the files in a folder to ensure that a straggling file is not lost; if, however, the target
scenario is to put the files on a web server, the user can skip the folder and save the individual files in a flat
directory. Similarly, if the customer knows that they are using a web server that only handles “8.3” file names,
they can configure the implementation to generate files using names that are “8.3” compliant, as opposed to
using long file names that may otherwise cause such web servers problems.

4.1.4.2 Print Options Properties

There is also a set of properties that control the default print behavior for a presentation. The inclusion of this
information in the file format simply primes the Print dialog when this presentation is used. It does not force
options nor does it represent the last-used set of print options for a presentation.

Using these properties, the author can control the type of output printed. For example, in some cases, authors
need to print their slides (one slide per printed page) while in other cases, they want to provide printed
handouts for the audience on which to take their own notes (handout pages that can contain anywhere from
three to nine slides per printed page, as well as option lines for note taking). In other cases, the author would
like to print out notes where each printed page has one slide (anchored at the top) and a text box (anchored at
the bottom) with the speaker notes included or simply print the textual outline of the presentation.

The author can also control whether or not hidden slides are included in the printed output, as well as whether
or not the output is sent to the printer in color, in grayscale, or in pure black and white.

There is also a set of properties that the author can set that determine if slides are framed on the printed
page, if the slides are scaled up to the printed page (e.g., consider non 4x3 aspect ratio slides), etc.

4.1.4.3 Slide Show Properties

This set of presentation-level properties controls the default slide show.

Among the parameters that can be controlled is one that defines the type of slide show. Generally, the classic
slide show is characterized by a presenter presenting the presentation to an audience. The presenter controls
the flow of the presentation, etc. This is referred to as a “present” slide show. In some cases, however, the
presentation is distributed and individuals walk themselves through the slide show. This is referred to as a
“browse” slide show. Finally, there are cases where a slide show is prepackaged and used as a kiosk; naturally,
it is referred to as a “kiosk” slide show.

240

10

11

12

13

14

15

16

17

18
19

20
21

22

23

Introduction to PresentationML

Furthermore, the customer can control which slides are to be included in the slide show, what color the pen
should be, etc.

Finally, the customer can control various interactivity settings that are to be used for the slide show. This
provides the customer the ability to configure their slide show outside the typical settings for a particular slide
show type. For example, the user may create a slide show that has a pre-configured animation built with
timings (i.e., the time between particular builds or the time between slide transitions), even though she is
going to be presenting the content to an audience.

41.4.4 View Properties

The schema pml-viewProperties.xsd defines the properties on all of the views found in the implementation.
MS’s implementation currently supports the following views:

e Slide View

e Slide Master View
e Notes View

e Handout View

e Notes Master View
e Qutline View

e Slide Sorter View

Additionally, the default view, Normal View, is a composite view that pulls from three multiple view property
sets.

In general, there is a significant amount of commonality among views. For example, each view contains four
common components:

Scale The zoom scale for the view

Origin The origin of the view

Variable Scaling A special zoom scale that configures the application to
fit the content of the view into whatever view size is
provided

Draft Mode Controls whether or not a view is in draft mode which
is a mode designed to provide the fastest
editing/redraw possible by dropping properties like
font face, certain colors, pictures, etc.

For those views based on a slide (e.g., slide master view) there are additional common components:

Guide List Represents the list of drawing guides for this view

Guide Properties | Represents guide properties like direction and position
of each guide in the view

241

10
11

12

13
14
15
16
17
18

19

20
21
22

23
24
25
26
27
28
29
30

31

Introduction to PresentationML

Guide List Represents the list of drawing guides for this view
Guide Settings Determines if guides should be shown for this view
Snap Settings Determines if shapes should be snapped to the grid

and/or snapped to other shapes for this view

4.2 Slides, Masters, Layouts, and Placeholders

4.2.1 Introduction

This subclause provides a high-level overview of the content described in the pml-slide.xsd schema.
The important aspects of the PresentationML Slides file format are introduced in the following order.

e Masters

e Presentation Slide
e Slide Notes

e Slide Layouts

This subclause provides a structured introduction to the slides portion of the PresentationML file format. Other
subclauses build on this foundation and explain more about topics such as animation, comments, and the
presentation object.

4.2.2 Masters

For slides the notion of hierarchy and inheritance applies. A master represents a common layout for the page
type in question. For instance, if a slide master had a background set to a gradient fill then all slides referencing
to that slide master would have the same background. In addition to setting common attributes of the slides
such as background and styling information, the slide master also provides numerous layouts within itself in
order to make a presentation that both follows a layout theme and incorporates a high level of variety. The
variety is supported through slide layouts which will be discussed in a later section.

4221 Slide Master

A slide master is a master that is tied specifically to presentation slides. The presentation slides are those that
are shown during a presentation. These will be discussed in more detail in a later section on the Presentation
Slide. Within a slide master are some common structural elements that should be understood, namely:

e Common Data - Common properties that will be inherited by the other slides as well as layout
information for presentation slides based on the master slide.

e Header and Footer - Header and footer properties for the presentation slides to inherit.

e Color Map - Color Mapping for the presentation slides to inherit.

e Text Styles - Text Styling information to be used within each placeholder on a presentation slide.

e Slide Layout List - A list of slide layouts that provide the variety needed within any presentation. These
are applied to a presentation slide which will inherit both the layout of the slide layout in addition to
the slide design of the slide master.

e Timing Information - Common timing properties used for animation, controls, etc.

242

O 00 N O

10
11
12

13

Introduction to PresentationML

e Transition Information - Slide transitioning information to be inherited by each presentation slide.

* Click to edit Master text styles

—Second level
+ Third level

— Fourth level
» Fifth level

Slides inheriting information from a slide master do have the ability to specify properties that override those
specified in the slide master.

4.2.2.2 Notes Master

A notes master is a master that specifies properties for slide notes pages. The notes page associated with a
presentation slide stores a thumbnail of the presentation slide as well as the presenter's notes about the slide.
These will be discussed in more detail in a later section. Within a notes master the important common
structural elements are:

e Common Data - Common properties that will be inherited by other notes pages as well as the layout
information for notes pages based on this master slide. The notes master serves as the pattern for all
notes pages.

e Color Map - Color Mapping for the notes pages to inherit.

243

10
11

12

Introduction to PresentationML

Click to edit Master title style

* Click toadit Master textstyles

Notes pages inheriting information from a notes master do have the ability to specify properties that override
those specified in the notes master.

4.2.2.3 Handout Master

A handout master determines the layout for all handout pages. The handout pages consist of a place to store a
thumbnail of each slide with additional elements such as header, footer or graphical information. These will be
discussed in more detail in a later section. Within a handout master are some common structural elements
that should be understood, namely the following.

e Common Slide Data - Common properties and layout information that will be used by all handout
pages. The handout master represents how each handout page will look.

o Header and Footer - Header and footer properties for all handout pages.

e Color Map - Color Mapping for all handout pages.

244

10
11
12
13

14

15

4.2.3 Presentation Slide

Introduction to PresentationML

A presentation slide is a slide that inherits slide properties from the corresponding slide master and layout

information from the corresponding slide layout. Each presentation slide has the ability to override any of this

information that it chooses by specifying local attribute values within the presentation slide. Much like the

master slide, the presentation slide contains some common structural elements, namely the following.

e Common Slide Data - Common properties and layout information for this presentation slide. Properties

listed here that conflict with existing elements specified in the slide master will override those

specified in the slide master.

e Color Map Override - Color Mapping that will override the inherited color mapping for this

presentation slide.

e Timing Information - Common timing properties used for animation, controls, etc.

e Transition Information - Slide transitioning information for this presentation slide.

The above list defines the areas that can be used to override inherited components from the master slide and

the layout slide. That is, these can be specifically defined on a per-slide basis via the above elements.

245

10

11

Introduction to PresentationML

Sample Presentation

Company Employee

4.2.4 Notes Page

A notes page inherits slide properties from the corresponding notes master. The initial layout for a notes page
is defined by the single notes master slide. Each notes page has the ability to override any of this information
that it chooses by specifying local attribute values within the notes slide. Much like the notes master, the notes
page contains some common structural elements, namely the following.

e Common Slide Data - Common properties and layout information for this notes page.
e Color Map Override - Color Mapping to override the inherited color mapping for this notes page.

The above list defines the areas that can be used to override inherited components from the notes master.
That is, these can be specifically defined on a per-slide basis via the above elements.

Sample Presentation

Sampie Notes
Sampie Notes
Sampie Notes

246

10
11
12
13
14
15
16
17

20

21

22

23
24

4.2.5

Introduction to PresentationML

Slide Layouts

A slide layout inherits slide properties from the corresponding slide master and sets layout information for all
presentation slides that utilize this layout. Each presentation slide has the ability to override any of this
information that it chooses by specifying local attribute values within the presentation slide. Much like the

slide master, the slide layout contains some common structural elements:

Common Slide Data - Common properties and layout information that will override properties set
within the slide master but will be inherited by all presentation slides that utilize this layout.

Color Map Override - Color Mapping that will override the inherited color mapping from the slide
master but will be inherited by all presentation slides that utilize this layout.

Header and Footer - Header and footer properties that will override properties set within the slide
master but will be inherited by all presentation slides that utilize this layout.

Timing Information - Common timing properties used for animation, controls, etc. These will override
properties set within the slide master but will be inherited by all presentation slides that utilize this
layout.

Transition Information - Slide transitioning information to be inherited by each presentation slide.
These will override properties set within the master slide but will be inherited by all presentation slides
that utilize this layout

The above list defines the areas that can be used to override inherited components from the master slide. That

is, these can be specifically defined on a per-layout basis via the above elements.

* Click to edit Master text ii* Clickto edit Master text
styles styles
— Second level — Second level
+ Third level + Third level
— Fourth leve! — Fourth| level

» Fifth level » Fifth level

4.3

4.3.1

Comments

Introduction

This document describes the commenting feature for presentations as expressed in PresentationML. The

schema that defines this feature is pml-comments.xsd.

247

10

11
12

13

14
15

16
17
18
19

20
21
22

23
24
25

26

27
28
29
30

31
32
33

Introduction to PresentationML

Note that it is important to keep in mind that comments are not shapes. The representation of them within the
document is left entirely up to the generating application and are thus implementation specific.

4.3.2 Functional Overview

Readers of a presentation can provide feedback to the presentation author in the form of comments.
Comments can only be applied to slides; they cannot be applied to masters of any type or to notes slides.

At first glance, comments appear to be shapes on the slide surface; however, they are not. Comments differ
from regular shapes in two ways:

e Comments cannot be formatted or resized
e The text contained within a comment cannot be formatted

4.3.3 Comment Author List

Presentations contain a list of all authors who have comments in the presentation. This list is commonly
referred to as the Comment Author List (CAL). The CAL contains one entry for each author. Each entry is made
up of five pieces of data: ID, Author Name, Author Initials, Last Index, and Color Index.

Each author that comments on a presentation is assigned an ID, which is a simple integer. This ID is unique
within the presentation, and is assigned by the application itself.

The Author Name and Author Initials are taken from the application itself. If no initials are known to the
application, the comment author is prompted upon the insertion of the initial comment. Both the Author
Name and Author Initials are simple strings; that is, there is no association of the values with an identity (from
a security or authentication perspective).

The Last Index (lastldx) is an integer that documents how many comments the associated author has made in
this presentation. When the author makes another comment, that comment is numbered using the next
integer, and then this value is updated once again.

The Color Index (clrldx) is an integer into a color table that is used to provide the solid background fill for the
comment shape. The utility that this provides is that all of the comments by a particular author share the
same color.

Here is an example of such a CAL:

<p:cmAuthorLst>
<p:cmAuthor id="0" name="Shawn" initials="SV" lastIdx="3" clrIdx="0" />
<p:cmAuthor id="1" name="Brian" initials="BJ" lastIdx="7" clrIdx="1" />
</p:cmAuthorLst>

To determine if an author is already in the CAL, one must consider only the Author Name and Author Initials
data. If they both match an entry in the CAL, the author is already considered to be in the CAL; otherwise, the
author is considered unique, and a separate entry is added for that author in the CAL.

248

10
11
12
13
14
15
16
17

29
30

31

32

33
34
35

Introduction to PresentationML

When the presentation is saved using PresentationML, a separate Comment Authors part is created that
contains the CAL.

4.3.4 Comment List

Each slide within a presentation may contain zero or more comments. Each slide with at least one comment
starts a list of comments for that slide. Each entry in that list is made up of the following pieces of data:

e Author ID: This represents the ID of the author who created the comment. It matches an entry in the
CAL.

e Date/Time: This represents the date and time of the last modification of this particular comment.
Although expressed in UTC, its accuracy is dependent on the state of the machine making the edits.

e Index: This is the number assigned to this particular comment, and is one of the comments associated
with the specified author. This number should be equal to, or less than, the Last Index value for the
author in the CAL. There cannot be duplicate Indexes for the same author.

e Position: This defines the 2D coordinate for the location at which the comment shows up on the slide
surface. This is the position of the upper left point of the comment shape.

e The Text data includes all of the text that makes up the body of the comment. Note that this text is
expressed differently than other text as expressed in DrawingML. As this text contains no formatting,
and is strictly limited to text input, there is no additional data that needs to be stored.

Here is an example of a comment list for a slide:

<p:cmLst>
<p:cm authorId="0" dt="2006-01-30T22:45:13.597" idx="3">
<p:pos x="10" y="10" />
<p:text>Need to check with Mary on exact data values</p:text>
</p:cm>
<p:cm authorId="1" dt="2006-01-30T22:46:22.082" idx="1">
<p:pos x="106" y="106" />
<p:text>This chart is hard to read from afar</p:text>
</p:cm>
</p:cmLst>

When the presentation is saved using PresentationML, a separate Comments part is created for each comment
list.

4.4 Animation

441 Introduction

This subclause provides a high-level overview of the animation settings in PresentationML. This schema is
loosely based on the syntax and concepts from the Synchronized Multimedia Integration Language (SMIL), a
W3C Recommendation for describing multimedia presentations using XML.

249

http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/XML

Introduction to PresentationML

The schema describes all the animations effects on that reside on a slide; it also describes the animation that
occurs when going from slide to slide (slide transition).

Animations on a slide are inherently time-based and consist of an animation effects on an object or text.
However, slide transitions do not follow this concept and always appear before any animation on a slide.

All elements described in this schema are contained within the slide XML file. Superficially, they are in the
transition and the timing element as shown below:

<p:sld>
<p:cSld> ..
<p:clrMapOvr> ..
<p:transition> ..
<p:timing> ..
</p:sld>

4.4.2 Slide Transitions

Slide transitions are the animation effects that displayed in between slides. They are specified in the transition
element in the slide XML file. For example, consider a slide with a "push" slide transition as shown below:

250

10

11
12

Slide 1 Slide 1
sText 1 axt 1 *Text
*Test 2 ast 2 *Test
*Text 3 axt 3 *Text
1 2
Slide 2 Slide 2
*Text 4 *Text 4
*Test 5 *Test 5
*Text 6 *Text 6
3 4

The push element should be used as follows:

<p:transition>

<p:push dir="r"/>

</p:transition>

4.4.3 Timeline Overview

Introduction to PresentationML

The timeline is an important aspect for animations on a slide. It moderates the amount of time that the

animations are run from beginning to end. For example, it allows animation to be started when the slide is

loaded or based on an event.

A timeline is composed of timing nodes that dictate at which point a certain animation is shown. A timeline

can contain unlimited number of timing nodes; it can also have time nodes nested within them.

251

There are three types of time nodes:

Introduction to PresentationML

Element | Name Description

par Parallel This is a parallel time node and can be activated along with other
parallel time node containers.

seq Sequence This is a sequence time node and it can only be activated when the
one before it finishes.

excl Exclusive This time node is used to pause all other timelines when it is
activated.

A conceptual diagram of this is shown below:

Start

Sequence

<seq>

<seq>

Parallel

<par>

<par>

. . End Start
Timeline

Timeline

End

Exclusive

Start

Timeline

4.4.4

Timeline Construction

To illustrate what the timeline looks like in the slide XML file, suppose we have four rectangles named A, B1,

B2, and C that appear on a timeline three seconds long. Rectangle A appears at second 1, B1 and B2 appear

together at second 2, and C appears at second 3, as shown below:

252

2

4

Introduction to PresentationML

Slide at second 1

B

B

1

P

Slide at second 2

Slide at second 3

The timeline and time containers could look something like:

<seg> Time Container

<seg> Time Container

<seg>Time Container

<par= Time Container

<geg>Time Container

Timeline

A typical timeline consists of the following structure:

253

O 00 N OO s~ W N

[I e S N T e i
O © ©® N O U B W N K, O

21
22

23
24
25
26

27
28
29

30
31

32

33

Introduction to PresentationML

<p:timing>
<p:tnLst>
<p:seq concurrent="1" nextAc="seek">
<p:stCondLst> ..
<p:cTn id="2" dur="indefinite" nodeType="mainSeq">
<p:childTnLst>
<p:seq> .. // Square A
<p:seq>
<par>... // Square Bl
<par>... // Square B2
</p:seq>
<p:seq> .. // Square C
</p:childTnLst>
</p:cTn>

<p:prevCondLst> ..
<p:nextCondLst> ..
</seq>
</p:tnLst>
<p:bldLst> ..
</p:timing>

As show, this timeline starts with a timing element that represents the timeline. Within this timeline, there is a
child element tnList, which contains a list of time nodes.

In this case, there is one main timing container, which is the seq element. Within this element there are a
three of conditional elements, namely stCondList, nextCondList, and prevCondList. These elements contain
condition properties that allow for the starting/stopping of the particular time node. This is explained in more
detail in §4.4.6.

Following the stCondList element is the cTn element, which describes the properties for this node. Within this
element is the childTnList, which contains the nested time nodes that describe the animation sequence
mentioned above.

Finally, we have the bldList element, which is used to specify how objects with sub-shapes should be
animated. More information can be found in §4.4.7.

4.4.5 Animation Behaviors

All animation consists of the following basic animation behaviors:

Element Name Description

anim Animate The animate behavior introduces a generic attribute
animation that requires no semantic understanding of
the attribute being animated. It can animate numbers.

animColor Animate Color This behavior animates the color of a particular element.

254

6

Introduction to PresentationML

Element Name Description

animEffect Animate Effect This behavior provides the ability to do image
transform/filter effects on elements.

animMotion Animate Motion Animate motion provides an abstracted way to move
positioned elements. It provides the ability to specify
from/to/by type motion as well as to use more detailed
path descriptions for motion over polylines or bezier
curves.

animRotation Animate Rotation This behavior allows rotation of an element.

animScale Animate Scale Allows animation of the width and/or height of an

element over time.

A time node can combine multiple animations for a range of effects. For example, the "flash bulb" animation

which scales a shape larger while at the same time having it fade uses two animation behavior elements. An

example is shown below:

The representation for this animation effect in the time node element appears like:

255

O 00 N OO s~ W N

S N s T
N oo A W N B O

18
19
20
21
22

23

24

25

26
27
28

Introduction to PresentationML

<p:par>
<p:cTn id="5">
<p:stCondLst>...
<p:childTnLst>
<p:animEffect transition="out" filter="fade"> ..
<p:animScale>
<p:cBhvr>
<p:cTn id="7" dur="500" autoRev="1" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="9"/>
</p:tgtEl>
</p:cBhvr>
<p:by x="105000" y="105000"/>
</p:animScale>
</p:childTnLst>
</p:cTn>
</p:par>

In this time node, we have two animation effects. One is creating a "fade" effect on the shape using the
animEffect element and the other is creating a "scale" effect using the animScale element. All animation
behaviors have a cBhvr and cTn element, which stores properties for the animation. For example, we can give
the animation behaviors an ID and attributes that set the duration of the animation. The spTgt specifies the
target shape to which this animation effect will be applied.

4.4.6 Conditional Properties

Another important aspect of time nodes is conditional properties. There are four such conditions:

Element Name Description
stCondLst Start Condition Conditions that must be met for a time node to start.
prevCondLst Previous Condition | Conditions that must be met for a time node to go back

to the previous time node.

nextCondLst Next Conditions Conditions that must be met for a time node to advance
to the next time node.

endCondLst End Conditions Conditions that must be met for a time node to end

Conditional properties are useful for providing finer granularity as to exactly when a time node should be
activated. For example, suppose we have a shape with an entrance appearance after five seconds. The
stCondLst element should be used as follows:

256

N oo bW N

10
11

12

13

14

15

<p:par>
<p:cTn id="5">
<p:stCondLst>

<p:cond delay="5000"/>

</p:stCondLst>

</p:cTn>
</p:par>

4.4.7 Build Animations

Introduction to PresentationML

Another important aspect of animations is how they are built. This refers to how the different sub-shapes or

sub-components of an object are displayed. The different objects that can have build properties are text,

diagrams, and charts.

This is specified in the bldLst element.

For example, suppose we want to animate a pie chart, but based on category as shown below:

Sales Sales
W 1st Qtr W 1st Qtr
2nd Qtr W 2nd Qtr
3rd Qtr 3rd Qtr
4th Qtr 4th Qtr
Sales Sales
W 1st Qtr W 1st Otr
W 2nd Qtr N 2nd Qtr
W 3rd Qtr M 3rd Qtr
4ath Qtr ath Qtr

The representation of this in the slide XML looks like:

257

N o o AwWwN

10
11

12

13

14

15

16
17
18
19

20
21
22

23

24

25

Introduction to PresentationML

<p:bldLst>
<p:bldGraphic spid="4" grpld="0">
<p:bldSub>
<a:bldChart bld="category"/>
</p:bldSub>
</p:bldGraphic>
</p:bldLst>

The bldLst element contains children elements that describe how the different objects should be built. In this
case, there is only one graphic to be build, that with id 4. The bldGraphic element contains the bldSub
element, which describes how the object should be built. This element then contains the bldChart element
with the attribute bld set to category.

End of informative text.

4.5 Slide Synchronization

This subclause provides an overview of the p:SldSyncPr element in pml-slideSynchronizationData.xsd.

4.5.1 Introduction

A Slide Library is a library type in SharePoint Server that exclusively contains single-slide presentations. Users
are able to publish and reuse slides to/from these libraries. Furthermore, when a user inserts a slide from the
library into a presentation, she is able to create an update relationship so that she is notified when the original
slide on the server changes.

It is worth noting that the SlideUpdatelnfo part in itself does not define the complete slide update
functionality. That part requires a SharePoint Slide Library or compatible server (e.g., a webdav server that
emulates SharePoint SOAP methods).

4.5.2 Slide Update Info

For each slide in a presentation that has an update relationship with its counterpart in a Slide Library, a Slide
Update Info part is created. The diagram below provides an overview of this relationship.

258

10
11

12

13

14

15

16
17

18
19
20

21

22

Introduction to PresentationML

Slide 1 1 SlideUpdatelnfol

Presentation Slide 2

1 SlideUpdatelnfo3

Each Slide Update Info part is stored under its own folder. For example:

/ppt/slideUpdateInfo/slideUpdateInfol.xml
/ppt/slideUpdateInfo/slideUpdateInfo3.xml

The part is indentified for each slide by a relationship with the following characteristics:

Type: http://../slideUpdateInfo
TargetMode: Internal
Target= "<Uri of the slideupdateinfo part for the slide>"

The content type of the update info part is application/vnd.openxmlformats-
officedocument.presentationml.slideUpdatelnfo+xml.

It contains:

e Modified time of the slide on the server when it was inserted (stored in ISO 8061 format).
e Time the slide was inserted into the presentation.
e Regular ID of the slide on the server (saved as a string)

These Slide Update Info parts themselves have an external relationship to the Slide Library Url from which the
Slide was inserted.

Type: http://.../slidelibraryUrl
TargetMode: External
Target = “<Url of the Slide Library>”

Every Slide Update Info part should have exactly one occurrence of this relationship.

Samples:

259

http://.../slideUpdateInfo
http://.../slidelibraryUrl

O 00 N o U

10

Introduction to PresentationML

slideupdateinfol.xml

<p:sldUpdatePr .. serverSldId="7991" serverSldModifiedTime="2006-03-08T718:48:33"
clientInsertedTime="2006-03-10T06:02:33.975" />

slideupdateinfol.xml.rels

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<Relationships xmlns="http://.../relationships">
<Relationship Id="rId1" Type=http://.../slideUpdateUrl
Target="http://content/slides" TargetMode="External" />
</Relationships>

End of informative text.

260

http://.../slideUpdateUrl

10

11
12

13

14

15
16
17
18
19
20
21

22

23
24
25
26
27

28
29
30
31

Introduction to DrawingML

5. Introduction to DrawingML

This clause is informative.

This clause contains a detailed introduction to the components of DrawingML.

5.1 Basics

51.1 Introduction

This subclause provides a high-level overview of the content described in the dml-baseTypes.xsd, dml-
compatibility.xsd and dml-lockedCanvas.xsd schemas. The aggregation of the elements within these schemas
encompass what has been labeled the DrawingML — Basics sub-clause. That is, the elements contained here
are considered to be commonly shared elements among the DrawingML framework.

5.1.2 Overview

This sub-clause is made up of four distinct pieces: Basic Elements, Colors, Compatibility, and Locked Canvas.
Together these make up the common elements that are shared across the DrawingML framework. These
elements are described below.

5.1.3 Basic Elements

When the common elements of the DrawingML framework are aggregated it can be seen that the most widely
used elements are property elements. These reside within every object and allow for the setting of both visual
and non-visual object-specific properties. The visual properties are those that affect the appearance of the
object when it is rendered on the screen. The non-visual properties on the other hand, do not affect the
object's appearance. Instead, these properties are used to store information normally hidden such as
identification numbers, human readable names for the objects and specific behaviour that should be obeyed
within the Ul when manipulating the corresponding object.

5.1.4 Colors

The notion of color plays a vital role in the presentation of DrawingML objects within a document. Virtually all
objects are specified to have a corresponding color or set of colors. The notion of color is a common one
among graphically-inclined applications. Because of this and the fact that there are many different types of
graphic objects available today, we introduce the notion of several different types of color models. The
following color models can be used to specify color within a DrawingML based document.

RGB — Red, Green, Blue Color Model
HSL — Hue, Saturation, Luminance Color Model
Scheme — Scheme Based Color Model

el

Preset — Color Presets Color Model

261

N o

10

11
12
13
14
15
16
17

18

19

20

21
22

23

24
25
26
27

28

29
30
31

32
33

Introduction to DrawingML

5. System — Operating System Color Model

These different models allow document authors the choice as to which color model would be appropriate for
their particular application. Each of these is detailed within the DrawingML Basics reference material.

5.1.5 Compatibility

Compatibility deals with the notion of legacy drawings. Legacy drawings are objects that were supported by
previous versions of a generating application, but are no longer provided as an option. In order to store these
drawing objects correctly, we introduce the notion of legacy drawing compatibility. This allows for the
specification of information used to identify this legacy object and thus allow for full rendering support within
current versions of the generating application.

5.1.6 Locked Canvas

Locked Canvas is a minor topic that is similar to compatibility in that it is used to render drawing objects that
would otherwise not be recognized due to a lack of information. Locked Canvas, however, goes in the opposite
direction from compatibility, and deals with objects that have been created and saved in the current version of
a generating application and are being opened in a previous version of the generating application. The locked
canvas element acts as a container for more advanced drawing objects. The notion of a locked canvas comes
from the fact that the generating application opening the file cannot create this object and thus cannot
perform edits either. Thus, the drawing object is locked from all Ul adjustments that would normally take
place.

5.2 Audio and Video

5.2.1 Introduction

DrawingML contains support for basic audio and video capabilities. The definitions for these structures can be
found in dml-audioVideo.xsd.

5.2.2 Functional Overview

Presentation authors can specify that both audio and video can play while a slide is shown in slide show.

When such media is inserted into a presentation, a presentation author can specify that the media is to play
automatically (that is, in accordance with the slide’s animation timeline) or in response to a mouse-click. In
either case, media only plays for the duration of time specified, or until the slide changes, whichever is shorter.

Sources for audio content include CD-based files as well as the more traditional disc- or server-based files.

When inserting audio content stored on a CD, the author can specify a start and end track, as well as an index
into each track. This information identifies the content from the CD to be played for the specified slide during a
slide show.

In cases where the audio or video content is stored on a hard drive or server, the author can only specify the
file itself; it will be played in its entirety, or until the slide changes.

262

10
11
12
13
14
15
16

17
18

19
20

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

Introduction to DrawingML

5.2.3 DrawingML Syntax

In all three cases, the media objects themselves are stored on the slides using a picture shape. The picture
shape uses a blipFill to show the media object on the slide’s surface. In both audio cases, the picture used is
the icon image, whereas in the video case, the picture used is the poster frame for the video file.

To express this information, the standard blipFill element is used to refer to the image file; and because this
refers to a file within the package, a relationship ID is used:

<p:pic>
<p:nvPicPr> ..</p:nvPicPr>
<p:blipFill>
<a:blip r:embed="rId4" r:link="" />
<a:stretch>
<a:fillRect />
</a:stretch>

</p:blipFill>
<p:spPr> .. </p:spPr>
</p:pic>

As the media objects are related to the slide’s timeline—in both the automatic and mouse-click cases—they
must have interactivity information stored in the form of a hyperlink.

To express this information, a hyperlink is added to the non-visual shape properties; and because it is a
hyperlink, it, too, uses a relationship ID:

<p:pic>
<p:nvPicPr>
<p:cNvPr id="15" name="Rectangle 15" descr="">
<a:hlinkClick r:id="rId3" tgtFrame="" tooltip="" />
</p:cNvPr>
<p:cNvPicPr />
<p:nvPr> .. </p:nvPr>
</p:nvPicPr>
<p:blipFill> .. </p:blipFill>
<p:spPr> .. </p:spPr>
</p:pic>

The final piece of information required for each media type is the source bits. In both file-based media cases,
DrawingML needs to provide a mechanism to specify the location and file name for the media; this is in
contrast to the CD-based audio where only track information is required. Regardless of the type of source
information required, all of this is stored in application-specific non-visual properties. This is illustrated in the
following three XML islands representing each of the three media cases:

263

10
11
12

13

14
15

Introduction to DrawingML

CD-Audio <p:pic>
<p:nvPicPr> .. <p:cNvPicPr />
<p:nvPr>
<a:audioCd>
<a:st track="2" time="50" />
<a:end track="3" time="22" />
</a:audioCd>
</p:nvPr>

</p:pic>

File-Audio <p:pic>
<p:nvPicPr> .. <p:cNvPicPr />
<p:nvPr>
<a:audioFile r:embed="" r:link="rId1" />
</p:nvPr>
</p:nvPicPr>

</p:pic>

File-Video <p:pic>
<p:nvPicPr> .. <p:cNvPicPr />
<p:nvPr>
<a:videoFile r:embed="" r:link="rId1" />
</p:nvPr>
</p:nvPicPr>

</p:pic>

In the CD-Audio case, there is no capability to choose the particular CD drive that will contain the source. This
is a functional limitation.

While the default case is that media is linked, file-based media can also have the source bits included in the
package as a separate part. In this case, the relationships point not to an external file but, rather, to a part
inside the package.

5.3 Styles

5.3.1 Introduction

This piece of DrawingML deals with the definition of the shared aspects contained within a document theme.
The shared-style sheet defines an application-independent set of styling that can be applied to objects within a
document and which affects the look of the document and the information and objects it contains. For
example, in a presentation, shapes can have a certain look, whereas in an e-mail, all of the text can have
certain properties, and headings are styled.

A second topic is the definition of a table style as used within DrawingML. A table style defines the look of a
table regardless of the data present in that table.

264

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25

Introduction to DrawingML

5.3.2 Shared Style Sheet

The shared-style sheet within DrawingML is responsible for containing different formatting options and style
options that can be used within a given document.

5.3.2.1 Theme

The theme is the root-level complex type associated with a shared-style sheet. This complex type holds all of
the different formatting options available to a theme, and defines the overall look and feel of a document
when themed objects are used within the document. In figure 1 below, we can see an example of two
different themes applied to the same slide in a presentation.

e e e
.—'_'-'_'-'-.—.-.‘-
z SAMPLE SI8ME
Sample Sllde # Here is some text
: [Om Tws Teoe Reas | ;
* Here is some text = 3 @ Here is some more text —li |3 |5 |a
* Here is some more text [7 7 En a 4 |a
Agzd 3
May = 2 5 3 g 1 2 El E]

Figure 1: A theme applied to the same slide in a presentation. Not only does the font and colors change, but

also the effects applied to the shapes and table.

A theme consists of four main parts, although the themeElements element is the piece that holds the main
formatting defined within the theme. The other parts provide overrides, defaults, and additions to the
information contained in themeElements. The complex type defining a theme, CT_OfficeStyleSheet, is
defined in the following manner:

<complexType name="CT_OfficeStyleSheet">
<sequence>

<element name="themeElements" type="CT_BaseStyles" minOccurs="1"
maxOccurs="1"/>

<element name="objectDefaults" type="CT_ObjectStyleDefaults"
minOccurs="0" maxOccurs="1"/>

<element name="extraClrSchemelst" type="CT_ColorSchemelList"
minOccurs="0" maxOccurs="1"/>

<element name="custClrLst" type="CT_CustomColorList" minOccurs="0"
maxOccurs="1"/>

265

v A W N

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

26

27
28

29
30
31
32
33
34
35

36

37
38

Introduction to DrawingML

<element name="extLst" type="CT_OfficeArtExtensionlList"
minOccurs="0" maxOccurs="1"/>
</sequence>
<attribute name="name" type="xsd:string" use="optional" default=""/>
</complexType>

This complex type also holds a CT_OfficeArtExtensionList, which is used for future extensibility of this
complex type.

5.3.2.2 Theme Elements

The complex type CT_BaseStyles defines the theme elements for a theme, and is the workhorse of the theme.
The bulk of the shared theme information that is used by a given document is defined here. Within this
complex type is defined a color scheme, a font scheme, and a style matrix (format scheme) that defines
different formatting options for different pieces of a document. The complex type CT_BaseStyles is defined in
the following manner:

<complexType name="CT_BaseStyles">
<sequence>
<element name="clrScheme" type="CT_ColorScheme"™ minOccurs="1"
maxOccurs="1"/>
<element name="fontScheme" type="CT_FontScheme" minOccurs="1"
maxOccurs="1"/>
<element name="fmtScheme" type="CT_StyleMatrix"™ minOccurs="1"
maxOccurs="1"/>
<element name="extLst" type="CT_OfficeArtExtensionlList"
minOccurs="0" maxOccurs="1"/>
</sequence>
</complexType>

5.3.2.3 Color Scheme

The complex type CT_ColorScheme defines a set of colors for the theme. The set of colors consists of twelve
color slots that can each hold a color of choice. The colors are organized in the following way:

o Dark 1 (dk1) — This represents a dark color, usually defined as a system text color

e Light 1 (It1) — This represents a light color, usually defined as the system window color

o Dark 2 (dk2) — This represents a second dark color for use

e Light 2 (It2) — This represents a second light color for use

e Accents 1 through 6 (accentl through accent6) — These are six colors which can be used as accent
colors in the theme

e Hyperlink (hlink) — The color of hyperlinks

e Followed Hyperlink (folHlink) — The color of a followed hyperlink

These colors define the theme colors that objects can utilize within a document. When an object uses a theme
color, the color of the object can change when the theme is changed, but will always map to accent 1 if that

266

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

were the theme color used by the object. An example of theme colors defined and used can be seen in

figure 2.

Introduction to DrawingML

Figure 2: Sample colors defined and used for dark1/2, light1/2, and the six accent colors.

The complex type CT_ColorScheme is defined in the following manner:

<complexType name="CT_ColorScheme">

<sequence>
<element
<element
<element
<element
<element

<element name="hlink" type="CT_Color" minOccurs="1" maxOccurs="1"/>

name="dk1"
name="1t1"
name="dk2"
name="1t2"

type="CT_Color'

minOccurs="1

maxOccurs="1"/>

type="CT_Color" minOccurs="1" maxOccurs="1"/>
type="CT_Color" minOccurs="1" maxOccurs="1"/>
type="CT_Color" minOccurs="1" maxOccurs="1"/>
name="accentl"” type="CT_Color" minOccurs="1"
maxOccurs="1"/>
<element name="accent2" type="CT_Color"
maxOccurs="1"/>
<element name="accent3" type="CT_Color"
maxOccurs="1"/>
<element name="accent4" type="CT_Color"
maxOccurs="1"/>
<element name="accent5" type="CT_Color"
maxOccurs="1"/>
<element name="accent6" type="CT_Color"
maxOccurs="1"/>

minOccurs="1"

minOccurs="1"

minOccurs="1"

minOccurs="1"

minOccurs="1"

<element name="folHlink" type="CT_Color" minOccurs="1"
maxOccurs="1"/>

267

v A W N

10
11
12

13

14
15
16
17
18
19
20
21
22
23
24

25

26
27

28

29

31
32
33
34
35
36
37

Introduction to DrawingML

<element name="extLst" type="CT_OfficeArtExtensionlList"
minOccurs="0" maxOccurs="1"/>
</sequence>
<attribute name="name" type="xsd:string" use="required"/>
</complexType>

5.3.2.4 Font Scheme

The complex type CT_FontScheme defines a font pair. The pair consists of a major font and a minor font. An

example of use would be the major font used in headings for a document and the minor font used for the
paragraph parts of a document. The major and minor fonts are defined through a collection of font faces

defined on a per-language basis. For example, one may define only a Latin-based font, or one can define many

different fonts for different locals for a major or minor font. The font used in the document depends on the

user’s language.
The complex type CT_FontScheme is defined in the following manner:

<complexType name="CT_FontScheme">
<sequence>
<element name="majorFont" type="CT_FontCollection” minOccurs="1"
maxOccurs="1"/>
<element name="minorFont" type="CT_FontCollection" minOccurs="1"
maxOccurs="1"/>
<element name="extLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1"/>
</sequence>
<attribute name="name" type="xsd:string" use="required"/>
</complexType>

5.3.2.5 Major and Minor Font (Font Collection)

The complex type CT_FontCollection defines a major and minor font which is used in the font scheme. A font

collection consists of a font definition for Latin, East Asian, and complex script. On top of these three
definitions, one may also define a font for use in a specific language or languages.

The complex type CT_FontCollection is defined in the following manner:

<complexType name="CT_FontCollection">
<sequence>

<element name="latin" type="CT_TextFont" minOccurs="1"
maxOccurs="1"/>

<element name="ea" type="CT_TextFont" minOccurs="1" maxOccurs="1"/>

<element name="cs" type="CT_TextFont" minOccurs="1" maxOccurs="1"/>

<element name="font" type="CT_SupplementalFont"™ minOccurs="0"
maxOccurs="unbounded" />

268

A W N

10
11
12

13

14
15
16
17
18
19
20
21
22

23

25
26
27
28
29
30
31
32
33
34
35
36

Introduction to DrawingML

<element name="extLst" type="CT_OfficeArtExtensionlList"
minOccurs="0" maxOccurs="1"/>
</sequence>
</complexType>

5.3.2.6 Supplemental Font

The complex type CT_SupplementalFont defines an additional font that is used for language specific fonts in
themes. For example, one can specify a font that gets used only within the Japanese language context.

The complex type CT_SupplementalFont is defined in the following manner:

<complexType name="CT_SupplementalFont">
<attribute name="script" type="xsd:string" use="required"/>
<attribute name="typeface" type="ST_TextTypeface" use="required"/>
</complexType>

5.3.2.7 Format Scheme (Style Matrix)

The complex type CT_StyleMatrix defines a set of formatting options, which can be referenced by documents
that apply a certain style to a given part of an object. For example, in a given shape, say a rectangle, one can
reference a themed line style, themed effect, and themed fill that would be theme specific and change when
the theme is changed. All of these formatting options are defined within this style matrix. Background fills can
also be contained within the style matrix. This is most useful to presentations (but not unique to
presentations) which reference different background fills as slide backgrounds. Three sets of each type of
formatting are defined, corresponding to subtle, moderate, and intense versions of each style. Combinations
of styles are used to create, for example a shape style. An example of this would be a shape style utilizing a
subtle fill, moderate line, and intense effect to define the overall look of a shape.

The complex type CT_StyleMatrix is defined in the following manner:

<complexType name="CT_StyleMatrix">
<sequence>
<element name="fillStylelst" type="CT_FillStylelist"™ minOccurs="1"
maxOccurs="1"/>
<element name="1nStylelLst" type="CT_LineStylelList" minOccurs="1"
maxOccurs="1"/>
<element name="effectStylelLst" type="CT_EffectStylelList"
minOccurs="1" maxOccurs="1"/>
<element name="bgFillStylelst" type="CT_BackgroundFillStylelList"
minOccurs="1" maxOccurs="1"/>
</sequence>
<attribute name="name" type="xsd:string" use="optional" default=""/>
</complexType>

269

10
11
12
13

14

15
16

17

18
19
20
21
22
23

24

25
26
27
28
29

Introduction to DrawingML

5.3.2.8 Fill Style List

The complex type CT_FillStyleList defines a set of three fill types. Currently, only three fill types are used,
corresponding to subtle, moderate, and intense fills, but the number of fills that can be defined is unbounded.
An example of three fills that could be present can be seen in figure 3. In this figure, we have a solid blue fill in
the subtle slot, a gradient fill in the moderate slot, and an image fill in the intense slot.

Moderate Fill

Figure 3: Three different fills increasing in relative intensity.
The complex type CT_FillStyleList is defined in the following manner:

<complexType name="CT_FillStylelList">

<sequence>
<group ref="EG_FillProperties"” minOccurs="3" maxOccurs="unbounded"/>
</sequence>
</complexType>
5.3.29 Line Style List

The complex type CT_LineStyleList defines a set of three line styles. As with the fill style list, currently only
three styles are utilized corresponding to a subtle line, moderate line, and intense line.

The complex type CT_LineStyleList is defined in the following manner:

<complexType name="CT_LineStylelList">
<sequence>
<element name="1n" type="CT_LineProperties"” minOccurs="3"
maxOccurs="unbounded" />
</sequence>
</complexType>

5.3.2.10 Effect Style List

The complex type CT_EffectStyleList defines a set of three effect styles. As with the previously mentioned
style lists, three styles are currently utilized corresponding to subtle, moderate, and intense effect styles, but
the list remains unbounded. In figure 4 we see subtle, moderate, and intense effects applied to a given shape
with a blue fill. The subtle effect is, basically, no effect, whereas the moderate effect is a glow surrounding the
shape, and the intense effect is a 3-D bevel along with a shadow applied to the shape.

270

O 00 N o Uu b

10

11
12

13

14

15
16
17
18
19
20
21
22

23

24
25
26
27

28

Introduction to DrawingML

vy

Moderate Intense

Effect Effect

Figure 4: Subtle, moderate, and intense effects applied to a shape that has a blue fill.
The complex type CT_EffectStyleList is defined in the following manner:

<complexType name="CT_EffectStylelList">
<sequence>
<element name="effectStyle" type="CT_EffectStyleItem" minOccurs="3"
maxOccurs="unbounded" />
</sequence>
</complexType>

5.3.2.11 Effect Style Item

The complex type CT_EffectStyleltem holds the properties for a given effect style. Within this complex type,
one can define a list of effects (blur, shadow, reflection, etc.) along with any 3-D properties that are to be
applied to an object. A basic example of how effects can be applied to a shape can be seen in figure 4.

The complex type CT_EffectStyleltem is defined in the following manner:

<complexType name="CT_EffectStyleIltem">
<sequence>
<group ref="EG_EffectProperties” minOccurs="1" maxOccurs="1"/>
<element name="scene3d" type="CT_Scene3D" minOccurs="0"
maxOccurs="1"/>
<element name="sp3d" type="CT_Shape3D" minOccurs="0" maxOccurs="1"/>
</sequence>
</complexType>

5.3.2.12 Background Fill Style List

The complex type CT_BackgroundFillStyleList defines a set of three fill types similar to the fill style list.
Again, they define three fill types corresponding to subtle, moderate, and intense background fills but the list
itself is unbounded. The background-fills are meant, for example, to be applied to a slide background, or as
the background fill in a shape or table.

The complex type CT_BackgroundFillStyleList is defined in the following manner:

271

v A W N

11

12

13
14
15

16

17
18
19
20

21
22
23
24

Introduction to DrawingML

<complexType name="CT_BackgroundFillStylelList">

<sequence>
<group ref="EG_FillProperties" minOccurs="3" maxOccurs="unbounded"/>
</sequence>
</complexType>
5.3.2.13 Table Styles

Table styles are responsible for the rapid formatting that can be applied to a table. This rapid formatting takes
different things into account, such as if the first row or last row should be emphasized, or if there is some type
of banding present on the table. All of these different types of formatting can be defined within a table style.
An example of different table styles in use on the same table can be seen in figure 1.

Red Blue Yellow

21.5] 183 45
174 3.6 2.2

9_1] 193|
122| 134

Blue Yellow Red Blue Yellow
215 183 45
17.4 36 2.2
9.1 19.8 79
12.2 134 12.1

Figure 5: Different table styles in use.

The application of a table style to a table formats the table in its entirety. There are numerous complex types
that make up a table style. The pieces of a table style will be discussed first, before defining the table style
itself.

5.3.2.14 Cell 3D

The complex type CT_Cell3D defines all of the 3-D properties that an individual cell can hold. In the case of a
table, these 3-D properties can be a bevel along with a material and a light rig for the cell. More explanation of
these three pieces of a CT_Cell3D can be found in the document on 3-D. These properties are applied on a
per-cell basis, rather than to the table as a whole. A CT_Cell3D is defined in the following manner:

<xsd:complexType name="CT_Cell3D">
<xsd:sequence>
<xsd:element name="bevel" type="CT_Bevel" minOccurs="1"
maxOccurs="1" />

272

0 N o b~ W N

10

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to DrawingML

<xsd:element name="lightRig" type="CT_LightRig" minOccurs="0"
maxOccurs="1" />
<xsd:element name="ext" type="CT_OfficeArtExtension” minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="prstMaterial” type="ST_PresetMaterialType"
use="optional" default="plastic" />
</xsd:complexType>

This complex type also holds a CT_OfficeArtExtension. This complex type is used for future extensibility and
will be seen elsewhere throughout the tables area.

5.3.2.15 Themeable Styles

There are three groups and a complex type that account for style pieces that can be themed. These themed-
aspects either pull from the style matrix, or they define an actual fill or effect for example. If they pull their
style from the matrix, then an update to the document theme will also update the particular style dynamically.
The three groups consist of the following groups:

<xsd:group name="EG_ThemeableFillStyle">
<xsd:choice>
<xsd:element name="fill" type="CT_FillProperties" minOccurs="1"
maxOccurs="1" />
<xsd:element name="fillRef" type="CT_StyleMatrixReference"
minOccurs="1" maxOccurs="1" />
/xsd:choice>
</xsd:group>
<xsd:group name="EG_ThemeableEffectStyle">
<xsd:choice>
<xsd:element name="effect" type="CT_EffectProperties" minOccurs="1"
maxOccurs="1" />
<xsd:element name="effectRef" type="CT_StyleMatrixReference"
minOccurs="1" maxOccurs="1" />
</xsd:choice>
</xsd:group>
<xsd:group name="EG_ThemeableFontStyles">
<xsd:choice>
<xsd:element name="font" type="CT_FontCollection" minOccurs="1"
maxOccurs="1" />
<xsd:element name="fontRef" type="CT_FontReference" minOccurs="1"
maxOccurs="1" />
</xsd:choice>
</xsd:group>

273

O 00 N o Uu b

11

12

13
14
15

16

17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35

36

37

38

Introduction to DrawingML

The three groups above all give a choice between using a themed style, or defining the style themselves. The
last type in this group is a complex type used to perform the same task as the above three, only it deals with
the lines in the table. The complex type CT_ThemeableLineStyle is defined as:

<xsd:complexType name="CT_ThemeablelLineStyle">
<xsd:choice>
<xsd:element name="1n" type="CT_LineProperties" minOccurs="1"
maxOccurs="1" />
<xsd:element name="1nRef" type="CT_StyleMatrixReference"
minOccurs="1" maxOccurs="1" />
</xsd:choice>
</xsd:complexType>

5.3.2.16 On/Off Property Definition

The simple type ST_OnOffStyleType defines a type with values of on, off, or default. The default value means
to follow the parent settings. This comes into play for a themed property, which means follow what the theme
says. For an unthemed property, this means to follow the parent setting in the property inheritance chain.

5.3.2.17 Text Properties

The compelex type CT_TableStyleTextStyle defines the table text properties that can be styled. The text
properties contain a reference to a themeable font style along with bold and italic being enabled or disabled.
The CT_TableStyleTextStyle is defined in the following manner:

<xsd:complexType name="CT_TableStyleTextStyle">
<xsd:sequence>
<xsd:group ref="EG_ThemeableFontStyles" minOccurs="0"
maxOccurs="1" />
<xsd:group ref="EG_ColorChoice" minOccurs="0" maxOccurs="1" />
<xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="b" type="ST OnOffStyleType" use="optional”
default="def" />
<xsd:attribute name="1i" type="ST_OnOffStyleType" use="optional”
default="def" />
</xsd:complexType>

5.3.2.18 Cell Border Properties
The complex type CT_TableCellBorderStyle defines the properties of the borders that can be styled in a table.

The border styles can be applied to the following different types of borders in a table:

o |eft —left border
e right —right border
e top—top border

274

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32

33
34
35
36

Introduction to DrawingML

bottom — bottom border

insideH — inner horizontal borders

insideV — inner vertical borders

tI2br — diagonal border from top left corner to bottom right corner
tr2bl — diagonal border from top right corner to bottom left corner

The complex type is defined in the following manner:

<xsd:complexType name="CT_TableCellBorderStyle">
<xsd:sequence>

<xsd:element name="left" type="CT_ThemeableLineStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="right" type="CT_ThemeableLineStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="top" type="CT_ThemeablelLineStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="bottom" type="CT_ThemeableLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="insideH" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="insideV" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="tl1l2br" type="CT_ThemeableLineStyle" minOccurs="0
maxOccurs="1" />

<xsd:element name="tr2bl" type="CT_ThemeablelLineStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="ext" type="CT_OfficeArtExtension” minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

5.3.2.19 Cell Style Properties
The complex type CT_TableStyleCellStyle contains the definition for cell properties which can be styled.
in the following manner:

<xsd:complexType name="CT_TableStyleCellStyle">
<xsd:sequence>

<xsd:element name="tcBdr" type="CT_TableCellBorderStyle"
minOccurs="0" maxOccurs="1" />

Within this complex type are held the border style, cell fill style, and the cell 3-D. The complex type is defined

275

10

11
12
13
14
15
16
17
18

19

20
21
22

23
24
25
26
27
28
29
30

31

32
33
34
35

36

37

Introduction to DrawingML

<xsd:group ref="EG_ThemeableFillStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="cell3D" type="CT_Cell3D" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

5.3.2.20 Table Background Style

The complex type CT_TableBackgroundStyle defines the style elements associated with the background of
the table. The table background style can contain a fill and effect. The complex type is defined in the following
manner:

<xsd:complexType name="CT_TableBackgroundStyle">
<xsd:sequence>
<xsd:group ref="EG_ThemeableFillStyle" minOccurs="0"
maxOccurs="1" />
<xsd:group ref="EG_ThemeableEffectStyle" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

5.3.2.21 Table Part Style

The complex type CT_TablePartStyle defines a structure for holding the style information for a single part of
the table. The table is broken up in 13 different parts, which are explained in the next subclause of this
document. A table part contains a text style and a cell style and is defined in the following manner:

<xsd:complexType name="CT_TablePartStyle">
<xsd:sequence>
<xsd:element name="tcTxStyle" type="CT_TableStyleTextStyle"
minOccurs="0" maxOccurs="1" />
<xsd:element name="tcStyle" type="CT_TableStyleCellStyle"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

5.3.2.22 Table Style

The complex type CT_TableStyle defines the actual table style. Apart from the table background, 13 different
parts that can be defined in a table style. These parts work together to define the styling for a table, given the
6 combinations of on/off states for the first row, first column, last row, last column, row banding, and column
banding options. The different parts of a table that make up a table style are:

e tableBg —table background (this is not a CT_TablePartStyle)
e wholeTable — formatting for the entire table

276

10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Introduction to DrawingML

band1Horizontal — applied when row banding is enabled, this is the first row style, which alternates
with band2Horiztonal

band2Horizontal — applied when row banding is enabled, this is the second row style, which alternates
with band1Horizontal

band1Vertical — applied when column banding is enabled, this is the first column style, which
alternates with band2Vertial

band2Vertical — applied when column banding is enabled, this is the second column style, which
alternates with band1Vertical

lastCol — formatting applied to the last column when last column formatting is enabled

firstCol — formatting applied to the first column when first column formatting is enabled

lastRow — formatting applied to the last row when last row formatting is enabled

firstRow — formatting applied to the first row when first row formatting is enabled

seCell — formatting applied to the cell in the southeast corner of the table when last column and last
row are enabled

swCell — formatting applied to the cell in the southwest corner of the table when first column and last
row are enabled

neCell — formatting applied to the cell in the northeast corner of the table when the last column and
first row are enabled

nwCell — formatting applied to the cell in the northwest corner of the table when the first column and
first row are enabled

The table style is defined in the following manner:

<xsd:complexType name="CT_TableStyle">
<xsd:sequence>

<xsd:element name="tblBg" type="CT_TableBackgroundStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="wholeTbl" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="bandlH" type="CT_TablePartStyle" minOccurs="0
maxOccurs="1" />

<xsd:element name="band2H" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="bandlV" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="band2V" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="lastCol" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="firstCol" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="lastRow" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

277

O 00 N OO s~ W N

e e e
w N Rk O

14
15

17

18

19

20
21
22

23
24
25
26
27
28
29

30

31

32
33

34
35

36

37

Introduction to DrawingML

<xsd:element name="seCell" type="CT TablePartStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="swCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="firstRow" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="neCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="nwCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="styleId" type="ST_Guid" use="required" />
<xsd:attribute name="styleName" type="xsd:string" use="required" />"
</xsd:complexType>

Also contained within the table style are an ID and a name. The name shows up as the name for the table
style, and the ID is the unique id (GUID) that is associated with the table style.

5.3.2.23 Table Style List

The final complex type dealing with table styles is simply a list of table styles. Also contained in this list is the
default style which gets applied to the table when the a default is to be used. The complex type
CT_TableStyleList is defined in the following manner:

<xsd:complexType name="CT_TableStylelist">
<xsd:sequence>
<xsd:element name="tblStyle" type="CT_TableStyle" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="def" type="ST_Guid" use="required" />
</xsd:complexType>

5.4 Text

5.4.1 Introduction

This subclause provides a high-level overview of the content described in the following schemas: dml-text.xsd,
dml-textParagraph.xsd, dml-textRun.xsd, dml-textCharacter.xsd and dml-textBullet.xsd.

The best way to understand these schemas as they relate to one another is to learn about the DrawingML Text
file format in the following order.

e Text Overview
e Body Level Properties

278

10
11

12
13
14

15

16

32
33
34

35
36
37

Introduction to DrawingML

e Paragraph Level Properties
e Run and Character Level Properties

Companion schemas build on the ones discussed in this document. As these are encountered below, pointers
to them are provided.

This subclause provides a structured breakdown of the text portion of the DrawingML file format. Other
subclauses build on this foundation and explain more about topics such as text frame, text styles, text fields,
and embedded fonts.

Note that DrawingML Text described within this document is distinct from WordprocessingML Text in that
the file framework surrounding it has been optimized for use in a graphics-centric, presentation-like manner.
As a contrast, WordprocessingML Text allows for text to be stored in a format that is optimized for layout of
printed documents but not for art-based text as is found within the <a:> namespace.

Note that the use of the "p" namespace within this document references to the PresentationML-specific
schemas while the use of the "a" namespace within this document references to the DrawingML-specific
schemas.

5.4.2 Overview

Consider an XML tree that has the following basic structure:

<p:sld>
<p:cSld>
<p:spTree>
<p:sp>
<p:txBody>
Your text here!
(not really, there are other elements needed within here)
</p:txBody>
</p:sp>
<p:sp>
</p:sp>

</p:spTree>
</p:cSld>
</p:sld>

In the structure above, we are interested in the content contained within the matching p:txBody tags. The
understanding of this tag in relation to the basic slide structure above encompasses the schema background
needed to digest effectively the remainder of this description.

Note that shapes are the standard container within which all text resides. Usually, the shape does not have any
visual properties attached to it and thus no visible shape is rendered; nonetheless, a shape is still present and
does house any content text.

279

10
11
12
13
14
15
16
17
18
19
20
21

Introduction to DrawingML

Each shape contains an inset rectangle that houses any text attached to that shape. The shape has margins or
insets that buffer this rectangle on all four sides (top, bottom, left, and right) just like margins on a page. When
thinking about text within a shape, it is useful to keep these inset properties in mind.

An illustration of this is provided below.

, Inset Right
Inset Top

Inset Left.

Inscribed Rect Inset Bottom

Let's look at the different element tags contained within p:txBody. Listed below are only those tags discussed
here. (Note that this sample framework is a skeleton and does not fully show all elements and attributes

needed.)
<p:txBody>
<a:bodyPr /> required, only listed once.
<a:lstStyle /> optional, if present only listed once.
<a:p> required, no limit on the number of instances.
<a:pbPr /> optional, if present only listed once.
a:r> required, no limit on the number of instances.
a:rPr /> optional, if present only listed once.
<a:t>Your text herel</a:t>
Actual text for this run is contained here.
</a:r>
<a:endParaRPr /> optional, if present only listed once.
</a:p>

</p:txBody>

Element Purpose Description
a:bodyPr Body Properties Describes text anchor points, shape autofit, number of
columns, text warping, and 3D scenes and lighting effects.
See §5.4.3.
a:IstStyle List Style Used to define style properties for the paragraph and its nine
list levels.

280

v b~ W

Introduction to DrawingML

a:p

Single Paragraph

Houses a single paragraph and its corresponding paragraph-
level properties. Contained within here are also all the text
runs that comprise this paragraph. See §5.4.3.4.

a:pPr

Paragraph
Properties

Describes the format and style with which the corresponding
paragraph is presented. Some possible settings that can be
utilized within this space include, but are not limited to, the
following: spacing, margins, and alignment. See §5.4.3.4.

a:.r

Single Run

Specifies the existence of a run of text within a paragraph. A
run represents the most granular form of text that can be
represented in the file format. See §5.4.3.8.

a:rrPr

Run Properties

Allows the attachment of properties to the run of text
specified by its parent a:r element. These properties include,
but are not limited to, the following: underline, strikethrough,
and text caps. See §5.4.3.8.

a:t

Actual text

Allows for the storage of the specific text that all these body,
paragraph and run level properties are describing. This tag is
the most important as it gives context to all the other
elements and attributes that have come before it.

a:endParaRPr

Persistent Run

Specifies the properties that are to persist should the user

Properties begin to type additional text after this paragraph. This
property should only be set when the style that should follow
this paragraph is different from the paragraph itself.

5.4.3 Body Level Properties

Schemas represented here: dml-text.xsd

In this subclause, we'll explore the sorts of properties that can be attached to the body as a whole. As shown in

the sample XML above, there are three essential property levels available. The body-level properties are to the
broadest of these. Note that some of these body-level properties are applied as attributes to the body

property tag while others are expressed as child elements. The specific method by which each property is

applied can be found in the schemas listed above.

281

O 00 N OO s~ W N

=
L O

12

13
14
15
16

17
18

19

20

21
22
23
24
25

26
27

28
29

Introduction to DrawingML

<p:txBody>
<a:bodyPr /> € Main element covered in this subclause
<a:lstStyle />
<a:p>
<a:pbPr />
<a:r>
<a:rbPr />
<a:t>Your text herel</a:t>
</a:r>
</a:p>
</p:txBody>

5.4.3.1 Setting Up the Text Area

Let's start with how a text area might be initially described. This area is the container within which all the child
text for this body resides. First, it is useful to understand the inset properties; specifically, the top, bottom, left
and right inset properties that are also known as internal margins for the text body. The anchor attribute
allows us to specify where the text area should be anchored within its bounding rectangle.

An illustration of this bounding rectangle is highlighted below by the inner green box. Notice here that the
bounding rectangle is anchored to the right.

Inset Right

Inset Left

Margin [eft T o o |)

Inscribed Rect ‘ | Inset Bottom

Here's how the text will appear inside. Attribute AutoFit allows for three basic scenarios:

e No AutoFit: The text is allowed to flow outside the container.

e Normal AutoFit: The text is resized using defined constraints to fit inside the container area. (This is
used when the text is too large or long to fit in the text container.)

e Shape AutoFit: The actual text container is resized to contain all the text. (This is the only option that
can cause the container to have its dimensions changed.)

The term flow is used to describe the way in which text moves around inside this text area, and to describe
how each of the body properties affects the text within the text area.

One way that text can flow is from one line to the next. This can be done automatically by using the text-
wrapping attribute. Another way is to use columns. The XML framework allows for the specification of a

282

10
11

12
13

14

15
16

17

18
19
20

21

23

Introduction to DrawingML

number of columns into which the text is to be automatically broken. This feature also allows for the specifying
of the spacing of columns and a right-to-left layout instead of the default left-to-right. Another way that text
can flow is vertical instead of horizontal. For this, there are many different types of vertical text that can be
described: from text that appears rotated to text where the characters are truly stacked. The text can even be
made to flow differently when an East Asian font is specified.

When looking at the flow it is useful to discuss the potential for overflow. That is, the text must flow outside
the text area because it is too large to fit inside. For this, there are two common types: vertical and horizontal.
The vertical overflow can be handled in three ways:

e overflow: This allows the text to flow outside the text area.

One
Two

Nine
Ten

ellipsis: This crops the text that overflows and adds "..." to denote that there is hidden text.

One
Two
Three
Four

clip: This crops the text just as ellipsis but does not insert "...", so the user has no indication that there
is hidden text.

Horizontal overflow works exactly like vertical, but with only two options: overflow and
clip, which both operate as described above.

5.4.3.2 Manipulating the Text

Let's look at the ways in which the text can be further enhanced at the text body level. Note that the
properties that follow apply only to the text body as a whole and thus cannot be applied to a specific
paragraph or run within the text body. Theses properties are as follows:

Text Warping: Text within the text area is made to distort itself according to a predefined shape. This
shape resides within the bounding box described earlier. This effect is known as text warping and has its

MNA T
LE.CJ\/JF\ 1C48

preset shapes defined further within dml-shapeGeometry.xsd

283

12
13
14
15
16
17
18
19

20

21

22
23
24
25
26
27
28

Introduction to DrawingML

e 3D Text: Text can be described with respect to a 3D scene. Using this tag provides three basic options:

e The text resides within a 3D scene, but as planar text.

e The text is allowed to reside within the 3D scene and has 3D effects (such as bevel or extrusion)
applied to it.

e The text resides on top of a 3D scene. The 3D scene properties are defined dml-shape3DStyles.xsd
and dml-shape3DScene.xsd schemas.

e Rotated and Upright Text: A particular rotation can be specified that is applied to the text within the
text area. Note that this is different from the rotation that is applied to the shape within which the text
area resides. If this attribute is not specifically set then the rotation of the container shape is used.

5.4.3.3 Backwards and Forwards Compatibility

The following areas are of interest when considering support for both past design and future innovation.

e From WordArt: This is specific to dealing with previous WordArt text. Now that text is described as
simply a shape, there is no need for a WordArt-specific description. There is, however, the need to
identify which pieces of text were from the old WordArt styles in case there is the need to write them
back out in their old format.

e Future Extensions: The ability for future extensions has been provided to the body property tag via the
ext tag. This can be used the widest way possible as it is a complex type and can thus describe the
most complex future properties. Note that each of the schema subclauses below have their own ext
tag.

5.4.3.4 Paragraph-Level Properties

Schemas represented here: dml-textParagraph.xsd, dml-textBullet.xsd.

In this subclause, we will explore what sorts of properties can be attached to a paragraph as a whole.
Paragraph-level properties allow for a more granular description of the text than the properties of the body
tag described earlier. Keep in mind that the properties that can be applied at this level are not duplicates of
the body or run levels, but unique only to the paragraph element. Once again, it should be noted that some of
these paragraph-level properties are applied as attributes to the paragraph property tag while others are
expressed as child elements. The specific method by which each property is applied can be found in the
schemas listed above.

<p:txBody>

284

O 00 N OO s~ W N

=
o

11

12
13
14

15
16
17
18

19

20

21
22
23
24
25

26
27
28

29

30
31

32
33
34

Introduction to DrawingML

<a:bodyPr />
<a:lstStyle />
<a:p>
<a:pPr /> <& Main element covered in this subclause
a:r>
<a:rPr />
<a:t>Your text herel</a:t>
</a:r>
</a:p>
</p:txBody>

5.4.3.5 Spacing, Alignment, and Direction

The XML file format allows for the specifying of spacing both between lines in the form of line spacing, and also
outside the paragraph via margins and special before/after spacing. In addition to this, there is also the ability
to specify indent spacing for the beginning of the paragraph.

The standard alignment options include left-aligned, right-aligned, centered, justified, and distributed. Justified
alignment causes each line of text to be stretched out to a certain point. To ensure that short lines remain
readable, they are not stretched. Distributed alignment is quite similar, but stretches every line, regardless of
that line's length.

Text direction is specified as either left-to-right (the default) or right-to-left using the specific rtl tag.

5.4.3.6 Tabs and Line Breaks

When the default tabs are not sufficient for the paragraph in question there is the option of including custom
tab stops in the XML file format. The information required for this is both a default tab size attribute and a full
tab stop list showing all tab stop positions that apply to this paragraph. Keep in mind that if tab stops are not
explicitly stated in the file format that the business logic of the application must use its own default positions if
tabs are needed.

Line break is a tag that informs the application as to whether it should break up a string of text onto multiple
lines based on Latin grammar rules or East Asian grammar rules. The East Asian option uses the Kinsoku
settings to determine whether a word is allowed to begin or end a line of text.

5.4.3.7 Adding Bullets
Bullets are specified per paragraph, so bullets can be mixed and matched within a single text body to appear as

a coherent text group. The types of bullets available are:

e Character Bullets: Uses a font character to denote a bullet and can be set to appear in any size
(percentage of text), color (all available including theme colors), and font. The properties are Bullet
Color, Bullet Size, Bullet Font Typeface, Bullet Character (represents the actual bullet)

285

10
11
12
13

14

15

16

17
18
19
20
21
22

23

Introduction to DrawingML

g Bullet1
g Bullet 2
g Bullet3

Auto-Numbered Bullets: Uses the application logic to assign a series of numbers/characters to a
specific bulleted item using just a bullet scheme and a starting number. (When a starting number is
used, all bulleted paragraphs listed after the start number are automatically numbered based on this
last known start number. The scope of this auto-numbering is only within its current text body, no
start at number would ever carry over to a different text body.) The properties are Start At number,
Bullet Scheme (letters, roman numerals, etc.), Bullet Color, Bullet Size, and Bullet Font Typeface.

1. Bullet1
1. Bullet2
2. Bullet 3

Blip Bullets: Uses a picture to denote a bulleted item. The only additional property available with this
type of applied bullet is the size (percentage of text). If the graphic is not in the applications standard
set of graphics then the attached graphic is converted to a PNG format, placed in the document
container and is given a relationship id that is used later to reference the image. The properties are
Embed id (corresponds to a bullet graphic) and Bullet Size.

+ Bulletl
+ Bullet2
+ Bullet 3
5.4.3.8 Run- and Character-Level Properties

Schemas represented here: dml-textRun.xsd, dml-textCharacter.xsd

In this subclause, we'll explore the most granular text properties available in this XML framework, namely
those described at the text run and character level. This level is usually the level in which text is broken up into
differently formatted parts, because the most commonly used text properties almost all reside at this level.
This allows for some very detailed formatting to be represented. Again, it should be noted that for consistency
that some of these run and character level properties are applied as attributes to the run property tag while
others are expressed as child elements. The specific method by which each property is applied can be found in
the schemas listed above.

286

O 00 N OO s~ W N

=
L O

12

13
14
15
16
17

18

19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36

Introduction to DrawingML

<p:txBody>
<a:bodyPr />
<a:lstStyle />
<a:p>
<a:pbPr />
a:r>
<a:rPr /> < Main element covered in this subclause
<a:t>Your text herel</a:t>
</a:r>
</a:p>
</p:txBody>

5.4.3.9 Visual Properties

When looking to format a run of text the first property that one might need to specify would be the font
typeface. The XML file format allows for the specification of not only Latin Fonts but also East Asian, Complex
Script, and Symbol fonts as well. These four font buckets give the application additional information that is
used to layout text in a manner fitting for the specific font. Along with the actual font being used, comes the
size of the font. To specify this simply use the sz attribute and along with a value that is 1/100th of the size in
points.

Other common formatting properties allowed in the XML framework are bold, italic, underline and
strikethrough. The use of both the bold and italic properties is simply via a Boolean value of 0 or 1. The usage
of the underline and strikethrough, however, allow a more specific selection to be made. There are 17 values
for underline, which range from a single line to wavy double lines. In addition to specifying the style of
underline that is to be used, the framework can also specify fill properties for the underline. These are solid
color, multi-color gradient, and texture fill. For strikethrough, there are two options: single and double strike
through.

When standard formatting isn't adequate, more complex effects can be defined for a specific run of text. The
basic breakdown for these is line properties, fill properties and effect properties. Encapsulated within each of
these areas is a wide range of customizable effects. A quick look at line properties, for example, reveals the
ability to specify a color, gradient, or pattern fill, along with a width and style applied. Along these lines fill
properties allows for transparent fill, solid fill, gradient fill, texture fill and even picture fill. While these
features alone give the XML file format plenty of robustness in describing text, other features are also
available. Because text is treated the same as a shape, a run of text can have virtually all shape effects applied
to it just as if it were a shape. These effects include shadow, glow, and reflection, and are placed in an effect
list under the run properties tag. An example of what these lines, fills and effects may look like is provided
below. More information on these effects can be found in either dml-shapelLineProperties.xsd or dml-
shapeEffects.xsd.

287

O 00 N OO s~ W N

=
L O

Jany
N

13
14
15
16
17
18
19
20
21

22

23
24

25

26
27
28
29
30
31
32
33
34
35
36
37

Introduction to DrawingML

<a:rPr>
<a:1n>
<a:solidFill .. /> < Line properties here
</a:1n>
<a:gradFill>
<a:gslLst .. /> < Fill properties here
</a:gradFill>
<a:effectLst>
<a:reflection .. /> & Effect properties here
</a:effectLst>
</a:rPr>

A few additional properties are worth noting:

e Minimum kerning size: This specifies the smallest font size at which kerning still occurs. When no tag is
present for this the default value is 0, allowing kerning at any text size.

e Spacing between characters: The units here are the same as are used for font size. Along the lines of
specifying horizontal spacing, vertical spacing can be specified via the baseline tag. This is typically
used for subscript and superscript text and is specified in the same units as font size.

e (Capitalization and Normalize: Capitalization sets the case of the character to either all small caps or all
large caps. For this property there are only these two settings aside from the "none" setting at which
point this property is ignored. Normalize height takes all shorter characters and adjusts their height up
so that they are the same as taller characters. This property is set via a Boolean value.

5.4.3.10 Properties for Interactivity

Hyperlinks: The XML file format allows for the inputting of hyperlinks that are activated by either click or
mouse over. These two tags are HyperlinkClick and HyperlinkMouseOver, respectfully. They both allow for
the specifying of a link to another resource very much like those found on a common website.

Spelling and Smart Tags: Although spelling is very much an application-specific part of text editing and is most
likely to be done within the application itself there are a few ways that spelling settings and preferences can be
persisted within the file format. One way is through the spelling error bit, which simply saves whether there is
a known spelling mistake. The next is the spelling dirty bit. This gets set whenever the user has entered new
text and the application has not had a chance to check for spelling errors on this piece of text. Lastly, in this
realm we actually have a user preference of no proofing that is persisted for the next time a document is
opened. This allows the user to specify a word that they do not want to have checked for spelling. Along with
spell-checking comes the notion of smart tags which must be checked for just like spelling mistakes. For this
there are two related tags. The first is the smart tag clean, which allows for a boolean value to be set
determining if this portion of text has been checked for the presence of new smart tags. The next is the actual
smart tag id. Once a piece of text has been determined to be a smart tag then a smart tag id is assigned which
points to the actual smart tag information.

288

10

11
12

13
14
15

16

17
18
19
20

Introduction to DrawingML

54.3.11 International Language Support

There exists the notion of the language id, which is simply a value that assists the application in laying out the
text. The tags that help with this are the language id tag and the alternate language id tag. Together, these
allow the file format to be robust and handle multiple languages for a single run of text. In addition, there is
also the kumimoji tag, which aids with the layout of East Asian text by specifying whether numbers appear
vertically with text (default) or horizontally. An illustration of a run of text with kumimoji applied is provided
below.

>=Z0m

O -

45

5.5 Tables

5.5.1 Introduction

This document provides a high-level overview of the content described in the schemas dml-table.xsd and dml-
tableStyle.xsd.

This aspect of DrawingML deals with the definition of a table and the associated styling information. The first
part describes the table styles aspect, while the second part describes the definition of a table within
DrawingML. The above-mentioned schemas fall into the following groupings:

Table Styles Table Definition

dml-tableStyle.xsd dml-table.xsd

5.5.2 Table Styles

Table styles are responsible for the rapid formatting that can be applied to a table. This rapid formatting takes
different things into account, such as if the first row or last row should be emphasized, or if there is some type
of banding present on the table. All of these different types of formatting can be defined within a table style.
An example of different table styles in use on the same table can be seen in figure 1.

289

10
11
12
13
14
15
16
17
18
19
20
21

22

23

Introduction to DrawingML

1% Qtr 215 | 183 | 45

2 Qtr 17.4| 36 22
34 atr 91| 198 79

a* atr 122 13.4 121

Blue Yellow Red Blue Yellow
215 183 45

17.4 3.6 2.2

91 198 79

122 134 123

Figure 6: Different table styles in use.

The application of a table style to a table formats the table in its entirety. A number of complex types make up

a table style. The pieces of a table style are discussed first, before the table style itself is defined.

5.5.2.1 Cell 3-D

The complex type, CT_Cell3D, defines all of the 3-D properties that an individual cell can hold. In the case of a
table, these 3-D properties can be a bevel along with a material and a light rig for the cell. (More explanation

of these three pieces of a CT_Cell3D can be found in §5.6.) These properties are applied on a per-cell basis,
rather than to the table as a whole. A CT_Cell3D is defined in the following manner:

<xsd:complexType name="CT_Cell3D">
<xsd:sequence>
<xsd:element name="bevel" type="CT_Bevel" minOccurs="1"
maxOccurs="1" />
<xsd:element name="1lightRig" type="CT_LightRig" minOccurs="0"
maxOccurs="1" />
<xsd:element name="extlLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="prstMaterial” type="ST_ PresetMaterialType’
use="optional" default="plastic" />
</xsd:complexType>

This complex type also holds a CT_OfficeArtExtensionList. This complex type is used for future extensibility
and will be seen elsewhere throughout the tables area.

290

O 00 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39
40

Introduction to DrawingML

5.5.2.2 Themeable Styles

Three groups and a complex type account for style pieces that can be themed. These themed aspects either
pull from the style matrix, or they define an actual fill or effect for example. If they pull their style from the
matrix, then an update to the document theme will also update the particular style dynamically. The three
groups consist of the following groups:

<xsd:group name="EG_ThemeableFillStyle">
<xsd:choice>
<xsd:element name="fill" type="CT_FillProperties" minOccurs="1"
maxOccurs="1" />
<xsd:element name="fillRef" type="CT_StyleMatrixReference"
minOccurs="1" maxOccurs="1" />
</xsd:choice>
</xsd:group>
<xsd:group name="EG_ThemeableEffectStyle">
<xsd:choice>
<xsd:element name="effect" type="CT_EffectProperties”
minOccurs="1" maxOccurs="1" />
<xsd:element name="effectRef" type="CT_StyleMatrixReference'
minOccurs="1" maxOccurs="1" />
</xsd:choice>
</xsd:group>
<xsd:group name="EG_ThemeableFontStyles">
<xsd:choice>
<xsd:element name="font" type="CT_FontCollection" minOccurs="1"
maxOccurs="1" />
<xsd:element name="fontRef" type="CT_FontReference"” minOccurs="1"
maxOccurs="1" />
</xsd:choice>
</xsd:group>

The three groups above all give a choice between using a themed style or defining the style themselves. The
last type in this group is a complex type used to perform the same task as the above three, only it deals with
the lines in the table. The complex type, CT_ThemeableLineStyle, is defined as:

<xsd:complexType name="CT_ThemeablelLineStyle">
<xsd:choice>
<xsd:element name="1ln" type="CT_LineProperties" minOccurs="1"
maxOccurs="1" />
<xsd:element name="1nRef" type="CT_StyleMatrixReference"
minOccurs="1" maxOccurs="1" />
</xsd:choice>
</xsd:complexType>

291

22

23

25

26
27
28
29
30
31
32

33

Introduction to DrawingML

5.5.2.3 On/Off Property Definition

The simple type, ST_OnOffStyleType, defines a type with values of on, off, or default. A value of default
indicates that parent settings should be used. Thus, for a themed property, default indicates that the theme
properties should be followed. For an unthemed property, default means that the parent setting in the
property inheritance chain should be followed.

5.5.2.4 Text Properties

The complex type, CT_TableStyleTextStyle, defines the table text properties that can be styled. The text
properties contains a reference to a themeable font style along with bold and italic being enabled or disabled.
The CT_TableStyleTextStyle is defined in the following manner:

<xsd:complexType name="CT_TableStyleTextStyle">
<xsd:sequence>
<xsd:group ref="EG_ThemeableFontStyles" minOccurs="0"
maxOccurs="1" />
<xsd:group ref="EG_ColorChoice" minOccurs="0" maxOccurs="1" />
<xsd:element name="extlLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="b" type="ST_OnOffStyleType" use="optional”
default="def" />
<xsd:attribute name="i" type="ST_OnOffStyleType" use="optional”
default="def" />
</xsd:complexType>

5.5.2.5 Cell Border Properties

The complex type, CT_TableCellBorderStyle, defines the properties of the borders that can be styled in a table.
The border styles can be applied to the following different types of borders in a table:

e left—left border

e right —right border

e top-—top border

e bottom - bottom border

e insideH—inner horizontal borders

e insideV—inner vertical borders

e tl2br —diagonal border from top left corner to bottom right corner
e tr2bl —diagonal border from top right corner to bottom left corner

The complex type is defined in the following manner:

292

O 00 N OO s~ W N

[N S T e T e e O e e T =
R O VW 0 N O uu A W N = O

22

23

24
25
26

27
28
29
30
31
32
33
34
35
36

37

38
39
40

Introduction to DrawingML

<xsd:complexType name="CT_TableCellBorderStyle">
<xsd:sequence>

<xsd:element name="left" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="right" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="top" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="bottom" type="CT_ThemeableLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="insideH" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="insideV" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="tl2br" type="CT_ThemeablelLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="tr2bl" type="CT_ThemeableLineStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="extLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

5.5.2.6 Cell Style Properties

The complex type, CT_TableStyleCellStyle, contains the definition for cell properties that can be styled. Within
this complex type are held the border style, cell fill style, and the cell 3-D. The complex type is defined in the
following manner:

<xsd:complexType name="CT_TableStyleCellStyle">
<xsd:sequence>
<xsd:element name="tcBdr" type="CT_TableCellBorderStyle"
minOccurs="0" maxOccurs="1" />
<xsd:group ref="EG_ThemeableFillStyle" minOccurs="0"
maxOccurs="1" />
<xsd:element name="cell3D" type="CT_Cell3D" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

5.5.2.7 Table Background Style

The complex type, CT_TableBackgroundStyle, defines the style elements associated with the background of
the table. The table background style can contain a fill and effect. The complex type is defined in the following
manner:

293

0 N o b~ W N

10
11
12

13
14
15
16
17
18
19
20

21

22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to DrawingML

<xsd:complexType name="CT_TableBackgroundStyle">
<xsd:sequence>
<xsd:group ref="EG_ThemeableFillStyle" minOccurs="0"
maxOccurs="1" />
<xsd:group ref="EG_ThemeableEffectStyle" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

5.5.2.8 Table Part Style

The complex type, CT_TablePartStyle, defines a structure for holding the style information for a single part of
the table. The table is broken up in 13 different parts which will be explained in the next subclause of this
document. A table part contains a text style and a cell style and is defined in the following manner:

<xsd:complexType name="CT_TablePartStyle">
<xsd:sequence>
<xsd:element name="tcTxStyle" type="CT_TableStyleTextStyle"
minOccurs="0" maxOccurs="1" />
<xsd:element name="tcStyle" type="CT_TableStyleCellStyle"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

5.5.2.9 Table Style

The complex type, CT_TableStyle, defines the actual table style. There are thirteen different parts (outside of
the table background) that can be defined in a table style. These parts work together to define the styling for a
table, given the six combinations of on/off states for the first row, first column, last row, last column, row
banding, and column banding options. The different parts of a table that make up a table style are:

e tableBg — table background (this is not a CT_TablePartStyle)

e wholeTable — formatting for the entire table

e bandl1Horizontal — applied when row banding is enabled, this is the first row style, which alternates
with band2Horiztonal

e band2Horizontal — applied when row banding is enabled, this is the second row style, which alternates
with band1Horizontal

e band1Vertical — applied when column banding is enabled, this is the first column style, which
alternates with band2Vertial

e band2Vertical — applied when column banding is enabled, this is the second column style, which
alternates with band1Vertical

e lastCol — formatting applied to the last column when last column formatting is enabled

o firstCol — formatting applied to the first column when first column formatting is enabled

e |astRow — formatting applied to the last row when last row formatting is enabled

e firstRow — formatting applied to the first row when first row formatting is enabled

294

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to DrawingML

seCell — formatting applied to the cell in the southeast corner of the table when last column and last
row are enabled

swCell — formatting applied to the cell in the southwest corner of the table when first column and last
row are enabled

neCell — formatting applied to the cell in the northeast corner of the table when the last column and
first row are enabled

nwCell — formatting applied to the cell in the northwest corner of the table when the first column and
first row are enabled

The table style is defined in the following manner:

<xsd:complexType name="CT_TableStyle">
<xsd:sequence>

<xsd:element name="tblBg" type="CT_TableBackgroundStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="wholeTbl" type="CT_TablePartStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="bandlH" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="band2H" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="bandlV" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="band2V" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="lastCol" type="CT_TablePartStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="firstCol" type="CT_TablePartStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="lastRow" type="CT_TablePartStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="seCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="swCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="firstRow" type="CT_TablePartStyle"
minOccurs="0" maxOccurs="1" />

<xsd:element name="neCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

<xsd:element name="nwCell" type="CT_TablePartStyle" minOccurs="0"
maxOccurs="1" />

295

Introduction to DrawingML

1 <xsd:element name="extLst" type="CT_OfficeArtExtensionList"

2 minOccurs="0" maxOccurs="1" />

3 </xsd:sequence>

4 <xsd:attribute name="styleId" type="ST Guid" use="required" />

5 <xsd:attribute name="styleName" type="xsd:string" use="required" />
6 </xsd:complexType>

7 Also contained within the table style is an ID and a name. The name shows up as the name for the table style
g8 andthe ID is the unique id (GUID) that is associated with the table style.

9 55210 Table Style List

10 The final complex type dealing with table styles is simply a list of table styles. Also contained in this list is the
11 default style which is applied to the table when the a default is to be used. The complex type,
12 CT_TableStylelist, is defined in the following manner:

13 <xsd:complexType name="CT_TableStylelList">

14 <xsd:sequence>

15 <xsd:element name="tblStyle" type="CT_TableStyle" minOccurs="0"
16 maxOccurs="unbounded" />

17 </xsd:sequence>

18 <xsd:attribute name="def" type="ST_Guid" use="required" />

19 </xsd:complexType>

20 5.5.3 Table Definition

21 In this subclause, the focus is on the actual definition of a table and the data contained within the table. There
22 are not as many complex types in this subclause as with the table style subclause, but they are organized in the
23 same way as the table style section.

24 5531 Cell Properties

25 The complex type, CT_TableCellProperties, holds all the information that deals with the properties of a given
26 cell. The cell properties contain a section for the different line properties (In*), the cell fill properties, the 3-D
27 properties, cell margin information (mar*), anchoring information (anchor and anchorCtr), a vertical text type,
28 and finally an attribute which defines the behavior of horizontal text overflow (horzOverflow). As with many
29 other types defined in this document, CT_TableCellProperties contains an element reserved for future

30 extensibility. The complex type is defined in the following manner:

31 <xsd:complexType name="CT_TableCellProperties">

32 <xsd:sequence>

33 <xsd:element name="1nL" type="CT_LineProperties" minOccurs="0"
34 maxOccurs="1" />

35 <xsd:element name="1nR" type="CT_LineProperties" minOccurs="0"
36 maxOccurs="1" />

37 <xsd:element name="1nT" type="CT_LineProperties" minOccurs="0"
38 maxOccurs="1" />

296

O 00 N OO s~ W N

N N N RN NN NN NN R B P B R B P B B
© 0 N O U1 B W N B O VW 0 N OO U B W N B O

30

31
32
33

34
35
36
37
38
39
40

Introduction to DrawingML

<xsd:element name="1nB" type="CT_LineProperties" minOccurs="0"
maxOccurs="1" />
<xsd:element name="1nT1lToBr" type="CT_LineProperties”
minOccurs="0" maxOccurs="1" />
<xsd:element name="1nBlToTr" type="CT_LineProperties"
minOccurs="0" maxOccurs="1" />
<xsd:element name="cell3D" type="CT_Cell3D" minOccurs="0"
maxOccurs="1" />
<xsd:group ref="EG_FillProperties” minOccurs="0" maxOccurs="1" />
<xsd:element name="extlLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="marlL" type="ST_Coordinate32" use="optional"
default="91440" />
<xsd:attribute name="marR" type="ST_Coordinate32" use="optional"
default="91440" />
<xsd:attribute name="marT" type="ST_Coordinate32" use="optional"
default="45720" />
<xsd:attribute name="marB" type="ST_Coordinate32" use="optional"
default="45720" />
<xsd:attribute name="vert" type="ST_ TextVerticalType" use="optional"
default="horz" />
<xsd:attribute name="anchor" type="ST_TextAnchoringType"
use="optional" default="t" />
<xsd:attribute name="anchorCtr" type="xsd:boolean" use="optional”
default="false" />
<xsd:attribute name="horzOverflow" type="ST_ TextHorzOverflowType"
use="optional" default="clip" />
</xsd:complexType>

5.5.3.2 Column

The complex type, CT_TableCol, defines a table column element. The table column element simply holds the
width for a given column in a table along with an element reserved for future extensibility. The complex type
is defined as:

<xsd:complexType name="CT_TableCol">
<xsd:sequence>
<xsd:element name="extlLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="w" type="ST_Coordinate" use="required" />
</xsd:complexType>

297

11

12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37
38
39

Introduction to DrawingML

5.5.3.3 Table Grid

The complex type, CT_TableGrid, defines a list of table column elements, or rather CT_TableCol complex types.
The CT_TableGrid should contain a CT_TableCol for each column in the table and it is defined in the following
manner:

<xsd:complexType name="CT_TableGrid">
<xsd:sequence>
<xsd:element name="gridCol" type="CT_TableCol" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

5.5.3.4 Cell

The complex type, CT_TableCell, defines a cell in a table. Within this complex type lies a text body which holds
the data of the cell along with any formatting applied to the text. This complex type also holds a table cell
property complex type which has already been defined. The rowSpan and gridSpan attributes are available
along with hMerge and vMerge attributes. The hMerge and vMerge attributes define if the current cell is
supposed to be merged with the previous cell horizontally or vertically. This is how the table is parsed and
created. The complex type, CT_TableCell, is defined as:

<xsd:complexType name="CT_TableCell">
<xsd:sequence>
<xsd:element name="txBody" type="CT_TextBody" minOccurs="0"
maxOccurs="1" />
<xsd:element name="tcPr" type="CT_TableCellProperties"
minOccurs="0" maxOccurs="1" />
<xsd:element name="extlLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="rowSpan" type="xsd:int" use="optional”
default="1" />
<xsd:attribute name="gridSpan" type="xsd:int" use="optional"
default="1" />
<xsd:attribute name="hMerge" type="xsd:boolean" use="optional”
default="false" />
<xsd:attribute name="vMerge" type="xsd:boolean" use="optional™
default="false" />
</xsd:complexType>

5.5.3.5 Row

The complex type, CT_TableRow, defines a table row. This complex type is somewhat more complex than the
similar table column complex type in that it holds a sequence of CT_TableCell structures along with a height for
the row. The complex type is defined in the following way:

298

Jany

O 00 N OO s~ W N

10

11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Introduction to DrawingML

<xsd:complexType name="CT_TableRow">
<xsd:sequence>
<xsd:element name="tc" type="CT_TableCell" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="extLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="h" type="ST Coordinate" use="required" />
</xsd:complexType>

5.5.3.6 Table Properties

The complex type, CT_TableProperties, defines the properties for a table as a whole. Within this complex type
is a definition for a table style that is currently applied to the table, or the GUID for the built in table style that
is applied to the table. Also in this complex type are right-to-left settings, the effects applied to the table
(shadow, reflection, etc), background fill information, and the states for the different on/off table style
options. The complex type is defined as:

<xsd:complexType name="CT_TableProperties" >
<xsd:sequence>
<xsd:group ref="EG_FillProperties"” minOccurs="0" maxOccurs="1" />
<xsd:group ref="EG_EffectProperties” minOccurs="0"
maxOccurs="1" />
<xsd:choice oxsd:cname="TableStyleOrLink" minOccurs="0"
maxOccurs="1" >
<xsd:element name="tableStyle" type="CT_TableStyle" />
<xsd:element name="tableStyleId" type="ST Guid" />
</xsd:choice>
<xsd:element name="extlLst" type="CT_OfficeArtExtensionList"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="rtl" type="xsd:boolean" use="optional”
default="false" />
<xsd:attribute name="firstRow" type="xsd:boolean" use="optional"
default="false" />
<xsd:attribute name="firstCol" type="xsd:boolean" use="optional"
default="false" />
<xsd:attribute name="lastRow" type="xsd:boolean" use="optional"
default="false" />
<xsd:attribute name="lastCol" type="xsd:boolean" use="optional”
default="false" />
<xsd:attribute name="bandRow" type="xsd:boolean" use="optional"
default="false" />

299

10
11
12
13
14
15
16
17

18

19

20
21
22

23
24

25

26

27
28

Introduction to DrawingML

<xsd:attribute name="bandCol" oxsdtype="xsd:boolean" use="optional"
default="false" />
</xsd:complexType>

5.5.3.7 Table

The final complex type, CT_Table, is the root element for a table. This complex type holds all the information
that is needed to create a table within DrawingML. Within CT_Table are the table properties, a table grid, and
a table row. A CT_Table is defined in the following manner:

<xsd:complexType name="CT_Table">
<xsd:sequence>
<xsd:element name="tblPr" type="CT_TableProperties" minOccurs="0"
maxOccurs="1" />
<xsd:element name="tblGrid" type="CT_TableGrid" minOccurs="1"
maxOccurs="1" />
<xsd:element name="tr" type="CT_TableRow" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

5.6 3D Aspects

5.6.1 Introduction

This subclause provides a high-level overview of the content described in the following schemas: dml-
shape3DStyles.xsd, dml-shape3DScene.xsd, dml-shape3DScenePlane.xsd, dml-shape3DLighting.xsd, and dml-
shape3DCamera.xsd.

This aspect of DrawingML deals mainly with the 3-D aspects, and can be broken down into two topics: 3-
D properties associated with an object, and the styling information associated with an object. The above-
mentioned schemas fall into the grouping in the following way:

3-D Styles

dml-shape3DScene.xsd dml-shape3DStyles.xsd
dml-shape3DScenePlane.xsd
dml-shape3DLighting.xsd
dml-shape3DCamera.xsd

5.6.2 3-D

Here we'll explain the 3-D definitions contained in DrawingML. The goal here is to define a 3-D scene so that
lighting calculations can be made on the geometry within the scene.

300

O 00 N o v b

11
12
13
14
15

16
17
18
19
20
21

22

23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38

Introduction to DrawingML

5.6.2.1 3-D Scene

Every 3-D scene consists of a camera, a light, and a backdrop, that define the associated properties of the
scene. The complex type, CT_Scene3D, defines the scene as follows:

<xsd:complexType name="CT_Scene3D" oxsd:cname="Scene3D">
<xsd:sequence>
<xsd:element name="camera" type="CT_Camera" minOccurs="1"
maxOccurs="1" />
<xsd:element name="1lightRig" type="CT_LightRig" minOccurs="1"
maxOccurs="1/>
<xsd:element name="backdrop" type="CT_Backdrop” minOccurs="0"
maxOccurs="1" />
<xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

As was stated above, the complex type, CT_Scene3D, contains a camera, a set of lights (the light rig), and a
backdrop. Those familiar with 3-D rendering techniques understand the usage of a camera and set of lights, or
light rig. The backdrop, however, is a special structure (which will be defined below) that allows for a special
plane to render certain effects that need to be rendered together in a single plane. The final element of a
CT_Scene3D is the ext element. This is a DrawingML structure used for future extensibility. This element will
be seen in other complex types dealing with the 3-D scene as well.

5.6.2.2 Camera

The complex type, CT_Camera, defines a camera within the 3-D scene. A camera is based on a preset, with an
optional rotation, field-of-view, and zoom, which all act as overrides for the preset values. A camera is defined
in the following way:

<xsd:complexType name="CT_Camera">
<xsd:sequence>
<xsd:element name="rot" type="CT_SphereCoords™ minOccurs="0"
maxOccurs="1" oxsd:dataStructure="optional" />
</xsd:sequence>
<xsd:attribute name="prst" type="ST_PresetCameraType" use="required"
/>
<xsd:attribute name="fov" type="ST_FOVAngle" use="optional” />
<xsd:attribute name="zoom" type="ST_PositivePercentage"
use="optional" default="100000" />
</xsd:complexType>

The only complex type contained in the camera, CT_SphereCoords, is a type defined elsewhere within the
DrawingML. There are three simple types associated with a camera:

301

wv

10
11
12
13

14
15
16
17
18

19
20
21
22
23

24
25

Introduction to DrawingML

e ST_FOVAngle (field of view angle), which is a positive angle between 0 and 180 in 60,000th of a

degree.

e ST_PositivePercentage (zoom), which is defined as a percentage in 1,000th of a percent.

e ST _PresentCameraType (preset camera)

Figure 1 below shows some different presets applied to a shape.

No Camera

Figure 7: Different default cameras applied to a shape
The available options for ST_PresetCameraType are as follows:

legacyObliqueTopLeft
legacyObliqueTop
legacyObliqueLeft
legacyObliqueFront
legacyObliqueRight

legacyObliqueBottomLeft
legacyObliqueBottom
legacyObliqueBottomRight
legacyPerspectiveTopLeft
legacyPerspectiveTop

legacyPerspectiveTopRight
legacyPerspectiveLeft
legacyPerspectiveFront
legacyPerspectiveRight
legacyPerspectiveBottomLeft

legacyPerspectiveBottom
legacyPerspectiveBottomRight

302

w

00 N o u b

10
11
12
13

14
15
16
17
18

19
20
21
22
23

24
25
26
27
28

29
30
31
32
33

34
35
36
37
38

orthographicFront
isomentricTopUp
isometricTopDown

isomentricBottomDown
isometricLeftUp
isometricLeftDown
isometricRightUp
isometricRightDown

isometricOffAxis1Left
isometricOffAxis1Right
isometricOffAxis1Top
isometricOffAxis2Left
isometricOffAxis2Right

isometricOffAxis2Top
isometricOffAxis3Left
isometricOffAxis3Right
isometricOffAxis3Bottom
isometricOffAxis4Left

isometricOffAxis4Right
isometricOffAxis4Bottom
obliqueTopLeft
obliqueTopRight
obliqueLeft

obliqueRight
obliqueBottomLeft
obliqueBottom
obliqueBottomRight
perspectiveFront

perspectivelLeft
perspectiveRight
perspectiveAbove
perspectiveBelow

perspectiveAboveLeftFacing

perspectiveAboveRightFacing
perspectiveContrastingRightFacing
perspectiveContrastingLeftFacing
perspectiveHeroicLeftFacing
perspectiveHeroicRightFacing

Introduction to DrawingML

303

AW N

10
11
12
13
14
15
16

17
18
19

20

21

22

23
24
25

Introduction to DrawingML

perspectiveHeroicExtremeLeftFacing
perspectiveHeroicExtremeRightFacing
perspectiveRelaxed
perspectiveRelaxedModerately

5.6.2.3 Light

The complex type, CT_LightRig, defines the lighting of the scene. A light rig consists of a preset direction,
preset rig type, and a rotation that serves as an override for the direction. The complex type is defined as:

<xsd:complexType name="CT_LightRig">
<xsd:sequence>
<xsd:element name="rot" type="CT_SphereCoords" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="rig" type="ST_LightRigType" use="required" />
<xsd:attribute name="dir" type="ST_LightRigDirection" use="required"}
/>
</xsd:complexType>

Just as with the camera, the complex type, CT_SphereCoords, is defined elsewhere in the DrawingML. This
element, however, serves as an override for the default light right direction. Figure 2 below shows some of the
different preset lights applied to a shape.

Three Point
Light

sunrise

Sunset

Figure 8: Some preset lights applied to a shape.
The types of available light rigs are:

legacyFlatl
legacyFlat2
legacyFlat3

304

N oo o AW

10
11
12

13
14
15
16
17

18
19
20
21
22
23
24

25

26
27
28
29

30
31
32
33

34

35
36
37

legacyFlat4
legacyNormal1

legacyNormal2
legacyNormal3
legacyNormal4
legacyHarsh1
legacyHarsh?2

legacyHarsh3
legacyHarsh4
threePoint
balanced

soft

harsh

flood
contrasting
morning
sunrise

sunset
chilly
freezing
flat
twoPoint
glow
brightRoom

The types of available present directions are:

tl — top left

t —top

tr —top right

1 - left

r —right

bl — bottom left
b — bottom

br — bottom right

5.6.2.4 Backdrop

Introduction to DrawingML

The complex type, CT_Backdrop, defines a unique place in the 3-D scene. The backdrop is a flat 2-D plane that

can hold effects, such as shadows, oriented in 3-D space. The points and vectors contained within the

backdrop are relative to world space. The complex type is defined as:

305

O 00 N O U A~ W N P

S
N R, O

13
14

15

16
17
18

19

20
21

22

23
24

25

Introduction to DrawingML

<xsd:complexType name="CT_Backdrop">
<xsd:sequence>
<xsd:element name="anchor" type="CT_Point3D" minOccurs="1"
maxOccurs="1" />
<xsd:element name="norm" type="CT_Vector3D" minOccurs="1"
maxOccurs="1" />
<xsd:element name="up" type="CT_Vector3D" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="ext" type="CT_OfficeArtExtension” minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

All of the complex types defined within this backdrop are defined elsewhere in DrawingML. As with other
complex types, the backdrop also contains an element reserved for future extensibility.

5.6.3 Styles

The 3-D styles section encompasses the properties for 3-D shapes. These properties are those that get applied
to the 3-D shape, such as a bevel or a contour, and they define the look of the shape in 3-D. A number of
simple types used within the complex types of this group are defined below.

5.6.3.1 Simple Types

The simple types defined here outline the different presets available to the user. These presets are applied to
the shapes through the complex type definitions that are outlined later.

5.6.3.1.1 Bevel Type

The simple type, ST_BevelPresetType, defines a preset bevel for a shape and some examples can be seen in
figure 3.

306

00 N o U A~ W

19

20

21

Figure 9: Different bevel types applied to a shape
The different types of bevels available are:

relaxedInset
circle

slope

Cross

angle
softRound

convex
coolSlant
divot
riblet
hardedge
artDeco

5.6.3.1.2 Preset Material Type

Introduction to DrawingML

The simple type, ST_PresetMaterialType, defines a material for the shape. The material properties describe
the surface appearance of the shape, and are used in lighting calculations to define exactly how the light

interacts with the shape. Some example material types can be seen in figure 4.

Figure 10: Different material types on a shape.

The different preset material types are:

307

v A W N R

O 00 N O

10

11
12
13
14
15

16

17
18
19

20

21
22

23
24
25
26
27
28
29
30

31

32
33
34
35
36
37
38

Introduction to DrawingML

legacyMatte
legacyPlastic
legacyMetal
legacyWireframe
matte

plastic

metal

warmMatte
translucentPowder
powder

dkEdge
softEdge
clear

flat
softMetal

5.6.3.2 Complex Types

The complex types in this area define the actual 3-D properties that get applied to a shape. These properties
work together in order to define the geometry of a shape along with the scene related properties that define
the look of the geometry of the shape.

5.6.3.2.1 Bevel

The complex type, CT_Bevel, defines a bevel for a shape. The bevel consists of a width and a height value,
along with a preset bevel. The complex type is defined in the following manner:

<xsd:complexType name="CT_Bevel">
<xsd:attribute name="w" type="ST_PositiveCoordinate" use="optional"
default="76200" />
<xsd:attribute name="h" type="ST_PositiveCoordinate" use="optional"
default="76200" />
<xsd:attribute name="prst" type="ST BevelPresetType" use="optional™
default="circle" />

</xsd:complexType>

5.6.3.2.2 Shape 3-D

The complex type, CT_Shape3D, defines all of the 3-D properties associated with an individual shape. A shape
can have two bevels, one on the top and one on the bottom. An extrusion color also defined, which, when
applied, applies a color to the surface of the extrusion. There is also an extrusion width, which defines the
width of the extrusion. A contour color and width can be defined for the shape. A z-axis anchor is defined
within the complex type and is the anchor relative to the shape’s top face. The shape 3-D complex type also
holds a present material. Finally the shape 3-D contains another element just as in previous complex types,
which is used for future extensibility. The CT_Shape3D complex type is defined in the following manner:

308

O 00 N OO s~ W N

N NN P R R R R R R Rl
N B O ©W ©® N O 11 B W N KL O

23

24
25

26
27
28
29

30

31
32
33

34
35
36
37
38

Introduction to DrawingML

<xsd:complexType name="CT_Shape3D">
<xsd:sequence>
<xsd:element name="bevelT" type="CT_Bevel" minOccurs="0"
maxOccurs="1" />
<xsd:element name="bevelB" type="CT_Bevel"” minOccurs="0"
maxOccurs="1" />
<xsd:element name="extrusionClr" type="CT_Color" minOccurs="0"
maxOccurs="1" />
<xsd:element name="contourClr" type="CT_Color"™ minOccurs="0"
maxOccurs="1" />
<xsd:element name="ext" type="CT_OfficeArtExtension" minOccurs="0"
maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="z" type="ST_Coordinate" use="optional”
default="0" />
<xsd:attribute name="extrusionH" type="ST_PositiveCoordinate"
use="optional" default="0" />
<xsd:attribute name="contourW" type="ST_PositiveCoordinate"
use="optional" default="0" />
<xsd:attribute name="prstMaterial” type="ST_PresetMaterialType"
use="optional" default="warmMatte" />
</xsd:complexType>

5.6.3.2.3 Flat Text

The complex type, CT_FlatText, defines a text object in a 3-D scene that should be rendered as a normal, flat,

text overlay outside of the 3-D scene. The complex type is defined in the following manner:

<xsd:complexType name="CT_FlatText">
<xsd:attribute name="z" type="ST Coordinate" use="optional"
default="0" />

</xsd:complexType>

5.6.3.2.4 Group, Text 3-D

The final structure to be defined is a group, EG_Text3D, which describes how text should be applied in the 3-

D scene. If the text object is a member of the 3-D scene, then there are three different ways it can be
displayed:

e If no EG_Text3D choice is provided, the text will be rendered in a scene coherent manner and will be

rendered in perspective inside of the 3D scene as a planar shape inside the 3-D.

e If CT_Shape3D is provided then the text will be scene coherent and fully 3-D.

e If CT_FlatText is provided then the text will be drawn as normal 2-D text rendered on top of the 3-
D scene.

An EG_Text3D is defined in the following manner:

309

Jany

O 00 N OO s~ W N

10

11

12
13
14

15
16

17

18
19
20

21

22

23
24

25
26
27

28

29
30

31

32
33
34

Introduction to DrawingML

<xsd:group name="EG_Text3D">
<xsd:choice oxsd:cname="Text3DChoice"
oxsd:cnameMember="text3DChoice">
<xsd:element name="sp3dtype="CT_Shape3D" minOccurs="1"
maxOccurs="1/>
<xsd:element name="flatTx" type="CT_FlatText" minOccurs="1"
maxOccurs="1" />
</xsd:choice>
</xsd:group>

5.7 Coordinate Systems and Transformations

571 Introduction

This document provides an overview of the transformation elements for shapes and groups, represented by
<a:xfrm>in dml-baseTypes.xsd. These schemas are for the representation of scaling and rotation on individual
shapes and groups.

§5.7.2, §5.7.3, and §5.7.4 provide a qualitative overview of the transformation pipeline. §5.7.6 provides
mathematical details.

5.7.2 Coordinate System

All DrawingML shapes are located on a 2-D Cartesian coordinate space with the origin (0,0) in the upper left-
hand corner of the canvas. The x-axis coordinates grow positively as one moves from left to right, and the y-
axis coordinates grow positively as one moves from top to bottom.

Coordinates are measured in EMUs (914400 EMUs per inch), and can be positive or negative.

5.7.3 Shape Transformations

In this subclause, we describe the transformation pipeline for a shape. To summarize, the shape
transformation for a shape is defined as the following sequence of operations:

1. The translation and scaling required to transform its original bounding box to a rectangle specified by
the offset and extents.
A flip across the center of the bounding box according to flipH and flipV.
A rotation about the center of the bounding box according to the rot attribute.

To render a shape that is not inside a group (§5.7.4), the renderer simply applies the shape transformation to
the original shape.

5.7.3.1 Scaling and Translating a Shape

The shape is scaled horizontally, scaled vertically, and translated in both dimensions, to fill a given bounding
box. The bounding box is represented by specifying an offset in x and y (attributes x and y of a:off) and extents
in x and y (attributes cx and cy of a:ext, both of which must be greater than or equal to zero). The upper left

310

10
11

12
13

14
15
16
17

Introduction to DrawingML
corner of the bounding box is located at the offset, and the lower right corner of the bounding box is located at
the offset plus extent.

If the starting shape has zero width (e.g., it is a vertical line), then the cx attribute of a:ext is ignored and the
horizontal scaling is skipped. Similarly, if the starting shape has zero height, then the cy attribute of a:ext is
ignored and the vertical scaling is skipped.

Origin (0,0) X-AXxis

Y-Axis

The following XML fragment represents the offset and extents for the star shape above:

<a:xfrm>
<a:off x="1866680" y="990600"/>
<a:ext cx="1371600" cy="1371600"/>
</a:xfrm>

Notice that as demonstrated with the example above, any effects attached to the shape are disregarded when
scaling and translating the shape to fill the given bounding box.

This example illustrates that no additional parameters are needed to represent the scaling of a shape. The
bounding-box parameters are sufficient to represent scaling. The following XML Fragments represent the
offset and extents for a star shape, before and after scaling. In this particular example, the bounding boxes
have been chosen to have the same upper-left corner, i.e., the same offset.

311

(o) IR E 2 B N V)

10
11

12

13
14

15

16
17

18

Before scaling (small star):

<a:xfrm>
<a:off x="1066800" y="990600"/>
<a:ext cx="1371600" cy="1371600"/>
</a:xfrm>

After scaling (large star):

<a:xfrm>
<a:off x="1066800" y="990600"/>
<a:ext cx="2438400" cy="2133600"/>
</a:xfrm>

5.7.3.2 Rotating a Shape

Introduction to DrawingML

Rotation is represented with the rot attribute. The shape is rotated clockwise about the bounding-box center,

by the amount specified in the rot attribute. Each unit of rotation is 1/1,000 of an arc minute (1/60,000 of a

degree).

This example represents the small star from above, with a subsequent 45-degree rotation clockwise. Since the

y axis points down, a clockwise rotation is positive.

312

A W N

10

11
12
13
14

15

16
17

18

19
20
21

22
23
24
25

26
27
28

Introduction to DrawingML

<a:xfrm rot="2700000">
<a:off x="1066800" y="990600"/>
<a:ext cx="1371600" cy="1371600"/>
</a:xfrm>

5.7.3.3 Flipping a Shape

A flip is a reflection across a vertical or horizontal line that intersects the center of the bounding box. The
optional flipH and flipV attributes control horizontal and vertical flipping, respectively. Each is absent or equal
to @ if no flipping is to be performed, and equal to 1 if flipping is to be performed.

¥ Extent X
/'—A_\

¥ Extent Y

The following XML fragment illustrates a shape that has been flipped both horizontally and vertically.

<a:xfrm flipH="1" flipv="1">
<a:off x="3964937" y="2652643"/>
<a:ext cx="168838" cy="1219199"/>
</a:xfrm>

5.7.4 Group Transformations

A group is composed of zero to many shapes. Because a group is a shape, this composition relationship can
nest recursively. (A group with zero shapes is degenerate; it produces no user-visible output. A group with one
shape is also degenerate; it has no representational power beyond that of the one shape.)

The definition of a group transformation is identical to that of a shape transformation, except that in place of
the pre-transform bounding box of a shape, we use the union of all of its children prior to their individual
rotations. To summarize, a group transformation is the following sequence of operations:

1. The translation and scaling required to transform the union of the children's bounding boxes to a
rectangle defined by the group's offset and extent attributes.

2. Aflipped about that bounding box according to the flipH and flipV attributes.

3. Arotation about the center of that bounding box according to the rot attribute.

To render a simple shape that is inside a group hierarchy, the renderer does not simply apply the shape
transformation and all parent group transformations to the original shape. Instead (see §5.7.5), it applies the
transformation equal to the following sequence of operations:

313

w N

w

10

11

12
13
14
15

16
17

18

19
20

21

22
23
24

25

Introduction to DrawingML

1. Horizontal scaling and flipping by a factor equal to the product of the horizontal scalings and flips in its
own transformation and those of its parents.

2. Vertical scaling and flipping by a factor equal to the product of the vertical scalings and flips in its own
transformation and those of its parents.

3. Rotation by an amount equal to the sum of the rotations in its own transformation and those of its
parents.

4. Translation such that its center coincides with the point obtained by applying the shape
transformation and all parent group transformations to the shape's original center.

Because of the similarity with the transformation pipeline for a shape, the forthcoming subsections primarily
cover illustrative examples.

5.7.4.1 Scaling and Translating a Group

The group is scaled horizontally, scaled vertically, and translated in both dimensions. The parameters are
chosen to transform the child bounding box (specified by a:chOff and a:chExt) to the group bounding box
(specified by a:off and a:ext). The child bounding box is defined as the bounding box around the group's
children as they would have been had their rot attributes been absent.

It is possible for the child bounding box to have a zero value for cx or cy in a:chExt, e.g., because the starting
shape is a horizontal or vertical line, or because the starting shape was scaled to have zero width or height.
Such a case is handled in the same way as previously described for simple shapes.

This example demonstrates the definition of the child bounding box. The two shapes on the left, rotated
squares, are grouped. The two shapes on the right, non-rotated squares, are also grouped.

The red bands are not part of t